Synthesis and Applications of Fungal-Mediated Nanoparticles

  • Chapter
  • First Online:
Microbial Processes for Synthesizing Nanomaterials

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

  • 263 Accesses

Abstract

Vast research has been carried out for past 20 years to find ways to synthesize nanoparticles through fungi or fungal extracts. There is a demand to create eco-friendly techniques for the synthesis of nanoparticles. Employing fungal strains for nanoparticle biosynthesis is technologically attractive, reasonable and commercially feasible. Amongst other organisms, fungi make an appropriate option for the production of metallic nanoparticles because they secrete a large amount of proteins, thus increasing productivity, and their easy usage in the laboratory. Fungal nanobiotechnology has been utilized in agricultural, medical and industrial sectors for goods and services improvement and delivery to mankind. Agriculturally, it has found applications in plant disease management and production of environmentally friendly, nontoxic insecticides, fungicides to enhance agricultural production in general. Medically, diagnosis and treatment of diseases, particularly of microbial origin, has been improved with fungal nanoparticles through more efficient drug delivery systems with major advantage to pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Aziz A, Al-Othman M, Mahmoud M, Metwaly H (2015) Biosynthesis of silver nanoparticles using Fusarium solani and its impact on grain borne fungi. Dig J Nanomater Biostruct 10:655–662

    Google Scholar 

  • Abd-Elsalam KA, Periakaruppan R, Rajeshkumar S (2021) Agri-waste and microbes for production of sustainable nanomaterials. Elsevier, Amsterdam. 772 p

    Google Scholar 

  • Afshar P, Sedaghat S (2016) Bio-synthesis of silver nanoparticles using water extracts of Saturejahortensis L and evaluation of the antibacterial properties. Curr Nanosci 12(1):90–93

    Article  CAS  Google Scholar 

  • Ahluwalia V, Kumar J, Sisodia R, Shakil NA, Walia S (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crop Prod 55:202–206

    Article  CAS  Google Scholar 

  • Ahmad U, Ahmad Z, Khan AA, Akhtar J, Singh SP, Ahmad FJ (2018) Strategies in development and delivery of nanotechnology based cosmetic products. Drug Res 68:545–552

    Article  CAS  Google Scholar 

  • Ajazzuddin M, Jeswani G, Jha A (2015) Nanocosmetics: past, present and future trends. Recent Pat Nanomed 5:3–11

    Article  CAS  Google Scholar 

  • Almeida JP, Lin AY, Langsner RJ, Eckels P, Foster AE, Drezek RA (2014) In vivo immune cell distribution of gold nanoparticles in naive and tumor bearing mice. Small 10:812–819

    Article  CAS  PubMed  Google Scholar 

  • Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B: Biointerfaces 103:283–287

    Article  CAS  PubMed  Google Scholar 

  • Atwater HA (2007) The promise of plasmonics. Sci Am 296(4):56–63

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balakumaran MD, Ramachandran R, Kalaichelvan PT (2015) Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res 178:9–17

    Article  CAS  PubMed  Google Scholar 

  • Balakumaran MD, Ramachandran R, Balashanmugam P, Mukeshkumar DJ, Kalaichelvan PT (2016) Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res 182:8–20

    Article  CAS  PubMed  Google Scholar 

  • Balzani V (2005) Nanoscience and nanotechnology: a personal view of chemist. Small 1(3):278–283

    Article  CAS  PubMed  Google Scholar 

  • Barber DJ, Freestone IC (1990) An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy. Archaeometry 32(1):33–45

    Article  Google Scholar 

  • Barhoum A, El-Maghrabi HH, Nada AA, Sayegh S, Roualdes S, Renard A, Iatsunskyi I, Coy E, Bechelany M (2021) Simultaneous hydrogen and oxygen evolution reactions using free-standing nitrogen-doped-carbon–Co/CoOx nanofiber electrodes decorated with palladium nanoparticles. J Mater Chem A 9:17724–17739

    Article  CAS  Google Scholar 

  • Bawendi M, Carroll P, Wilson W, Brus L (1992) Luminescence properties of CdSe quantum crystallites: resonance between interior and surface localized states. J Chem Phys 96(2):946–954

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47:160–164

    Article  CAS  PubMed  Google Scholar 

  • Bharde A, Rautaray D, Bansal V et al (2006) Extracellular biosynthesis of magnetite using fungi. Small 2(1):135–141

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj K, Sharma A, Tejwan N, Bhardwaj S, Bhardwaj P, Nepovimova E, Shami A, Kalia A, Kumar A, Abd-Elsalam KA (2020) Pleurotus macrofungi-assisted nanoparticle synthesis and its potential applications: a review. J Fungi 6:351

    Article  CAS  Google Scholar 

  • Buszewski B, Railean-Plugaru V, Pomastowski P, Rafínska K, Szultka-Mlynska M, Golinska P, Wypij M, Laskowski D, Dahm H (2018) Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J Microbiol Immunol Infect 51:45–54

    Article  CAS  PubMed  Google Scholar 

  • Butler H (1993) Microbiological control of cosmetics. In: Butler H (ed) Poucher’s perfumes, cosmetics and soaps, vol 3. Springer, Dordrecht, pp 572–606

    Chapter  Google Scholar 

  • Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92:114

    Article  Google Scholar 

  • Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D (2020) Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: a review of the current situation. Nanomaterials 10:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro L, Blázquez ML, González FG, Ballester A (2014) Mechanism and applications of metal nanoparticles prepared by bio-mediated process. Rev Adv Sci Eng 3:199–216

    Article  Google Scholar 

  • Chan WCW (2020) Nano research for COVID-19. ACS Nano 14:3719–3720

    Article  CAS  PubMed  Google Scholar 

  • Chauhan A, Anand J, Parkash V, Rai N (2022) Biogenic synthesis: a sustainable approach for nanoparticles synthesis mediated by fungi. Inorg Nano-Metal Chem 53:460–473

    Article  Google Scholar 

  • De Santis CE, Fedewa SA, Sauer AG, Kramer JL, Smith RA, Jemal A (2015) Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin 66:31–42

    Article  PubMed  Google Scholar 

  • Dhiman S, Varma A, Prasad R, Goel A (2022) Mechanistic insight of the antifungal potential of green synthesized zinc oxide nanoparticles against Alternaria brassicae. J Nanomater 2022:7138843, 13. https://doi.org/10.1155/2022/7138843

    Article  CAS  Google Scholar 

  • Dhiman S, Varma A, Rao M, Prasad R, Goel A (2023) Deciphering the fertilizing and disease suppression potential of phytofabricated zinc oxide nanoparticles on Brassica juncea. Environ Res. https://doi.org/10.1016/j.envres.2023.116276

  • Drexler KE, Peterson C (1989) Nanotechnology and enabling technologies. Foresight Briefing

    Google Scholar 

  • Duran N, Marcato PD, Alves OL, DeSouza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8

    Article  Google Scholar 

  • Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41(6):2256–2282

    Article  CAS  PubMed  Google Scholar 

  • Elamawi R, El-Shafey RA (2013) Inhibition effects of silver nanoparticles against rice blast disease caused by Magnaporthe grisea. Egypt J Agric Res 91:1271–1283

    Google Scholar 

  • Elamawi RM, Al-Harbi RE, Hendi AA (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Contr 28:28

    Article  Google Scholar 

  • Elgorban A, Aref S, Seham S, Elhindi K, Bahkali A, Sayed S (2016a) Extracellular synthesis of silver nanoparticles using aspergillus versicolor and evaluation of their activity on plant pathogenic fungi. Mycosphere 7:844–852

    Article  Google Scholar 

  • Elgorban AM, Al-Rahmah AN, Sayed SR, Hirad A, Mostafa AAF, Bahkali AH (2016b) Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Equip 30:299–304

    Article  CAS  Google Scholar 

  • Elmer WH, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3:1072–1079

    Article  CAS  Google Scholar 

  • Faisal S, Khan MA, Jan H, Shah SA, Abdullah Shah S, Rizwan M, Wajidullah Akbar MT (2021) Redaina edible mushroom (Flammulina velutipes) as biosource for silver nanoparticles: from synthesis to diverse biomedical and environmental applications. Nanotechnology 32:065101

    Article  CAS  PubMed  Google Scholar 

  • Fariq A, Khan T, Yasmin A (2017) Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed 15:241–248

    Article  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6(1):103

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2020) Global cancer observatory: cancer today. International Agency for Research on Cancer, Lyon. https://gco.iarc.fr/today. Accessed 9 Jul 2021

    Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  • Filipponi L, Nicolau DV (2006) Cell patterning. Wiley encyclopedia of biomedical engineering. John Wiley and Sons, New York, NY

    Google Scholar 

  • Fouda A, Saad E, Salem SS, Shaheen TI (2018) In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microb Pathog 125:252–261

    Article  CAS  PubMed  Google Scholar 

  • Gaba S, Prasad L, Varma A, Rai AK, Prasad R, Goel A (2023) Leveraging of mycogenic copper oxide nanostructures for disease management of Alternaria blight of Brassica juncea. Green Processing Synth 12:20230015. https://doi.org/10.1515/gps-2023-0015

    Article  CAS  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2(3):243–247

    Article  Google Scholar 

  • Gajbhiye MB, Kesharwani JG, Ingle AP, Gade AK, Rai MK (2009) Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole. Nanomedicine: NBM 5:282–286

    Google Scholar 

  • Gaur M, Misra C, Yadav AB, Swaroop S, Maolmhuaidh F, Bechelany M, Barhoum A (2021) Biomedical applications of carbon nanomaterials: fullerenes, quantum dots, nanotubes, nanofibers, and graphene. Materials 14:5978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindappa M, Farheen H, Chandrappa CP, Channabasava Rai RV, Raghavendra VB (2016) Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Adv Nat Sci Nanosci Nanotechnol 7:035014

    Article  Google Scholar 

  • Guilger-Casagrande M, Lima RD (2019) Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol 7:287

    Article  PubMed  PubMed Central  Google Scholar 

  • He Y, Qian L, Liu X, Hu R, Huang M, Liu Y, Chen G, Losic D, Zhu H (2018) Graphene oxide as an antimicrobial agent can extend the vase life of cut flowers. Nano Res 11:6010–6022

    Article  CAS  Google Scholar 

  • Hemath KS, Naveen G, Kumar L, Karthik KVB, Rao E (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch App Sci Res 2(6):161

    CAS  Google Scholar 

  • Hirpara DG, Gajera HP (2020) Green Synthesis and Antifungal Mechanism of Silver nanoparticles derived from Chitin-induced Exometabolites of Trichoderma interfusant. Appl Organomet Chem 34:5407

    Article  Google Scholar 

  • Honary S, Barabadi H, Gharaei-Fatahabad E, Naghibi F (2013) Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 12:7–11

    CAS  Google Scholar 

  • Horikoshi S, Serpone N (2013) Introduction to nanoparticles. In: Horikoshi S, Serpone N (eds) Microwaves in nanoparticle synthesis: fundamentals and applications. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, pp 1–24

    Chapter  Google Scholar 

  • Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes - a review. Colloids Surf B: Biointerfaces 121:474–483

    Article  CAS  PubMed  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    Article  CAS  Google Scholar 

  • Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B: Biointerfaces 81(2):430

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticlesusing Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635

    Article  CAS  PubMed  Google Scholar 

  • Jang HD, Kim SK, Chang H, Choi JH, Cho BG, Jo EH, Choi JW, Huang J (2015) Three-dimensional crumpled graphenebased platinum–gold alloy nanoparticle composites as superior electrocatalysts for direct methanol fuel cells. Carbon 93:869–877

    Article  CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 71:1133–1137

    Article  Google Scholar 

  • Kaul S, Gulati N, Verma D, Mukherjee S, Nagaich U (2018) Role of nanotechnology in cosmeceuticals: a review of recent advances. J Pharm 2018:3420204

    Google Scholar 

  • Khan SA, Gambhir S, Ahmad A (2014) Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol. Beilstein J Nanotechnol 5:249–257

    Article  PubMed  PubMed Central  Google Scholar 

  • Khandel P, Shahi SK (2018) Mycogenic nanoparticles and their bioprospective applications: current status and future challenges. J Nanostruct Chem 8(4):369–391

    Article  CAS  Google Scholar 

  • Klasen HJ (2000) A historical review of the use of silver in the treatment of burns II. Renewed interest for silver. Burns 26:131–138

    Article  CAS  PubMed  Google Scholar 

  • Koch N, Sonowal S, Prasad R (2023) Elucidate the smart tailored biogenic nanoparticles and their applications in remediation. Biotechnol Genet Eng Rev. https://doi.org/10.1080/02648725.2023.2219942

  • Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6:570–574

    Article  CAS  Google Scholar 

  • Kumar N, Kumbhat S (2010) Essentials in nanoscience and nanotechnology, 1st edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Kumar SA, Ansary AA, Ahmad A, Khan MI (2007a) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium Oxysporum. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007b) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechno Lett 29:439–445

    Article  CAS  Google Scholar 

  • Kumar SA, Peter YA, Nadeau JL (2008) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19:495–101

    Article  Google Scholar 

  • Lombardo D, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 12:1–26

    Article  Google Scholar 

  • Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H (2016) Recent progress on nano-structures for drug delivery applications. J Nanomater 2016:5762431

    Article  Google Scholar 

  • Majeed S, Abdullah MS, Nanda A, Ansari MT (2016) In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). J Taibah Univ Sci 10:614–620

    Article  Google Scholar 

  • Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash PC, Fraceto LF, De Lima R (2016) Nanoparticles based on chitosan as carriers for the combined herbicides Imazapic and Imazapyr. Sci Rep 6:19768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meher J, Rajput RS, Bajpai R, Teli B, Sarma BK (2020) Trichoderma: a globally dominant commercial biofungicide. In: Soil biology. Springer, Cham, pp 195–208

    Google Scholar 

  • Metuku RP, Pabba S, Burra S, Hima Bindu N et al (2013) Biosynthesis of silver nanoparticles from Schizophyllum radiatum HE 863742.1: their characterization and antimicrobial activity. 3 Biotech 4:227–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A (2012) Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine 7:3637

    PubMed  PubMed Central  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Molnár Z, Bódai V, Szakacs G (2018) Green synthesis of gold nanoparticles by Thermophilic flamentous fungi. Sci Rep 8:3943

    Article  PubMed  PubMed Central  Google Scholar 

  • Mughal B, Zaidi SZJ, Zhang X, Hassan SU, Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani RP (2021) Biogenic nanoparticles: synthesis, characterisation and applications. Appl Sci 11(6):2598

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Pasricha R, Ajayakumar PV, Alam M (2001) Bioreduction of AuCl4–Ions by the fungus, Verticillium sp. and surface trap** of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  • Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest J Nanomater Biostruct 4(4):623

    Google Scholar 

  • Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra K, Ferro VA (2017) Delivering natural products and biotherapeutics to improve drug efficacy. Ther Deliv 8:947–956

    Article  CAS  PubMed  Google Scholar 

  • Omidi S, Sedaghat S, Tahvildari K, Derakhshi P, Motiee F (2018) Biosynthesis of silver nanocomposite with Tarragon leaf extract and assessment of antibacterial activity. J Nanostruct Chem 8(2):171–178

    Article  CAS  Google Scholar 

  • Osherov A, Prasad R, Chrzanowski W, New EJ, Brazaca L, Sadik O, Haynes CL, Maine E (2023) Responsible nanotechnology for a sustainable future. One Earth 6(7):763–766. https://doi.org/10.1016/j.oneear.2023.06.010

    Article  Google Scholar 

  • Ottoni CA, Simões MF, Fernandes S, Dos Santos JG, Da Silva ES, de Souza RFB, Maiorano AE (2017) Screening of flamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S (2018) Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci 19:4100

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastrana H, Avila A, Tsai CSJ (2018) Nanomaterials in cosmetic products: the challenges with regard to current legal frame works and consumer exposure. Nano Ethics 12:123–137

    Google Scholar 

  • Paul S, Chugh A (2011) Assessing the role ayurvedic bhasmas as ethano-nanomedicine in the metal based nanomedicine patent regime. J Intell Prop Rights 16:509–515

    Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, International Publishing Switzerland. (ISBN: 978-3-319-42989-2)

    Book  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)

    Book  Google Scholar 

  • Prasad R (2019a) Microbial nanobionics: basic research and applications. Springer International Publishing. (ISBN 978-3-030-16534-5) https://www.springer.com/gp/book/9783030165338

    Book  Google Scholar 

  • Prasad R (2019b) Microbial nanobionics: state of art. Springer International Publishing. (ISBN 978-3-030-16383-9) https://www.springer.com/gp/book/9783030163822

    Book  Google Scholar 

  • Prasad R, Rai S (2023) Trichoderma for biotechnological applications: current insight and future prospects. Elsevier

    Google Scholar 

  • Qian Y, Yu H, He D, Yang H, Wang W, Wan X (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36:1613–1619

    Article  CAS  PubMed  Google Scholar 

  • Rai S, Prasad R (2023) Nanoparticle producing trichoderma for sustainable agriculture: current understanding, opportunities, and challenges. In: Prasad R and Rai S (eds) New and future developments in microbial biotechnology and bioengineering: trichoderma for biotechnological applications: current insight and future prospects 203-222

    Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112(5):841–852

    Article  CAS  PubMed  Google Scholar 

  • Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioall Sci 4:186–193

    Article  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agirc Res 2:48–57

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC, Biswas P (2016) Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem 64:3111–3118

    Article  CAS  PubMed  Google Scholar 

  • Revia RA, Wagner BA, Zhang MA (2019) Portable electrospinner for nanofiber synthesis and its application for cosmetic treatment of alopecia. Nanomaterials 9:1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes KR, Green JJ (2018) Nanoscale artificial antigen presenting cells for cancer immunotherapy. Mol Immunol 98:13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusariumoxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Photochemical green synthesis of calcium-alginate stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893

    Article  CAS  PubMed  Google Scholar 

  • Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199:344–370

    Article  CAS  PubMed  Google Scholar 

  • Sanaeimehr Z, Javadi I, Namvar F (2018) Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using sargassum muticum algae extraction. Cancer Nanotechnol 9:1–16

    Article  Google Scholar 

  • Saravanan M, Barik SK, Mubarak Ali D, Prakash P, Pugazhendhi A (2018) Synthesis of silver nanoparticles from bacillus brevis (ncim 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog 116:221–226

    Article  CAS  PubMed  Google Scholar 

  • Saravanan A, Kumar PS, Karishma S, Vo DVN, Jeevanantham S, Yaashikaa PR (2020) A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 264:128580

    Article  PubMed  Google Scholar 

  • Šebesta M, Urík M, Bujdoš M, Kolenčík M, Vávra I, Dobročka E, Kim H, Matúš P (2020) Fungus Aspergillus niger processes exogenous zinc nanoparticles into a biogenic oxalate mineral. J Fungi 6:210

    Article  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shelke DB, Islam NF, Chambhare MR, Sonawane HB, Patowary R, Prasad R, Sarma H (2023) Enhancing secondary metabolites and alleviating environmental stress in crops with mycogenic nanoparticles: a comprehensive review. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2023.102805

  • Singh P, Kim YJ, Zhang D, Yang DC (2016a) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Kaur G, Kaur P, Bajaj R, Rawat M (2016b) A review on green synthesis and characterization of silver nanoparticles and their applications: a green nanoworld. World J Pharm Sci 7:730–762

    Google Scholar 

  • Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909. https://doi.org/10.3389/fmicb.2017.01909

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Dhanjal DS, Thotapalli S, Sharma P, Singh J (2020) Importance and recent aspects of fungi-based food ingredients. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 245–254

    Google Scholar 

  • Spagnoletti FN, Spedalieri C, Kronberg F, Giacometti R (2019) Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. J Environ Manag 231:457–466

    Article  CAS  Google Scholar 

  • Steward BW, Kleihues P (2003) World cancer report. IARC Press, Lyon

    Google Scholar 

  • Subbaiya R, Saravanan M, Priya AR, Shankar KR, Selvam M, Ovais M (2017) Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnol 11:965–972

    Article  PubMed  PubMed Central  Google Scholar 

  • Suman V, Prasad R, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Syed A, Raja R, Kundu GC, Gambhir S, Ahmad A (2013) Extracellular biosynthesis of monodispersed gold nanoparticles, their characterization, cytotoxicity assay, biodistribution and conjugation with the anticancer drug doxorubicin. J Nanomed Nanotechnol 4:156–161

    Google Scholar 

  • Taha ZK, Hawar SN, Sulaiman GM (2019) Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol Lett 41:899–914

    Article  CAS  PubMed  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    Article  CAS  PubMed  Google Scholar 

  • Thakor R, Mistry H, Patel H, Jhala D, Parmar N, Bariya H (2022) Biogenic synthesis of silver nanoparticles mediated by the consortium comprising the marine fungal filtrates of Penicillium oxalicum and Fusarium hainanense along with their antimicrobial, antioxidant, larvicidal and anticancer potency. J Appl Microbiol 133:857–869

    Article  CAS  PubMed  Google Scholar 

  • Thirumurugan G, Shaheedha SM, Dhanaraju MD (2009) Invitro evaluation of anti-bacterial activity of silver nanoparticles synthesised by using Phytophthora infestans. Int J Chem Tech Res 1(3):714

    CAS  Google Scholar 

  • Tolochko NK (2009) History of nanotechnology (Chapter 1). In: Kharkin V, Bai C, Kapitza S, Awadelkarim OO (eds) Nanoscience and nanotechnologies, vol 1. UNESCO, Oxford. ISBN 978-1-78021-531-0. https://www.eolss.net/ebooklib/bookinfo/nanoscience-nanotechnologies.aspx

    Google Scholar 

  • U.S. Food and Drug Administration (2016) Is it a cosmetic, a drug, or both? (Or is it soap?). FDA, Silver Spring, MD. http://www.fda.gov/cosmetics/guidancecomplianceregulatoryinformation/ucm074201.htm

    Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma Reesei (A Route for Large-Scale Production of AgNPs). Insciences J 1(1):65

    Article  CAS  Google Scholar 

  • Vahidi H, Kobarfard F, Alizadeh A, Saravanan M, Barabadi H (2020) Green nanotechnology-based tellurium nanoparticles: exploration of their antioxidant, antibacterial, antifungal and cytotoxic potentials against cancerous and normal cells compared to potassium tellurite. Inorg Chem Commun 124:108385

    Article  Google Scholar 

  • Vala AK, Shah S, Patel R (2014) Biogenesis of silver nanoparticles by marine derived fungus Aspergillus flavus from Bhavnagar Coast, Gulf of Khambhat, India. J Mar Biol Oceanogr 3(1):1–3

    Google Scholar 

  • Verma VC, Singh SK, Solanki R, Prakash S (2011) Biofabrication of anisotropic gold nanotriangles us extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res Lett 6:16

    Article  PubMed  Google Scholar 

  • Walter P, Welcomme E, Hallégot P, Zaluzec NJ, Deeb C, Castaing J (2006) Early use of PbS nanotechnology for an ancient hair dyeing formula. Nano Lett 6(10):2215–2219

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu X, Lee DJ, Tay JH, Zhang Y, Wan CL (2018) Recent advances on biosorption by aerobic granular sludge. J Hazard Mater 357:253–270

    Article  CAS  PubMed  Google Scholar 

  • Worrall EA, Hamid A, Mody KT, Mitter N, Pappu HR (2018) Nanotechnology for plant disease management. Agronomy 8:285

    Article  CAS  Google Scholar 

  • Yadav A, Kon K, Kratošová G, Durán N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120

    Article  CAS  PubMed  Google Scholar 

  • Zhang MAM, Yu Y, Shen W, Zhang HY, Gu HQN (2008) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf A Physicochem Eng Asp 212(2):219–226

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhavi, A., Srinivasulu, M., Shankar, P.C., Rangaswamy, V. (2023). Synthesis and Applications of Fungal-Mediated Nanoparticles. In: Maddela, N.R., Rodríguez Díaz, J.M., Branco da Silva Montenegro, M.C., Prasad, R. (eds) Microbial Processes for Synthesizing Nanomaterials . Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2808-8_5

Download citation

Publish with us

Policies and ethics

Navigation