Dip Coating: Simple Way of Coating Thin Films

  • Chapter
  • First Online:
Simple Chemical Methods for Thin Film Deposition

Abstract

Dip coating (DC) is the utmost ancient, extensively used and commercially available thin film deposition process among several wet chemical thin film deposition approaches. This chapter explores the introduction, literature, experimental setup, reaction mechanism, effect of preparative parameters along with advantages and disadvantages of dip coating methods. This chapter summarizes experimental arrangement with growth kinetics, role of various preparative parameters inclusive of the key achievements made in the field of nanostructure thin film deposited through dip coating. Case studies of the dip coating method have been included separately with their application towards gas sensor, supercapacitor electrode and counter electrode in a dye sensitized solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADDC:

Angle Dependent Dip Coating

CE:

Counter Electrode

CNT:

Carbon Nanotubes

DDW:

Double Distilled Water

DSSC:

Dye Sensitized Solar Cell

FTO:

Fluorine doped tin oxide

LPG:

Liquefied Petroleum Gas

MWCNT’s:

Multi-walled Carbon Nanotubes

PDOT:PSS:

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate

SS:

Stainless Steel

TE:

Thermal Energy

References

  1. D. Grosso, How to exploit the full potential of the dip-coating process to better control film formation. J. Mater. Chem. 21(43), 17033–17038 (2011)

    Article  Google Scholar 

  2. C.J. Brinker, A.J. Hurd, G.C. Frye, P.R. Schunk, C.S. Ashley, The sol-gel thin film formation. J. Ceram. Soc. Jpn. 99(1154), 862–877 (1991)

    Article  Google Scholar 

  3. A.M.M. Musa, S.F.U. Farhad, M.A. Gafur, A.T.M.K. Jamil, Effects of withdrawal speed on the structural, morphological, electrical, and optical properties of CuO thin films synthesized by dip-coating for CO2 gas sensing. AIP Adv. 11(11) (2021). https://doi.org/10.1063/5.0060471

  4. Z. Hu, J. Zhang, S. **ong, Y. Zhao, Performance of polymer solar cells fabricated by dip coating process. Sol. Energy Mater. Sol. Cells 99, 221–225 (2012). https://doi.org/10.1016/j.solmat.2011.12.002

    Article  Google Scholar 

  5. M. Adnan, J.K. Lee, All sequential dip-coating processed perovskite layers from an aqueous lead precursor for high efficiency perovskite solar cells. Sci. Rep. 8(1) (2018). https://doi.org/10.1038/s41598-018-20296-2

  6. S.S. Karade, S.S. Raut, H.B. Gajare, P.R. Nikam, R. Sharma, B.R. Sankapal, Widening potential window of flexible solid-state supercapacitor through asymmetric configured iron oxide and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate coated multi-walled carbon nanotubes assembly. J. Energy Storage 31 (2020)

    Google Scholar 

  7. L. Landau, B. Levich, Dragging of a liquid by a moving plate, in Dynamics of Curved Fronts (Elsevier, 1988), pp. 141–153

    Google Scholar 

  8. L. Scherino, M. Giaquinto, A. Micco, A. Aliberti, E. Bobeico, V. La Ferrara, M. Ruvo, A. Ricciardi, A. Cusano, A time-efficient dip coating technique for the deposition of microgels onto the optical fiber tip. Fibers 6(4), 72 (2018). https://doi.org/10.3390/fib6040072

  9. S.S. Karade, B.R. Sankapal, Room temperature PEDOT:PSS encapsulated MWCNTs thin film for electrochemical supercapacitor. J. Electroanal. Chem. 771, 80–86 (2016). https://doi.org/10.1016/j.jelechem.2016.04.012

    Article  Google Scholar 

  10. P.A. Mithari, A.C. Mendhe, B.R. Sankapal, S.R. Patrikar, Process optimization of dip-coated MWCNTs thin-films: counter electrode in dye sensitized solar cells. J. Indian Chem. Soc. 98(11) (2021). https://doi.org/10.1016/j.jics.2021.100195

  11. L.E. Scriven, Physics and applications of dip coating and spin coating. MRS Online Proc. Libr. (OPL) 121 (1988)

    Google Scholar 

  12. A. Isabel et al., Sol-gel glass coating synthesis for different applications: active gradient-index materials, microlens arrays and biocompatible channels, in Recent Applications in Sol-Gel Synthesis (2017), pp. 231–252

    Google Scholar 

  13. E. Rio, F. Boulogne, Withdrawing a solid from a bath: how much liquid is coated?. 247, 100–114 (2017). https://doi.org/10.1016/j.cis.2017.01.006

  14. K.T. Chaudhary, Thin film deposition: solution based approach, in Thin Films (IntechOpen, 2021)

    Google Scholar 

  15. C.J. Brinker, Dip coating, in Chemical Solution Deposition of Functional Oxide Thin Films (Springer-Vienna, 2013), pp. 233–261

    Google Scholar 

  16. E.S. Dewi, S. Alaa, D.W. Kurniawidi, S. Rahayu, Optical properties of a thin film synthesized from lidah mertua plant (Sansevieria tifasciata) using a dip coating method. Indones. Phys. Rev. 2(3), 123–126 (2019). https://doi.org/10.29303/ipr.v2i3.34

  17. X. Tang, X. Yan, Dip-coating for fibrous materials: mechanism, methods and applications. J. Sol-Gel Sci. Technol. 81(2), 378–404 (2017). https://doi.org/10.1007/s10971-016-4197-7

  18. H. Uchiyama, D. Shimaoka, H. Kozuka, Spontaneous pattern formation based on the coffee-ring effect for organic-inorganic hybrid films prepared by dip-coating: effects of temperature during deposition. Soft Matter 8(44), 11318–11322 (2012). https://doi.org/10.1039/c2sm26328a

    Article  ADS  Google Scholar 

  19. R.D. Deegan, O. Baka**, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)

    Google Scholar 

  20. A. Hurd, Evaporation and surface tension effects in dip coating, in Advances in Chemistry, vol. 234 (1994), pp. 433–450

    Google Scholar 

  21. A.J. Hurd, C.J. Brinker, Sol-gel film formation by dip coating. MRS Online Proc. Libr. (OPL) 180 (1990)

    Google Scholar 

  22. T. Touam et al., Effects of dip-coating speed and annealing temperature on structural, morphological and optical properties of sol-gel nano-structured TiO2 thin films. EPJ Appl. Phys. 67(3) (2014). https://doi.org/10.1051/epjap/2014140228

  23. Z. Yang et al., Influence of dip-coating temperature upon film thickness in chemical solution deposition. IEEE Trans. Appl. Supercond. 28(4) (2018). https://doi.org/10.1109/TASC.2018.2795245

  24. A.A.R. Eberle, Angle-dependent dip-coating technique (ADDC) an improved method for the production of optical filters. J. Non-Cryst. Solids 218, 156–162 (1997)

    Article  ADS  Google Scholar 

  25. N. Al-Dahoudi, Wet chemical deposition of transparent conducting coatings made of redispersable crystalline ITO nanoparticles on glass and polymeric substrates (2003)

    Google Scholar 

  26. D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, Decoration of spongelike Ni(OH)2 nanoparticles onto MWCNTs using an easily manipulated chemical protocol for supercapacitors. ACS Appl. Mater. Interfaces 5(7), 2446–2454 (2013)

    Google Scholar 

  27. F.S. Awan, M.A. Fakhar, L.A. Khan, U. Zaheer, A.F. Khan, T. Subhani, Interfacial mechanical properties of carbon nanotube-deposited carbon fiber epoxy matrix hierarchical composites. Compos. Interfaces 25(8), 681–699 (2018). https://doi.org/10.1080/09276440.2018.1439620

    Article  ADS  Google Scholar 

  28. M. Sánchez, M.E. Rincón, Sensor response of sol-gel multiwalled carbon nanotubes-TiO2 composites deposited by screen-printing and dip-coating techniques. Sens. Actuators, B Chem. 140(1), 17–23 (2009). https://doi.org/10.1016/j.snb.2009.04.006

    Article  Google Scholar 

  29. J.D.M. Sung-Soon Park, Microstructure effects in multidipped tin oxide films. J. Am. Ceram. Soc. 78(10), 2669–2672 (1995)

    Google Scholar 

  30. S.K. Rajan, K.N. Marimuthu, M. Priya, Synthesis of ZnO nano rods by dip coating method. Arch. Appl. Sci. Res. 4, 1996–2000 (2012)

    Google Scholar 

  31. S.H. Chaki, M.P. Deshpande, J.P. Tailor, Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques. Thin Solid Films 550, 291–297 (2014). https://doi.org/10.1016/j.tsf.2013.11.037

    Article  ADS  Google Scholar 

  32. S.C. Ray, K. Mallick, Cadmium telluride (CdTe) thin film for photovoltaic applications. Int. J. Chem. Eng. Appl. 183–186 (2013). https://doi.org/10.7763/ijcea.2013.v4.290

  33. J.M. Luther, M. Law, Q. Song, C.L. Perkins, M.C. Beard, A.J. Nozik, Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2(2), 271–280 (2008). https://doi.org/10.1021/nn7003348

    Article  Google Scholar 

  34. E.H. Kwon, Y.J. Jang, G.W. Kim, M. Kim, Y.D. Park, Highly crystalline and uniform conjugated polymer thin films by a water-based biphasic dip-coating technique minimizing the use of halogenated solvents for transistor applications. RSC Adv. 9(11), 6356–6362 (2019). https://doi.org/10.1039/c8ra09231a

    Article  ADS  Google Scholar 

  35. A.B. Gurav et al., Superhydrophobic coatings prepared from methyl-modified silica particles using simple dip-coating method. Ceram. Int. 41(2), 3017–3023 (2015). https://doi.org/10.1016/j.ceramint.2014.10.137

    Article  Google Scholar 

  36. T. Furusaki, J. Takahashi, K. Kodaira, Preparation of ITO thin films by sol-gel method. J. Ceram. Soc. Jpn. Int. Ed. 102(2), 202–207 (1994). https://doi.org/10.2109/jcersj.102.200

    Article  Google Scholar 

  37. D. Gallagher, S. Francis, R. Houriet, H.J. Mathieu, T.A. Ring, Indium-tin oxide thin films by metal-organic decomposition. J. Mater. Res. 8(12), 3135–3144 (1993). https://doi.org/10.1557/JMR.1993.3135

    Article  ADS  Google Scholar 

  38. Y. Altin, A.C. Bedeloglu, Poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate-coated carbon nanofiber electrodes via dip-coating method for supercapacitor applications. J. Mater. Sci. Mater. Electron. 32, 28234–28244 (2021)

    Google Scholar 

  39. Q. Zheng et al., Supporting information transparent conductive films consisting of ultra-large graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano 5(7), 6039–6051 (2011)

    Article  Google Scholar 

  40. G. Giancane et al., Aligning single-walled carbon nanotubes by means of Langmuir-Blodgett film deposition: optical, morphological, and photo-electrochemical studies. Adv. Funct. Mater. 20(15), 2481–2488 (2010). https://doi.org/10.1002/adfm.201000290

    Article  Google Scholar 

  41. K. Lambert et al., Langmuir-Schaefer deposition of quantum dot multilayers. Langmuir 26(11), 7732–7736 (2010). https://doi.org/10.1021/la904474h

    Article  Google Scholar 

  42. I.I. Perepichka, A. Badia, C.G. Bazuin, Nanostrand formation of block copolymers at the air/water interface. ACS Nano 4(11), 6825–6835 (2010)

    Article  Google Scholar 

  43. X. Liu, Y. Zhang, X. Zhang, R. Li, W. Hu, Continuous and highly ordered organic semiconductor thin films via dip-coating: the critical role of meniscus angle. Sci. China Mater. 63(7), 1257–1264 (2020). https://doi.org/10.1007/s40843-020-1297-7

    Article  Google Scholar 

  44. S. Sathish, B.C. Shekar, R. Sathyamoorthy, Nano polymer films by fast dip coating method for field effect transistor applications. Phys. Procedia 49, 166–176 (2013). https://doi.org/10.1016/j.phpro.2013.10.023

    Article  ADS  Google Scholar 

  45. N.B. Sonawane, R.R. Ahire, K.V. Gurav, J.H. Kim, B.R. Sankapal, PEDOT:PSS shell on CdS nanowires: room temperature LPG sensor. J. Alloys Compd. 592, 1–5 (2014). https://doi.org/10.1016/j.jallcom.2013.12.090

    Article  Google Scholar 

  46. V.R. Shinde, H.S. Shim, T.P. Gujar, H.J. Kim, W.B. Kim, A solution chemistry approach for the selective formation of ultralong nanowire bundles of crystalline Cd(OH)2 on substrates. Adv. Mater. 20(5), 1008–1012 (2008). https://doi.org/10.1002/adma.200701828

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savita L. Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patil, S., Sankapal, S.R., Almuntaser, F.M.A. (2023). Dip Coating: Simple Way of Coating Thin Films. In: Sankapal, B.R., Ennaoui, A., Gupta, R.B., Lokhande, C.D. (eds) Simple Chemical Methods for Thin Film Deposition. Springer, Singapore. https://doi.org/10.1007/978-981-99-0961-2_10

Download citation

Publish with us

Policies and ethics

Navigation