Hypoxia and the Metastatic Cascade

  • Chapter
  • First Online:
Hypoxia in Cancer: Significance and Impact on Cancer Therapy

Abstract

Metastasis is a leading cause of mortality in cancer patients. The journey of a detached primary tumour cell to a secondary homing site is a multi-step process with several intercellular interactions. In this process, a metastatic cell overcomes many barriers and adapts to the changing microenvironment. Our understanding of motility, invasion and epithelial to mesenchymal transition has led to the identification of targetable signalling networks and regulatory pathways. Emerging research has also identified genetic heterogeneity and variable microenvironment in the primary tumour cell as different from its metastatic progeny, leading to differential immune response. Therapeutic regimes with both standard chemotherapy and, in some cases, targeted therapy have only marginally improved the overall survival in metastatic cancer patients. It is for this reason that the current research strives to understand metastatic cancer, its origin and the role of the tumour microenvironment in genesis and persistence of metastasis. The hypoxic tumour microenvironment is known to arise in such growing primary tumours, where the vasculature is unable to keep pace with the high rate of proliferation, forming hypoxic niche within the tumours. Hypoxia, therefore, will always precede metastasis, thus implicating that the former plays a larger role in the development of the aggressive phenotype. Some of the leading research of our times is trying to understand latency of cancer cells, immune-metastatic cell interaction and epigenetic changes that promote metastasis and chemoresistance. With exciting possibilities of immunotherapeutic and other intervention strategies, a comprehensive understanding of the role of hypoxia in promoting metastasis will be useful. In this review, we dissect how hypoxia, hypoxia-inducible factors and other associated molecules dynamically modulate various stages of metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abi-Jaoudeh N et al (2021) Phase I trial on arterial embolization with hypoxia activated tirapazamine for unresectable hepatocellular carcinoma. J Hepatocell Carcinoma 8:421–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Abou Khouzam R, Rao SP, Venkatesh GH et al (2021) An eight-gene hypoxia signature predicts survival in pancreatic cancer and is associated with an immunosuppressed tumor microenvironment. Front Immunol 12:680435

    Article  PubMed  PubMed Central  Google Scholar 

  • Aceto N, Bardia A, Miyamoto DT et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:1110–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afik R, Zigmond E, Vugman M et al (2016) Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med 213:2315–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agudo J, Park ES, Rose SA et al (2018) Quiescent tissue stem cells evade immune surveillance. Immunity 48:271–285.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akpe V, Shiddiky MJA, Kim TH et al (2020) Cancer biomarker profiling using nanozyme containing iron oxide loaded with gold particles. J R Soc Interface 17:20200180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aleman J et al (2019) Deconstructed microfluidic bone marrow on-a-chip to study normal and malignant hemopoietic cell-niche interactions. Small (Weinheim an der Bergstrasse, Germany) 15:43

    Article  Google Scholar 

  • Baba K, Kitajima Y, Miyake S et al (2017) Hypoxia-induced ANGPTL4 sustains tumour growth and anoikis resistance through different mechanisms in scirrhous gastric cancer cell lines. Sci Rep 7:11127

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldominos P, Barbera-Mourelle A, Barreiro O et al (2022) Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell. https://doi.org/10.1016/j.cell.2022.03.033

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow. Lancet (London, England) 357:539–545

    Article  CAS  PubMed  Google Scholar 

  • Bankó P, Lee SY, Nagygyörgy V et al (2019) Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol 12:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Batlle E, Sancho E, Francí C et al (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    Article  CAS  PubMed  Google Scholar 

  • Bedenne L, Michel P, Bouché O et al (2007) Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD 9102. J Clin Oncol 25:1160–1168

    Article  CAS  PubMed  Google Scholar 

  • Bersini S et al (2014) A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35:8

    Article  Google Scholar 

  • Beyer S, Kristensen MM, Jensen KS et al (2008) The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem 283:36542–36552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhushan A, Kumari R, Srivastava T (2021) Scouting for common genes in the heterogenous hypoxic tumor microenvironment and their validation in glioblastoma. 3 Biotech 11:451

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhutia YD, Babu E, Ganapathy V (2016) Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine. Biochem J 473:1503–1506

    Article  CAS  PubMed  Google Scholar 

  • Bi WL et al (2019) Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin 69:2

    Google Scholar 

  • de Blank P et al (2020) Molecular markers and targeted therapy in pediatric low-grade glioma. J Neuro-oncol 150:1

    Article  Google Scholar 

  • Brenner AJ et al (2021) Phase 2 trial of hypoxia activated evofosfamide (TH302) for treatment of recurrent bevacizumab-refractory glioblastoma. Sci Rep 11:12306

    Article  Google Scholar 

  • Brooks DL, Schwab LP, Krutilina R et al (2016) ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer 15:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Cairns RA, Hill RP (2004) Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res 64:2054–2061

    Article  CAS  PubMed  Google Scholar 

  • Cairns RA, Kalliomaki T, Hill RP (2001) Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 61:8903–8908

    CAS  PubMed  Google Scholar 

  • Calvert JW, Cahill J, Yamaguchi-Okada M et al (2006) Oxygen treatment after experimental hypoxia-ischemia in neonatal rats alters the expression of HIF-1alpha and its downstream target genes. J Appl Physiol (Bethesda, Md. : 1985) 101:853–865

    Article  CAS  Google Scholar 

  • Carroll CP, Bolland H, Vancauwenberghe E et al (2022) Targeting hypoxia regulated sodium driven bicarbonate transporters reduces triple negative breast cancer metastasis. Neoplasia (New York, N.Y.) 25:41–52

    Article  CAS  PubMed  Google Scholar 

  • Cavalli R et al (2016) Nanobubbles: a promising efficient tool for therapeutic delivery. Therapeutic delivery 7:2

    Article  Google Scholar 

  • Chang PH, Chen MC, Tsai YP et al (2021) Interplay between desmoglein2 and hypoxia controls metastasis in breast cancer. Proc Natl Acad Sci USA 118:e2014408118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi P, Gilkes DM, Wong CC et al (2013) Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Investig 123:189–205

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Chen D, **e Y et al (2013) Progress of microfluidics for biology and medicine. Nano-Micro Lett 5:66–80

    Article  CAS  Google Scholar 

  • Chiou SH, Risca VI, Wang GX et al (2017) BLIMP1 induces transient metastatic heterogeneity in pancreatic cancer. Cancer Discov 7:1184–1199

    Article  PubMed  PubMed Central  Google Scholar 

  • Chitneni SK et al (2013) 18F-EF5 PET imaging as an early response biomarker for the hypoxia-activated prodrug SN30000 combined with radiation treatment in a non-small cell lung cancer xenograft model. J Nucl Med 54:8

    Article  Google Scholar 

  • Colwell N, Larion M, Giles AJ et al (2017) Hypoxia in the glioblastoma microenvironment: sha** the phenotype of cancer stem-like cells. Neuro-oncology 19:887–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comijn J, Berx G, Vermassen P et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278

    Article  CAS  PubMed  Google Scholar 

  • Courtney KD et al (2018) Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J Clin Oncol 36:9

    Article  Google Scholar 

  • Cress BF et al (2014) Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. FEMS Microbiol Rev 38:4

    Article  Google Scholar 

  • Cui XG, Han ZT, He SH et al (2017) HIF1/2α mediates hypoxia-induced LDHA expression in human pancreatic cancer cells. Oncotarget 8:24840–24852

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahlgren D, Lennernäs H (2020) Antibody-drug conjugates and targeted treatment strategies for hepatocellular carcinoma: a drug-delivery perspective. Molecules (Basel, Switzerland) 25(12):2861

    Article  CAS  PubMed  Google Scholar 

  • De Francesco EM, Maggiolini M, Musti AM (2018) Crosstalk between Notch, HIF-1α and GPER in breast cancer EMT. Int J Mol Sci 19:E2011

    Article  Google Scholar 

  • Deepak KGK, Vempati R, Nagaraju GP et al (2020) Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res 153:104683

    Article  CAS  PubMed  Google Scholar 

  • Deng K, Yang C, Tan Q et al (2018) Sites of distant metastases and overall survival in ovarian cancer: a study of 1481 patients. Gynecol Oncol 150(3):460–465

    Article  PubMed  Google Scholar 

  • Deryugina EI, Zajac E, Juncker-Jensen A et al (2014) Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia (New York, N.Y.) 16:771–788

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhawan A, Scott JG, Harris AL et al (2018) Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors. Nat Commun 9:5228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DillekÃ¥s H, Rogers MS, Straume O (2019) Are 90% of deaths from cancer caused by metastases. Cancer Med 8:5574–5576

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorayappan KDP, Wanner R, Wallbillich JJ et al (2018) Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: a novel mechanism linking STAT3/Rab proteins. Oncogene 37:3806–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du R, Lu KV, Petritsch C et al (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J-X et al (2008) Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J Med Chem 51:8

    Article  Google Scholar 

  • Dunn LK, Mohammad KS, Fournier PG et al (2009) Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PloS one 4:e6896

    Article  PubMed  PubMed Central  Google Scholar 

  • Ediriwickrema A, Saltzman WM (2015) Nanotherapy for cancer: targeting and multifunctionality in the future of cancer therapies. ACS Biomater Sci Eng 1(2):64–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehteshami Bejnordi B et al (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318:22

    Article  Google Scholar 

  • Erler JT, Bennewith KL, Nicolau M et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226

    Article  CAS  PubMed  Google Scholar 

  • Fang M, Yuan J, Peng C et al (2014) Collagen as a double-edged sword in tumor progression. Tumour Biol 35:2871–2882

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ, Paget S (2003) The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature reviews. Cancer 3:453–458

    CAS  PubMed  Google Scholar 

  • Galvis MM, Romero CS, Bueno TO et al (2021) Toward a new era for the management of circulating tumor cells. Adv Exp Med Biol 1286:125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesh K, Massagué J (2021) Targeting metastatic cancer. Nat Med 27:34–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Chakraborty G, Lee-Lim AP et al (2012) The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150:764–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge X, Pan MH, Wang L, Li W et al (2018) Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis 9:1128

    Article  PubMed  PubMed Central  Google Scholar 

  • Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155:750–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilkes DM, Bajpai S, Chaturvedi P et al (2013) Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem 288:10819–10829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilkes DM, **ang L, Lee SJ et al (2014) Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc Natl Acad Sci USA 111:E384-93

    Article  PubMed  Google Scholar 

  • Godet I, Shin YJ, Ju JA et al (2019) Fate-map** post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat Commun 10:4862

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez DM, Medici D (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7:re8

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN (2007) Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol 608:1–22

    Article  CAS  PubMed  Google Scholar 

  • Guimarães-Camboa N, Stowe J, Aneas I et al (2015) HIF1α represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes. Dev Cell 33:507–521

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulati P, Kaur P, Rajam MV et al (2018a) Single-wall carbon nanotube based electrochemical immunoassay for leukemia detection. Anal Biochem 557:111–119

    Article  CAS  PubMed  Google Scholar 

  • Gulati P, Kaur, Rajam MV et al (2019) Vertically aligned multi-walled carbon nanotubes based flexible immunosensor for extreme low level detection of multidrug resistant leukemia cells. Sensors and Actuators

    Google Scholar 

  • Gulati P, Kaur, Rajam MV et al (2018b) Leukemia biomarker detection by using photoconductive response of CNT electrode: analysis of sensing mechanism based on charge transfer induced Fermi level fluctuation. Sens Actuators B Chem 270

    Google Scholar 

  • Hafeez U et al (2020) Antibody-drug conjugates for cancer therapy. Molecules (Basel, Switzerland) 25(20):4764

    Article  CAS  PubMed  Google Scholar 

  • Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613–1618

    CAS  PubMed  Google Scholar 

  • Hammond EM, Asselin MC, Forster D et al (2014a) The meaning, measurement and modification of hypoxia in the laboratory and the clinic. Clin Oncol (R Coll Radiol) 26(5):277–288. https://doi.org/10.1016/j.clon.2014.02.002. Epub 2014

    Article  CAS  PubMed  Google Scholar 

  • Hammond EM et al (2014b) The meaning, measurement and modification of hypoxia in the laboratory and the clinic. Clin Oncol (R Coll Radiol (Great Britain)) 26:5

    Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Harimoto T, Hahn J, Chen YY et al (2022) A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat Biotechnol

    Google Scholar 

  • Hay M et al (2017) Discovery of the hypoxia-activated Prodrug SN30000. Comprehensive Medicinal Chemistry III. Elsevier

    Google Scholar 

  • Hendricksen K et al (2012) Phase 2 study of adjuvant intravesical instillations of apaziquone for high risk nonmuscle invasive bladder cancer. J Urol 187:4

    Article  Google Scholar 

  • Henze AT, Mazzone M (2016) The impact of hypoxia on tumor-associated macrophages. J Clin Investig 126:3672–3679

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong B, Zu Y (2013) Detecting circulating tumor cells: current challenges and new trends. Theranostics 3:377–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CJ, Wang LY, Chodosh LA et al (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23:9361–9374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Tang J, Huang X et al (2018) Hypoxia exposure upregulates MALAT-1 and regulates the transcriptional activity of PTB-associated splicing factor in A549 lung adenocarcinoma cells. Oncol Lett 16:294–300

    PubMed  PubMed Central  Google Scholar 

  • Hunter FW et al (2012) Homologous recombination repair-dependent cytotoxicity of the benzotriazine di-N-oxide CEN-209: comparison with other hypoxia-activated prodrugs. Biochem Pharmacol 83:5

    Article  Google Scholar 

  • Intlekofer AM, Dematteo RG, Venneti S et al (2015) Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab 22:304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irshad K, Malik N, Arora M et al (2021) The quest for ligands and binding partners of atypical cadherin FAT1. Transl Oncol 14:101097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jafari R, Rahbarghazi R, Ahmadi M et al (2020) Hypoxic exosomes orchestrate tumorigenesis: molecular mechanisms and therapeutic implications. J Transl Med 18:474

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonasch E et al (2021) Belzutifan for renal cell carcinoma in von hippel-lindau disease. N Engl J Med 385:22

    Article  Google Scholar 

  • Ju JA, Godet I, Ye IC et al (2017) Hypoxia selectively enhances integrin α5β1 receptor expression in breast cancer to promote metastasis. Mol Cancer Res 15:723–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaelin WG, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanimozhi G, Prasad NR (2015) Chapter 73—Anticancer effect of caffeic acid on human cervical cancer cells. In: Preedy VR (ed) Coffee in Health and Disease Prevention. Academic Press

    Google Scholar 

  • Kapitsinou PP, Rajendran G, Astleford L et al (2016) The endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 axis regulates pulmonary artery pressure in mice. Mol Cell Biol 36:1584–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karagiannis GS, Condeelis JS, Oktay MH (2019) Chemotherapy-induced metastasis: molecular mechanisms, clinical manifestations, therapeutic interventions. Cancer Res 79:4567–4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–1480

    Article  CAS  PubMed  Google Scholar 

  • Kim MC, Hwang SH, Yang Y et al (2021) Reduction in mitochondrial oxidative stress mediates hypoxia-induced resistance to cisplatin in human transitional cell carcinoma cells. Neoplasia (New York, N.Y.) 23:653–662

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Kwon HJ, Lee YM et al (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7:437–443

    Article  PubMed  Google Scholar 

  • King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike T, Kimura N, Miyazaki K et al (2004) Hypoxia induces adhesion molecules on cancer cells: a missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc Natl Acad Sci U S A 101:8132–8137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komohara Y, **ushi M, Takeya M (2014) Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 105:1–8

    Article  CAS  PubMed  Google Scholar 

  • Konopleva M et al (2015) Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia. Haematologica 100:7

    Article  Google Scholar 

  • Koong AC, Mehta VK, Le QT et al (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys

    Google Scholar 

  • Koscielny S, Tubiana M, Lê MG et al (1984) Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination. Br J Cancer 49:709–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieg AJ, Rankin EB, Chan D et al (2010) Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol 30:344–353

    Article  CAS  PubMed  Google Scholar 

  • Kucharzewska P, Christianson HC, Welch JE et al (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA 110:7312–7317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik SE et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwaan HC, Lindholm PF (2019) Fibrin and fibrinolysis in cancer. Semin Thromb Hemost 45:413–422

    Article  CAS  PubMed  Google Scholar 

  • Laderoute K et al (1988) Molecular mechanisms for the hypoxia-dependent activation of 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233). Biochem Pharmacol 37:8

    Article  Google Scholar 

  • Lah TT, Novak M, Breznik B (2020) Brain malignancies: glioblastoma and brain metastases. Semin Cancer Biol 60:262–273

    Article  CAS  PubMed  Google Scholar 

  • Laughner E et al (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21:12

    Article  Google Scholar 

  • Lee C-T et al (2010) Hypoxia-driven immunosuppression: a new reason to use thermal therapy in the treatment of cancer? Int J Hyperthermia 26:3

    Article  Google Scholar 

  • Lee JC, Lee KM, Kim DW et al (2004) Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol (Baltimore, Md. : 1950) 172:7335–7340

    Article  CAS  Google Scholar 

  • Lee K, Kim HM (2011) A novel approach to cancer therapy using PX-478 as a HIF-1α inhibitor. Arch Pharmacalog Res 34:10

    Google Scholar 

  • Lee YT et al (2018) Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 834

    Google Scholar 

  • Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Patel SP, Roszik J et al (2018) Hypoxia-driven immunosuppressive metabolites in the tumor microenvironment: new approaches for combinational immunotherapy. Front Immunol 9:1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2021) Targeting hypoxia: hypoxia-activated prodrugs in cancer therapy. Front Oncol 11:700407

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao D, Corle C, Seagroves TN et al (2007) Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67:563–572

    Article  CAS  PubMed  Google Scholar 

  • Lindsey S, Langhans SA (2014) Crosstalk of oncogenic signaling pathways during epithelial-mesenchymal transition. Front Oncol 4:358

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Taftaf R, Kawaguchi M et al (2019) Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov 9:96–113

    Article  PubMed  Google Scholar 

  • Liu Y, Li YM, Tian RF et al (2009) The expression and significance of HIF-1alpha and GLUT-3 in glioma. Brain Res 1304:149–154

    Article  CAS  PubMed  Google Scholar 

  • Loh CY, Chai JY, Tang TF et al (2019) The E-Cadherin and N-Cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells 8:E1118

    Article  Google Scholar 

  • Lu W, Kang Y (2019) Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell 49:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16:5928–5935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macharia LW, Wanjiru CM, Mureithi MW et al (2019) MicroRNAs, hypoxia and the stem-like state as contributors to cancer aggressiveness. Front Genet 10:125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majidpoor J, Mortezaee K (2021) Steps in metastasis: an updated review. Med Oncol (Northwood, London, England) 38:3

    Article  Google Scholar 

  • Mauri D, Pavlidis N, Ioannidis JP (2005) Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Institute 97:188–194

    Article  Google Scholar 

  • McIntyre A, Hulikova A, Ledaki I et al (2016) Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth. Cancer Res 76:3744–3755

    Article  CAS  PubMed  Google Scholar 

  • Meng Z et al (2019) Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv Mater (Deerfield Beach, Fla.) 31:24

    Google Scholar 

  • Metran-Nascente C, Yeung I, Vines DC et al (2016) Measurement of tumor hypoxia in patients with advanced pancreatic cancer based on 18F-Fluoroazomyin arabinoside uptake. J Nucl Med 57:361–366

    Article  CAS  PubMed  Google Scholar 

  • Micalizzi DS, Maheswaran S, Haber DA (2017) A conduit to metastasis: circulating tumor cell biology. Genes Dev 31:1827–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mijanović O, Branković A, Panin AN et al (2019) Cathepsin B: a sellsword of cancer progression. Cancer Lett 449:207–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Milosevic M, Warde P, Ménard C et al (2012) Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin Cancer Res 18(7):2108–2114. https://doi.org/10.1158/1078-0432.CCR-11-2711. Epub (2012)

    Article  CAS  PubMed  Google Scholar 

  • Mingyuan X, Qianqian P, Shengquan X et al (2018) Hypoxia-inducible factor-1α activates transforming growth factor-β1/Smad signaling and increases collagen deposition in dermal fibroblasts. Oncotarget 9:3188–3197

    Article  PubMed  Google Scholar 

  • Monteiro AR, Hill R, Pilkington GJ et al (2017) The role of hypoxia in glioblastoma invasion. Cells 6:E45

    Article  Google Scholar 

  • Muz B, de la Puente P, Azab F et al (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 3:83–92

    Article  PubMed  Google Scholar 

  • O'Connell JT, Sugimoto H, Cooke VG et al (2011) VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci USA 108:16002–16007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojha R, Amaravadi RK (2017) Targeting the unfolded protein response in cancer. Pharmacol Res 120

    Google Scholar 

  • Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64:5338–5346

    Article  CAS  PubMed  Google Scholar 

  • Oskarsson T, Acharyya S, Zhang XH et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17:867–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paget S, Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    CAS  PubMed  Google Scholar 

  • Pallares RM, Thanh NTK, Su X (2019) Sensing of circulating cancer biomarkers with metal nanoparticles. Nanoscale 11:22152–22171

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos KP et al (2008) A phase 1 open-label, accelerated dose-escalation study of the hypoxia-activated prodrug AQ4N in patients with advanced malignancies. Clin Cancer Res 14:21

    Article  Google Scholar 

  • Parks SK, Pouyssegur J (2015) The Na(+)/HCO3(-) Co-Transporter SLC4A4 plays a role in growth and migration of colon and breast cancer cells. J Cell Physiol 230:1954–1963

    Article  CAS  PubMed  Google Scholar 

  • Patel TH, Cecchini M (2020) Targeted therapies in advanced gastric cancer. Curr Treat Options Oncol 21(9):70

    Article  PubMed  Google Scholar 

  • Patterson LH (1993) Rationale for the use of aliphatic N-oxides of cytotoxic anthraquinones as prodrug DNA binding agents: a new class of bioreductive agent. Cancer Metastasis Rev 12:2

    Article  Google Scholar 

  • Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Sem Cancer Biol 21:139–146

    Article  CAS  Google Scholar 

  • Petrella BL, Lohi J, Brinckerhoff CE (2005) Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma. Oncogene 24:1043–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pial MMH et al (2022) Implantable devices for the treatment of breast cancer. J Nanotheranostics 3:1

    Article  Google Scholar 

  • Pradhan S, Mahajan D, Kaur P et al (2016) Scriptaid overcomes hypoxia-induced cisplatin resistance in both wild-type and mutant p53 lung cancer cells. Oncotarget 7:71841–71855

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad P, Mittal SA, Chongtham J et al (2017) Hypoxia-mediated epigenetic regulation of stemness in brain tumor cells. Stem Cells (Dayton, Ohio) 35:1468–1478

    Article  CAS  PubMed  Google Scholar 

  • Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Xu R (2018) Roles of PLODs in collagen synthesis and cancer progression. Front Cell Dev 6:66

    Article  Google Scholar 

  • Quintero-Fabián S, Arreola R, Becerril-Villanueva E et al (2019) Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 9:1370

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranganathan AC, Zhang L, Adam AP (2006) Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 66:1702–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rankin EB, Fuh KC, Castellini L et al (2014) Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc Natl Acad Sci USA 111:13373–13378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  • Riihimäki M, Thomsen H, Sundquist K et al (2018) Clinical landscape of cancer metastases. Cancer Med 7:5534–5542

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruan C et al (2021) Nanomaterials for tumor hypoxia relief to improve the efficacy of ros-generated cancer therapy. Front Chem 9:649158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27:462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem A et al (2018) Targeting hypoxia to improve non-small cell lung cancer outcome. J Natl Cancer Institute 110:1

    Article  Google Scholar 

  • Sasaki M, Knobbe CB, Munger JC et al (2012) IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488:656–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, Hirose K, Kashiwakura I et al (2015) LW6, a hypoxia-inducible factor 1 inhibitor, selectively induces apoptosis in hypoxic cells through depolarization of mitochondria in A549 human lung cancer cells. Mol Med Rep 12:3

    Article  Google Scholar 

  • Schewe DM, Aguirre-Ghiso JA (2008) ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci USA 105:10519–10524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schietke R et al (2010) The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J Biol Chem 285:9

    Article  Google Scholar 

  • Schito L, Semenza GL (2016) Hypoxia-inducible factors: master regulators of cancer progression. Trends cancer 2:758–770

    Article  PubMed  Google Scholar 

  • Schito L et al (2012) Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc Natl Acad Sci USA 109(40):E2707-16. https://doi.org/10.1073/pnas.1214019109

    Article  PubMed  Google Scholar 

  • Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Investig 123:3664–3671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senapati S et al (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3(7):16

    Google Scholar 

  • Shariati M, Meric-Bernstam F (2019) Targeting AKT for cancer therapy. Expert Opin Investig Drugs 28:11

    Article  Google Scholar 

  • Shelar S, Shim EH, Brinkley GJ et al (2018) Biochemical and epigenetic insights into l-2-hydroxyglutarate, a potential therapeutic target in renal cancer. Clin Cancer Res 24:6433–6446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Wang S, Yang R et al (2022) ROS promote hypoxia-induced keratinocyte epithelial-mesenchymal transition by inducing SOX2 expression and subsequent activation of Wnt/β-Catenin. Oxidative Med Cell Longevity 2022:1084006

    Article  Google Scholar 

  • Shirai Y et al (2021) An overview of the recent development of anticancer agents targeting the HIF-1 Transcription Factor. Cancers 13:11

    Article  Google Scholar 

  • Shyu KG, Hsu FL, Wang MJ et al (2007) Hypoxia-inducible factor 1alpha regulates lung adenocarcinoma cell invasion. Exp Cell Res 313:1181–1191

    Article  CAS  PubMed  Google Scholar 

  • Singleton RS et al (2009) DNA cross-links in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism, and cytotoxicity. Cancer Res 69:9

    Article  Google Scholar 

  • Skuli N, Majmundar AJ, Krock BL et al (2012) Endothelial HIF-2α regulates murine pathological angiogenesis and revascularization processes. J Clin Investig 122:1427–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song L et al (2020) Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer. Acta Biomaterialia 108

    Google Scholar 

  • Spivey KA, Chung I, Banyard J et al (2012) A role for collagen XXIII in cancer cell adhesion, anchorage-independence and metastasis. Oncogene 31:2362–2372

    Article  CAS  PubMed  Google Scholar 

  • Srivastava C, Irshad K, Dikshit B et al (2018) FAT1 modulates EMT and stemness genes expression in hypoxic glioblastoma. Int J Cancer 142:805–812

    Article  CAS  PubMed  Google Scholar 

  • Srivastava C, Irshad K, Gupta Y et al (2020) NFкB is a critical transcriptional regulator of atypical cadherin FAT1 in glioma. BMC Cancer 20:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Zhao T, Zhao D et al (2020) Development and validation of a hypoxia-related gene signature to predict overall survival in early-stage lung adenocarcinoma patients. Ther Adv Med Oncol 12:1758835920937904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun ZF, Chang Y, **a N (2021) Recent development of nanomaterials-based cytosensors for the detection of circulating tumor cells. Biosensors 11:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syn N, Wang L, Sethi G et al (2016) Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci 37:606–617

    Article  CAS  PubMed  Google Scholar 

  • Tam SY, Wu VWC, Law HKW (2020) Hypoxia-induced epithelial-mesenchymal transition in cancers: HIF-1α and Beyond. Front Oncol 10:486

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nature reviews. Cancer 2:442–454

    CAS  PubMed  Google Scholar 

  • Timp W, Feinberg AP (2013) Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 13:497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd VM, Vecchi LA, Clements ME et al (2021) Hypoxia inducible factor signaling in breast tumors controls spontaneous tumor dissemination in a site-specific manner. Commun Biol 4:1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turunen SP, Tatti-Bugaeva O, Lehti K (2017) Membrane-type matrix metalloproteases as diverse effectors of cancer progression. Biochim Biophys acta Mol Cell Res 1864:1974–1988

    Article  CAS  PubMed  Google Scholar 

  • Vasan N et al (2019) A view on drug resistance in cancer. Nature 575:7782

    Article  Google Scholar 

  • Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxidants Redox Signaling 9:1221–1235

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P, Multhoff G (2018) Hypoxia-/HIF-1α-driven factors of the tumor microenvironment impeding antitumor immune responses and promoting malignant progression. Adv Exp Med Biol 1072:171–175

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Godet I, Yang Y, Salman S, Lu H, Lyu Y, Zuo Q, Wang Y, Zhu Y, Chen C, He J, Gilkes DM, Semenza GL (2021b) Hypoxia-inducible factor-dependent ADAM12 expression mediates breast cancer invasion and metastasis. Proc Natl Acad Sci U S A 118(19):e2020490118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T et al (2014) Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci USA 111(31):E3234-42. https://doi.org/10.1073/pnas.1410041111

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Shi Y, Ying C et al (2021a) Hypoxia-induced PLOD1 overexpression contributes to the malignant phenotype of glioblastoma via NF-κB signaling. Oncogene 40:1458–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J General Physiol 8:519–530

    Article  CAS  Google Scholar 

  • Wei Q, Qian Y, Yu J et al (2020) Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications. Oncogene 39:6139–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nature reviews. Cancer 11:6

    Google Scholar 

  • Wolf K, Alexander S, Schacht V et al (2009) Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol 20:931–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JB et al (2015) Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor. Biomaterials 67

    Google Scholar 

  • **ong G, Stewart RL, Chen J et al (2018) Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance. Nat Commun 9:4456

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada D, Kobayashi S, Yamamoto H et al (2012) Role of the hypoxia-related gene, JMJD1A, in hepatocellular carcinoma: clinical impact on recurrence after hepatic resection. Ann Surg Oncol 19(Suppl 3):S355–S364

    Article  PubMed  Google Scholar 

  • Yang H et al (2021b) Targeting cancer metastasis with antibody therapeutics. Wiley interdisciplinary reviews. Nanomed Nanobiotechnol 13:4

    Article  Google Scholar 

  • Yang X et al (2017) 3D microstructure inhibits mesenchymal stem cells homing to the site of liver cancer cells on a microchip. Genes 8(9):218

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Li Y, Qi R et al (2021a) Constructing a novel 5 hypoxia genes signature for cervical cancer. Cancer Cell Int 21:345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye IC, Fertig EJ, DiGiacomo JW et al (2018) Molecular portrait of hypoxia in breast cancer: a prognostic signature and novel HIF-regulated genes. Mol Cancer Res 16:1889–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You L, Wu W, Wang X et al (2021) The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev 41:1622–1643

    Article  CAS  PubMed  Google Scholar 

  • Zatovicova M et al (2022) Novel humanized monoclonal antibodies for targeting hypoxic human tumors via two distinct extracellular domains of carbonic anhydrase IX. Cancer Metabol 10(1):3

    Article  Google Scholar 

  • Zhang H, Wong CC, Wei H et al (2012) HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 31:1757–1770

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wong CCL, Wei H et al (2021a) Correction: HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 40:1552–1553

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li XY, Hu P et al (2018) lncRNA NORAD contributes to colorectal cancer progression by inhibition of miR-202-5p. Oncol Res 26:1411–1418

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang H, Wang M et al (2021b) Hypoxia in breast cancer-scientific translation to therapeutic and diagnostic clinical applications. Front Oncol 11:652266

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Zhu Y, Morinibu A et al (2014) HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep 4:3793

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu L et al (2022) A clinically compatible drug-screening platform based on organotypic cultures identifies vulnerabilities to prevent and treat brain metastasis. EMBO Mol Med 14:3

    Article  Google Scholar 

  • Zimmer AS, Steeg PS (2015) Meaningful prevention of breast cancer metastasis: candidate therapeutics, preclinical validation, and clinical trial concerns. J Mol Med (Berlin, Germany) 93:13–29

    Article  CAS  Google Scholar 

  • Zou M-Z et al (2021) Advances in nanomaterials for treatment of hypoxic tumor. Natl Sci Rev 8:2

    Article  Google Scholar 

  • Zou YF, Rong YM, Tan YX et al (2019) A signature of hypoxia-related factors reveals functional dysregulation and robustly predicts clinical outcomes in stage I/II colorectal cancer patients. Cancer Cell Int 19:243

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Funding from University of Delhi IoE-Faculty Research Program and Science and Engineering Research Board to TS are gratefully acknowledged. TS, JC, SG, SK (1), DC, SK (2) and PG wrote and edited the manuscript. SK (1), DC, SK (2) and PG created the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapasya Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gandhi, S. et al. (2023). Hypoxia and the Metastatic Cascade. In: Mukherjee, S., Kanwar, J.R. (eds) Hypoxia in Cancer: Significance and Impact on Cancer Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-99-0313-9_9

Download citation

Publish with us

Policies and ethics

Navigation