The Synergy of Remote Sensing in Marine Invasion Science

  • Chapter
  • First Online:
Marine Biotechnology: Applications in Food, Drugs and Energy

Abstract

Changes in invasion understanding have been advocated for by researchers to better forecast invasions and lessen the consequences of invasive species on the environment and socioeconomics. This  chapter aims to generate new ideas and promote research on remote sensing applications to advance robust invasion science and management. Remote sensing techniques can be used to examine and identify invasive species by combining a synergistic understanding of biological invasions associated with the aquaculture and ship** industries, invasive species detection aspects, limitations of marine remote sensing for invasion science, specific invasion metrics and change detection. Using these synergies is crucial for develo** long-term management strategies based on interdisciplinary collaboration among academics, policymakers and communities. By monitoring and map** the existence and distribution of marine invasive species, remote sensing can aid in ecosystem-based management of damaged coastal zones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aasen H, Burkart A, Bolten A, Bareth G (2015) Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration to quality assurance. ISPRS J Photogramm Remote Sens 108:245–259. https://doi.org/10.1016/j.isprsjprs.2015.08.002

    Article  Google Scholar 

  • Adão T, Hruška J, Pádua L, Bessa J, Peres E, Morais R, Sousa JJ (2017) Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens 9(11). https://doi.org/10.3390/rs9111110

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4):704–726. https://doi.org/10.1007/BF02804901

    Article  Google Scholar 

  • Andrew ME, Ustin SL (2008) The role of environmental context in map** invasive plants with hyperspectral image data. Remote Sens Environ 112(12):4301–4317

    Article  Google Scholar 

  • Aspinall RJ, Marcus WA, Boardman JW (2002) Considerations in collecting, processing, and analysing high spatial resolution hyperspectral data for environmental investigations. J Geograph Syst 4:15. https://doi.org/10.1007/s101090100071

    Article  Google Scholar 

  • Assmann JJ, Kerby JT, Cunliffe AM, Myers-Smith IH (2019) Vegetation monitoring using multispectral sensors — best practices and lessons learned from high latitudes. J Unmanned Vehicle Syst 7:54. https://doi.org/10.1139/juvs-2018-0018

    Article  Google Scholar 

  • Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biol Lett 12(2):20150623. https://doi.org/10.1098/rsbl.2015.0623

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolch EA, Santos MJ, Ade C, Khanna S, Basinger NT, Reader MO, Hestir EL (2020) Remote detection of invasive alien species. In: Cavender-Bares J, Gamon JA, Townsend PA (eds) Remote sensing of plant biodiversity. Springer International Publishing, pp 267–307. https://doi.org/10.1007/978-3-030-33157-3_12

    Chapter  Google Scholar 

  • Carlton JT (1994) Exotic phytoplankton from ships’ ballast waters: risk of potential spread to Mariculture sites on Canada’s East Coast. Can Data Fish Aquatic Sci 937:1–51

    Google Scholar 

  • Casella E, Collin A, Harris D, Ferse S, Bejarano S, Parravicini V, Hench JLJL, Rovere A (2017) Map** coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 36(1):269–275. https://doi.org/10.1007/s00338-016-1522-0

    Article  Google Scholar 

  • Catford JA, Vesk PA, Richardson DM, Pyšek P (2012) Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Glob Chang Biol 18(1):44–62. https://doi.org/10.1111/j.1365-2486.2011.02549.x

    Article  Google Scholar 

  • Chen Z, Hu C, Muller-Karger FE, Luther ME (2010) Short-term variability of suspended sediment and phytoplankton in Tampa Bay, Florida: observations from a coastal oceanographic tower and ocean color satellites. Estuar Coast Shelf Sci 89(1):62–72

    Article  CAS  Google Scholar 

  • Chong WS, Zaki NHM, Hossain MS, Muslim AM, Pour AB (2021) Introducing Theil-Sen estimator for sun glint correction of UAV data for coral map**. Geocarto Int 37:4527. https://doi.org/10.1080/10106049.2021.1892206

    Article  Google Scholar 

  • Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J Photogramm Remote Sens 92:79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013

    Article  Google Scholar 

  • Crusiol LGT, Nanni MR, Silva GFC, Furlanetto RH, da Silva Gualberto AA, Gasparotto ADC, De Paula MN (2017) Semi professional digital camera calibration techniques for Vis/NIR spectral data acquisition from an unmanned aerial vehicle. Int J Remote Sens 38:2717. https://doi.org/10.1080/01431161.2016.1264032

    Article  Google Scholar 

  • Dehnen-Schmutz K, Boivin T, Essl F, Groom QJ, Harrison L, Touza JM, Bayliss H (2018) Alien futures: what is on the horizon for biological invasions? Divers Distrib 24(8):1149–1157

    Article  Google Scholar 

  • Dierssen H, McManus GB, Chlus A, Qiu D, Gao B-C, Lin S (2015) Space station image captures a red tide ciliate bloom at high spectral and spatial resolution. Proc Natl Acad Sci 112(48):14783–14787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinguirard M, Slater PN (1999) Calibration of space-multispectral imaging sensors: A review. Remote Sens Environ 68:194. https://doi.org/10.1016/S0034-4257(98)00111-4

    Article  Google Scholar 

  • Essl F, Hulme PE, Jeschke JM, Keller R, Pyšek P, Richardson DM, Saul W-C, Bacher S, Dullinger S, Estévez RA et al (2017) Scientific and normative foundations for the valuation of alien-species impacts: thirteen core principles. Bioscience 67(2):166–178

    Google Scholar 

  • Feng Q, Liu J, Gong J (2015) UAV remote sensing for urban vegetation map** using random forest and texture analysis. Remote Sens 7(1):1074–1094. https://doi.org/10.3390/rs70101074

    Article  Google Scholar 

  • Gallardo B, Clavero M, Sánchez MI, Vilà M (2016) Global ecological impacts of invasive species in aquatic ecosystems. Glob Chang Biol 22(1):151–163. https://doi.org/10.1111/gcb.13004

    Article  PubMed  Google Scholar 

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  • Hamada Y, Stow DA, Coulter LL, Jafolla JC, Hendricks LW (2007) Detecting tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery. Remote Sens Environ 109(2):237–248

    Article  Google Scholar 

  • Hamylton SM (2017) Map** coral reef environments. Prog Phys Geogr 41(6):803–833. https://doi.org/10.1177/0309133317744998

    Article  Google Scholar 

  • Hedley JD, Harborne ARR, Mumby PJJ (2005a) Simple and robust removal of sun glint for map** shallow-water benthos. Int J Remote Sens 26(10):2107–2112. https://doi.org/10.1080/01431160500034086

    Article  Google Scholar 

  • Hedley JD, Harborne AR, Mumby PJ (2005b) Technical note: simple and robust removal of sun glint for map** shallow-water benthos. Int J Remote Sens 26(10):2107–2112. https://doi.org/10.1080/01431160500034086

    Article  Google Scholar 

  • Hedley JD, Roelfsema CM, Chollett I, Harborne AR, Heron SF, Weeks SJ, Skirving WJ, Strong AE, Mark Eakin C, Christensen TRL, Ticzon V, Bejarano S, Mumby PJ (2016) Remote sensing of coral reefs for monitoring and management: A review. Remote Sens 8(2). https://doi.org/10.3390/rs8020118

  • Hedley JD, Roelfsema CM, Phinn SR, Mumby PJ (2012) Environmental and sensor limitations in optical remote sensing of coral reefs: implications for monitoring and sensor design. Remote Sens 4(1):271–302. https://doi.org/10.3390/rs4010271

    Article  Google Scholar 

  • Hellmann C, Große-Stoltenberg A, Thiele J, Oldeland J, Werner C (2017) Heterogeneous environments shape invader impacts: integrating environmental, structural and functional effects by isoscapes and remote sensing. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Hestir EL, Greenberg JA, Ustin SL (2012) Classification trees for aquatic vegetation community prediction from imaging spectroscopy. IEEE J Selected Topics Appl Earth Observ Remote Sensing 5(5):1572–1584

    Article  Google Scholar 

  • Higgins SI, Richardson DM, Cowling RM (2001) Validation of a spatial simulation model of a spreading alien plant population. J Appl Ecol 38(3):571–584

    Article  Google Scholar 

  • Hossain MS, Bujang JS, Zakaria MH, Hashim M (2015) The application of remote sensing to seagrass ecosystems: an overview and future research prospects. Int J Remote Sens 36(1):61–114. https://doi.org/10.1080/01431161.2014.990649

    Article  Google Scholar 

  • Huang Y, Ding W, Li H (2016) Haze removal for UAV reconnaissance images using layered scattering model. Chin J Aeronaut 29:502. https://doi.org/10.1016/j.cja.2016.01.012

    Article  Google Scholar 

  • Ishii J, Washitani I (2013) Early detection of the invasive alien plant Solidago altissima in moist tall grassland using hyperspectral imagery. Int J Remote Sens 34(16):5926–5936. https://doi.org/10.1080/01431161.2013.799790

    Article  Google Scholar 

  • Issaris Y, Katsanevakis S, Salomidi M, Tsiamis K, Katsiaras N, Verriopoulos G (2012) Occupancy estimation of marine species: dealing with imperfect detectability. Mar Ecol Prog Ser 453:95–106

    Article  Google Scholar 

  • Jung S, Cho H, Kim D, Kim K, Han J-I, Myung H (2017) Development of algal bloom removal system using unmanned aerial vehicle and surface vehicle. IEEE Access 5:22166–22176

    Article  Google Scholar 

  • Katsanevakis S, Coll M, Piroddi C, Steenbeek J, Ben Rais Lasram F, Zenetos A, Cardoso AC (2014b) Invading the Mediterranean Sea: biodiversity patterns shaped by human activities. Front Mar Sci 1. https://doi.org/10.3389/fmars.2014.00032

  • Katsanevakis S, Deriu I, D’Amico F, Nunes AL, Sanchez SP, Crocetta F, Arianoutsou M, Bazos I, Christopoulou A, Curto G, Delipetrou P, Kokkoris Y, Panov VE, Rabitsch W, Roques A, Scalera R, Shirley SM, Tricarico E, Vannini A et al (2015) European alien species information network (EASIN): supporting european policies and scientific research. Manag Biol Invasions 6(2):147–157. https://doi.org/10.3391/mbi.2015.6.2.05

    Article  Google Scholar 

  • Katsanevakis S, Wallentinus I, Zenetos A, Leppäkoski E, Çinar ME, Oztürk B, Grabowski M, Golani D, Cardoso AC (2014a) Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquat Invasions 9(4):391–423. https://doi.org/10.3391/ai.2014.9.4.01

    Article  Google Scholar 

  • Katsanevakis S, Weber A, Pipitone C, Leopold M, Cronin M, Scheidat M et al (2012) Monitoring marine populations and communities: methods dealing with imperfect detectability. Aquat Biol 16(1):31–52

    Article  Google Scholar 

  • Kay S, Hedley JDJ, Lavender S (2009) Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths. Remote Sens 1(4):697–730. https://doi.org/10.3390/rs1040697

    Article  Google Scholar 

  • Kislik C, Dronova I, Kelly M (2018) UAVs in support of algal bloom research: A review of current applications and future opportunities. Drones 2(4). https://doi.org/10.3390/drones2040035

  • Klein J, Verlaque M (2008) The Caulerpa racemosa invasion: A critical review. Mar Pollut Bull 56(2):205–225. https://doi.org/10.1016/j.marpolbul.2007.09.043

    Article  CAS  PubMed  Google Scholar 

  • Kudela RM, Palacios SL, Austerberry DC, Accorsi EK, Guild LS, Torres-Perez J (2015) Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sens Environ 167:196–205

    Article  Google Scholar 

  • Kutser T, Vahtmäe E, Praks J (2009) A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal. Remote Sens Environ 113(10):2267–2274. https://doi.org/10.1016/j.rse.2009.06.016

    Article  Google Scholar 

  • Laba M, Downs R, Smith S, Welsh S, Neider C, White S, Richmond M, Philpot W, Baveye P (2008) Map** invasive wetland plants in the Hudson River National Estuarine Research Reserve using quickbird satellite imagery. Remote Sens Environ 112(1):286–300

    Article  Google Scholar 

  • Langdon B, Pauchard A, Aguayo M (2010) Pinus contorta invasion in the Chilean Patagonia: local patterns in a global context. Biol Invasions 12(12):3961–3971. https://doi.org/10.1007/s10530-010-9817-5

    Article  Google Scholar 

  • Le Louarn M, Clergeau P, Briche E, Deschamps-Cottin M (2017) “Kill two birds with one stone”: urban tree species classification using bi-temporal Pléiades images to study nesting preferences of an invasive bird. Remote Sens 9(9):916

    Article  Google Scholar 

  • Lim A, Hedley JD, LeDrew E, Mumby PJ, Roelfsema C (2009) The effects of ecologically determined spatial complexity on the classification accuracy of simulated coral reef images. Remote Sens Environ 113(5):965–978. https://doi.org/10.1016/j.rse.2009.01.011

    Article  Google Scholar 

  • Lin B, Ross SD, Prussin AJ, Schmale DG (2014) Seasonal associations and atmospheric transport distances of fungi in the genus fusarium collected with unmanned aerial vehicles and ground-based sampling devices. Atmos Environ 94:385–391. https://doi.org/10.1016/j.atmosenv.2014.05.043

    Article  CAS  Google Scholar 

  • Mannino AM, Borfecchia F, Micheli C (2021) Tracking marine alien macroalgae in the Mediterranean Sea: the contribution of citizen science and remote sensing. J Marine Sci Eng 9(3). https://doi.org/10.3390/jmse9030288

  • Marino A, Sanjuan-Ferrer MJ, Hajnsek I, Ouchi K (2015) Ship detection with spectral analysis of synthetic aperture radar: A comparison of new and well-known algorithms. Remote Sens 7(5):5416–5439. https://doi.org/10.3390/rs70505416

    Article  Google Scholar 

  • Matijević S, Bogner D, Bojanić N, Žuljević A, Despalatović M, Antolić B, Nikolić V, Bilić J et al (2013) Biogeochemical characteristics of sediments under the canopy of invasive alga Caulerpa racemosa var. cylindracea (Pelješac peninsula, Adriatic Sea). Fresenius Environ Bull 22:3030–3040

    Google Scholar 

  • Mazor T, Levin N, Possingham HP, Levy Y, Rocchini D, Richardson AJ, Kark S (2013) Can satellite-based night lights be used for conservation? The case of nesting sea turtles in the Mediterranean. Biol Conserv 159:63–72. https://doi.org/10.1016/j.biocon.2012.11.004

    Article  Google Scholar 

  • Minařík R, Langhammer J, Hanuš J (2019) Radiometric and atmospheric corrections of multispectral μMCA camera for UAV spectroscopy. Remote Sens 11. https://doi.org/10.3390/rs11202428

  • Mitchell JJ, Glenn NF (2009) Leafy spurge (Euphorbia esula) classification performance using hyperspectral and multispectral sensors. Rangel Ecol Manag 62(1):16–27. https://doi.org/10.2111/08-100

    Article  Google Scholar 

  • Muller-Karger FE, Hestir E, Ade C, Turpie K, Roberts DA, Siegel D, Miller RJ, Humm D, Izenberg N, Keller M et al (2018) Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Ecol Appl 28(3):749–760

    Article  PubMed  PubMed Central  Google Scholar 

  • Müllerová J, Bartaloš T, Bruuna J, Dvovrák P, Vitková M (2017) Unmanned aircraft in nature conservation: an example from plant invasions. Int J Remote Sens 38(8–10):2177–2198

    Article  Google Scholar 

  • Mumby PJ, Green EP, Edwards AJ, Clark CD (1997) Coral reef habitat-map**: how much detail can remote sensing provide? Mar Biol 130(2):193–202. https://doi.org/10.1007/s002270050238

    Article  Google Scholar 

  • Mumby PJJ, Clark CDD, Green EPP, Edwards AJJ (1998) Benefits of water column correction and contextual editing for map** coral reefs. Int J Remote Sens 19(1):203–210. https://doi.org/10.1080/014311698216521

    Article  Google Scholar 

  • Mumby PJPJ, Skirving W, Strong AEAE, Hardy JTJT, LeDrew EFEF, Hochberg EJEJ, Stumpf RPRP, David LTLT (2004) Remote sensing of coral reefs and their physical environment. Mar Pollut Bull 48:219–228

    Article  CAS  PubMed  Google Scholar 

  • Muslim AM, Chong WS, Safuan CDM, Khalil I, Hossain MS (2019) Coral reef map** of UAV: A comparison of sun glint correction methods. Remote Sens 11(20):2422. https://doi.org/10.3390/rs11202422

    Article  Google Scholar 

  • Olenin S, Gollasch S, Jonušas S, Rimkutė I (2000) En-route investigations of plankton in ballast water on a Ship’s voyage from the Baltic Sea to the open Atlantic Coast of Europe. Int Rev Hydrobiol 85(596):577. https://doi.org/10.1002/1522-2632(200011)85:5/6<577::AID-IROH577>3.0.CO;2-C

    Article  Google Scholar 

  • Olenina I, Wasmund N, Hajdu S, Jurgensone I, Gromisz S, Kownacka J, Toming K, Vaiciute D, Olenin S (2010) Assessing impacts of invasive phytoplankton: the Baltic Sea case. Mar Pollut Bull 60(10):1691–1700

    Article  CAS  PubMed  Google Scholar 

  • Petrocelli A, Cecere E, Portacci G, Micheli C, De Cecco L, Martini S, Borfecchia F (2015) Preliminary map** of the alien seaweed Hypnea cornuta (Rhodophyta, Gigartinales) in the mar piccolo of Taranto (southern Italy, Mediterranean Sea). Biol Mar Medit 22:44–45

    Google Scholar 

  • Pierrot Deseilligny M, Clery I (2012) Apero, an open source bundle Adjusment software for automatic calibration and orientation of set of images. ISPRS Int Arch Photogr Remote Sensing Spatial Inform Sci XXXVIII-5:269–276. https://doi.org/10.5194/isprsarchives-xxxviii-5-w16-269-2011

    Article  Google Scholar 

  • Purkis SJJ, Pasterkamp R (2004) Integrating in situ reef-top reflectance spectra with Landsat TM imagery to aid shallow-tropical benthic habitat map**. Coral Reefs 23(1):5–20. https://doi.org/10.1007/s00338-003-0351-0

    Article  Google Scholar 

  • Purkis SJSJ (2005) A “reef-up” approach to classifying coral habitats from IKONOS imagery. IEEE Trans Geosci Remote Sens 43(6):1375–1390. https://doi.org/10.1109/TGRS.2005.845646

    Article  Google Scholar 

  • Ricciardi A, Blackburn TM, Carlton JT, Dick JTA, Hulme PE, Iacarella JC, Jeschke JM, Liebhold AM, Lockwood JL, MacIsaac HJ et al (2017) Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol Evol 32(6):464–474

    Article  PubMed  Google Scholar 

  • Rocchini D, Andreo V, Förster M, Garzon-Lopez CX, Gutierrez AP, Gillespie TW, Hauffe HC, He KS, Kleinschmit B, Mairota P et al (2015) Potential of remote sensing to predict species invasions: A modelling perspective. Prog Phys Geogr 39(3):283–309

    Article  Google Scholar 

  • Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162(6):713–724

    Article  PubMed  Google Scholar 

  • Roy H, Groom Q, Adriaens T, Agnello G, Antic M, Archambeau AS et al (2018) Increasing understanding of alien species through citizen science (Alien-CSI). Res Ideas Outcomes 4:e31412

    Article  Google Scholar 

  • Russell JC, Blackburn TM (2017) Invasive alien species: denialism, disagreement, definitions, and dialogue. Trends Ecol Evol 32(5):312–314. https://doi.org/10.1016/j.tree.2017.02.005

    Article  PubMed  Google Scholar 

  • Safonova A, Tabik S, Alcaraz-Segura D, Rubtsov A, Maglinets Y, Herrera F (2019) Detection of fir trees (Abies sibirica) damaged by the bark beetle in unmanned aerial vehicle images with deep learning. Remote Sens 11(6):643

    Article  Google Scholar 

  • Safuan CDM, Ismail K, Khalil I, Ali A, Chong WS, Chan AAA, Ismail MN, Repin IIM, Bachok Z, Che Din MS, Ismail K, Khalil I, Ali A, Wei Sheng C, Chan AAA, Ismail N, Repin IIM, Bachok Z (2018) Quantification of coral reef benthos for coral health assessment in Labuan Marine Park, Malaysia. J Sustain Sci Manag 13:101–112

    Google Scholar 

  • Smith GM, Milton EJ (1999) The use of the empirical line method to calibrate remotely sensed data to reflectance. Int J Remote Sens 20:2653. https://doi.org/10.1080/014311699211994

    Article  Google Scholar 

  • Techy L, Schmale DG III, Woolsey CA (2010) Coordinated aerobiological sampling of a plant pathogen in the lower atmosphere using two autonomous unmanned aerial vehicles. J Field Robotics 27(3):335–343. https://doi.org/10.1002/rob.20335

    Article  Google Scholar 

  • Toro FG, Tsourdos A (2018) UAV or drones for remote sensing applications (books volume 1 & 2). In MDPI (Vols. 1 & 2). https://doi.org/10.3390/books978-3-03897-092-7

  • Vaz AS, Alcaraz-Segura D, Campos JC, Vicente JR, Honrado JP (2018) Managing plant invasions through the lens of remote sensing: A review of progress and the way forward. Sci Total Environ 642:1328–1339. https://doi.org/10.1016/j.scitotenv.2018.06.134

    Article  CAS  PubMed  Google Scholar 

  • Vaz AS, Alcaraz-Segura D, Vicente JR, Honrado JP (2019) The many roles of remote sensing in invasion science. Front Ecol Evol 7. https://doi.org/10.3389/fevo.2019.00370

  • Vaz AS, Kueffer C, Kull CA, Richardson DM, Schindler S, Muñoz-Pajares AJ, Vicente JR, Martins J, Hui C, Kühn I et al (2017) The progress of interdisciplinarity in invasion science. Ambio 46(4):428–442

    Article  PubMed  PubMed Central  Google Scholar 

  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Campbell AH, Ballesteros E, Hoey AS, Vila-Concejo A, Bozec Y-M, Steinberg PD (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci 113(48):13791–13796. https://doi.org/10.1073/pnas.1610725113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicente JR, Alagador D, Guerra C, Alonso JM, Kueffer C, Vaz AS et al (2016) Cost-effective monitoring of biological invasions under global change: a model-based framework. J Appl Ecol 53(5):1317–1329

    Article  Google Scholar 

  • Vicente JR, Pinto AT, Araujo MB, Verburg PH, Lomba A, Randin CF et al (2013) Using life strategies to explore the vulnerability of ecosystem services to invasion by alien plants. Ecosystems 16:678–693

    Article  Google Scholar 

  • Vilà M, Hulme PE (2017) Non-native species, ecosystem services, and human Well-being. In: Vilà M, Hulme PE (eds) Impact of biological invasions on ecosystem services. Springer International Publishing, pp 1–14. https://doi.org/10.1007/978-3-319-45121-3_1

    Chapter  Google Scholar 

  • Visser V, Langdon B, Pauchard A, Richardson DM (2014) Unlocking the potential of Google Earth as a tool in invasion science. Biol Invasions 16:513–534

    Article  Google Scholar 

  • Wang H, Zhong G, Yan H, Liu H, Wang Y, Zhang C (2012) Growth control of cyanobacteria by three submerged Macrophytes. Environ Eng Sci 29(6):420–425. https://doi.org/10.1089/ees.2010.0286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West AM, Evangelista PH, Jarnevich CS, Kumar S, Swallow A, Luizza MW, Chignell SM (2017) Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: an iterative, adaptable approach that employs open-source data and software. Int J Appl Earth Obs Geoinf 59:135–146

    Google Scholar 

  • Wilson JRU, Caplat P, Dickie IA, Hui C, Maxwell BD, Nuñez MA, Pauchard A, Rejmánek M, Richardson DM, Robertson MP, Spear D, Webber BL, van Wilgen BW, Zenni RD (2014) A standardized set of metrics to assess and monitor tree invasions. Biol Invasions 16(3):535–551. https://doi.org/10.1007/s10530-013-0605-x

    Article  Google Scholar 

  • **ang T-Z, **a G-S, Zhang L (2019) Mini-unmanned aerial vehicle-based remote sensing: techniques, applications, and prospects. IEEE Geosci Remote Sensing Magazine 7(3):29–63. https://doi.org/10.1109/mgrs.2019.2918840

    Article  Google Scholar 

  • Xu F, Gao Z, Jiang X, Shang W, Ning J, Song D, Ai J (2018) A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea. Mar Pollut Bull 128:408–414. https://doi.org/10.1016/j.marpolbul.2018.01.061

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Qin R, Chen X (2019) Unmanned aerial vehicle for remote sensing applications - A review. Remote Sensing 11:1443. https://doi.org/10.3390/rs11121443

    Article  Google Scholar 

  • Zaki NHM, Chong WS, Muslim AM, Reba MNM, Hossain MS (2022) Assessing optimal UAV-data pre-processing workflows for quality ortho-image generation to support coral reef map**. Geocarto Int 1–25:1. https://doi.org/10.1080/10106049.2022.2037732

    Article  Google Scholar 

  • Zarco-Tejada PJ, Morales A, Testi L, Villalobos FJ (2013) Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote Sens Environ 133:102. https://doi.org/10.1016/j.rse.2013.02.003

    Article  Google Scholar 

Download references

Funding

This study was funded by the Malaysian Ministry of Higher Education’s Fundamental Research Grant Scheme (FRGS/1/2022/WAB05/UMS/02/1; FRG0568–1/2022) and the Universiti Malaysia Sabah’s Skim Penyelidikan Lantikan Baharu (SLB2229) to Wei Sheng Chong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sheng Chong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chong, W.S., Akmal, K.F., Shah, M.D. (2023). The Synergy of Remote Sensing in Marine Invasion Science. In: Shah, M.D., Ransangan, J., Venmathi Maran, B.A. (eds) Marine Biotechnology: Applications in Food, Drugs and Energy. Springer, Singapore. https://doi.org/10.1007/978-981-99-0624-6_14

Download citation

Publish with us

Policies and ethics

Navigation