Log in

The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies

  • Rising Star Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Hypoxia is a characteristic feature of many cancer types, which ensues when the growth of a tumour outpaces its oxygen supply. The cellular response to reduced oxygen tension is centred around the hypoxia-inducible transcription factors (HIFs), which become stabilized under hypoxic conditions. In addition, a number of oxygen-independent mechanisms of HIF regulation have been described, which also play a role at distinct stages of tumour progression. Hypoxia and HIF activity have been linked to the control of all hallmarks of cancer, and increased levels of hypoxia or HIFs in human tumours are typically associated with poor prognosis. In this review, we describe the current knowledge about the role of hypoxic signalling in tumour metastasis, which is the main cause of cancer-related mortality. The members of the HIF family, HIF1α, HIF2α and HIF3α, play important functions at all key stages of metastatic dissemination. This includes local migration within the tumour and invasion of the surrounding stromal tissue through induction of an epithelial-mesenchymal transition (EMT)-like process, remodelling of the extracellular matrix, intravasation and extravasation, survival and dissemination through the circulation, generation of premetastatic niches to support secondary tumour growth, colonisation of distant sites, and tumour cell dormancy. The central role of hypoxic signalling in tumour growth and metastasis, as well as its involvement in therapy resistance, have motivated efforts to monitor tumour hypoxia through various invasive and non-invasive techniques, and to identify inhibitors of HIFs, their regulators or their targets. Recent progress in these areas has provided indications that such approaches may represent a viable strategy for translating basic knowledge about tumour hypoxia and HIF biology into novel therapeutic strategies for metastatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAF:

Cancer associated fibroblast

(cc)RCC:

(Clear cell) renal cell carcinoma

CSC:

Cancer stem cell

CTC:

Circulating tumour cell

CTL:

Cytotoxic T lymphocyte

DTC:

Disseminating tumour cell

ECM:

Extracellular matrix

EMT:

Epithelial-mesenchymal transition

FIH:

Factor inhibiting HIF

HCC:

Hepatocellular carcinoma

HIF:

Hypoxia-inducible factor

HNSCC:

Head and neck squamous cell carcinoma

HRE:

Hypoxia response elements

LEC:

Lymphatic endothelial cell

MET:

Mesenchymal-epithelial transition

MMP:

Matrix metalloproteinase

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NK:

Natural killer

PHD:

Prolyl-hydroxylase domain containing protein

(p)VHL:

Von Hippel-Lindau tumour suppressor (protein)

ROS:

Reactive oxygen species

TGF:

Transforming growth factor

VEGF:

Vascular endothelial growth factor

References

  1. Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 9:47–71. https://doi.org/10.1146/annurev-pathol-012513-104720

    Article  CAS  PubMed  Google Scholar 

  2. Schito L, Semenza GL (2016) Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2(12):758–770. https://doi.org/10.1016/j.trecan.2016.10.016

    Article  PubMed  Google Scholar 

  3. Sporn MB (1996) The war on cancer. Lancet 347(9012):1377–1381

    Article  CAS  PubMed  Google Scholar 

  4. McKeown SR (2014) Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br J Radiol 87(1035):20130676. https://doi.org/10.1259/bjr.20130676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Greer SN, Metcalf JL, Wang Y, Ohh M (2012) The updated biology of hypoxia-inducible factor. EMBO J 31(11):2448–2460. https://doi.org/10.1038/emboj.2012.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11(1):72–82

    Article  CAS  PubMed  Google Scholar 

  8. Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L (2002) Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 277(36):32405–32408. https://doi.org/10.1074/jbc.C200328200

    Article  CAS  PubMed  Google Scholar 

  9. Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S, Conaway RC, Conaway JW, Ohh M (2003) Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 278(13):11032–11040. https://doi.org/10.1074/jbc.M208681200

    Article  CAS  PubMed  Google Scholar 

  10. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294(5545):1337–1340. https://doi.org/10.1126/science.1066373

    Article  CAS  PubMed  Google Scholar 

  11. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107(1):43–54

    Article  CAS  PubMed  Google Scholar 

  12. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468. https://doi.org/10.1126/science.1059817

    Article  CAS  PubMed  Google Scholar 

  13. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275. https://doi.org/10.1038/20459

    Article  CAS  PubMed  Google Scholar 

  14. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2(7):423–427. https://doi.org/10.1038/35017054

    Article  CAS  PubMed  Google Scholar 

  15. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295(5556):858–861. https://doi.org/10.1126/science.1068592

    Article  CAS  PubMed  Google Scholar 

  16. Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ (2009) An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 37(14):4587–4602. https://doi.org/10.1093/nar/gkp425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garvalov BK, Acker T (2016) Implications of oxygen homeostasis for tumor biology and treatment. Adv Exp Med Biol 903:169–185. https://doi.org/10.1007/978-1-4899-7678-9_12

    Article  CAS  PubMed  Google Scholar 

  18. Agani F, Jiang BH (2013) Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr Cancer Drug Targets 13(3):245–251

    Article  CAS  PubMed  Google Scholar 

  19. Soni S, Padwad YS (2017) HIF-1 in cancer therapy: two decade long story of a transcription factor. Acta Oncol 56(4):503–515. https://doi.org/10.1080/0284186X.2017.1301680

    Article  CAS  PubMed  Google Scholar 

  20. Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5(5):343–354. https://doi.org/10.1038/nrm1366

    Article  CAS  PubMed  Google Scholar 

  21. Salminen A, Kauppinen A, Kaarniranta K (2015) 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. Cell Mol Life Sci 72(20):3897–3914. https://doi.org/10.1007/s00018-015-1978-z

    Article  CAS  PubMed  Google Scholar 

  22. Briggs KJ, Koivunen P, Cao S, Backus KM, Olenchock BA, Patel H, Zhang Q, Signoretti S, Gerfen GJ, Richardson AL, Witkiewicz AK, Cravatt BF, Clardy J, Kaelin WG Jr (2016) Paracrine induction of HIF by glutamate in breast cancer: EglN1 senses cysteine. Cell 166(1):126–139. https://doi.org/10.1016/j.cell.2016.05.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koh MY, Darnay BG, Powis G (2008) Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1alpha, leading to its oxygen-independent degradation. Mol Cell Biol 28(23):7081–7095. https://doi.org/10.1128/MCB.00773-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koh MY, Lemos R Jr, Liu X, Powis G (2011) The hypoxia-associated factor switches cells from HIF-1alpha- to HIF-2alpha-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res 71(11):4015–4027. https://doi.org/10.1158/0008-5472.CAN-10-4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen L, Uchida K, Endler A, Shibasaki F (2007) Mammalian tumor suppressor Int6 specifically targets hypoxia inducible factor 2 alpha for degradation by hypoxia- and pVHL-independent regulation. J Biol Chem 282(17):12707–12716. https://doi.org/10.1074/jbc.M700423200

    Article  CAS  PubMed  Google Scholar 

  26. Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL (2007) RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell 25(2):207–217. https://doi.org/10.1016/j.molcel.2007.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Filatova A, Seidel S, Böğürcü N, Graf S, Garvalov BK, Acker T (2016) Acidosis Acts through HSP90 in a PHD/VHL-independent manner to promote HIF function and stem cell maintenance in glioma. Cancer Res 76(19):5845–5856. https://doi.org/10.1158/0008-5472.CAN-15-2630

    Article  CAS  PubMed  Google Scholar 

  28. Montagner M, Enzo E, Forcato M, Zanconato F, Parenti A, Rampazzo E, Basso G, Leo G, Rosato A, Bicciato S, Cordenonsi M, Piccolo S (2012) SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature 487(7407):380–384. https://doi.org/10.1038/nature11207

    Article  CAS  PubMed  Google Scholar 

  29. Goto Y, Zeng L, Yeom CJ, Zhu Y, Morinibu A, Shinomiya K, Kobayashi M, Hirota K, Itasaka S, Yoshimura M, Tanimoto K, Torii M, Sowa T, Menju T, Sonobe M, Kakeya H, Toi M, Date H, Hammond EM, Hiraoka M, Harada H (2015) UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1alpha. Nat Commun 6:6153. https://doi.org/10.1038/ncomms7153

    Article  CAS  PubMed  Google Scholar 

  30. Lau CK, Yang ZF, Ho DW, Ng MN, Yeoh GC, Poon RT, Fan ST (2009) An Akt/hypoxia-inducible factor-1alpha/platelet-derived growth factor-BB autocrine loop mediates hypoxia-induced chemoresistance in liver cancer cells and tumorigenic hepatic progenitor cells. Clin Cancer Res 15(10):3462–3471. https://doi.org/10.1158/1078-0432.CCR-08-2127

    Article  CAS  PubMed  Google Scholar 

  31. Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL (2002) Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 277(41):38205–38211. https://doi.org/10.1074/jbc.M203781200

    Article  CAS  PubMed  Google Scholar 

  32. Biswas S, Mukherjee R, Tapryal N, Singh AK, Mukhopadhyay CK (2013) Insulin regulates hypoxia-inducible factor-1alpha transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte. PLoS ONE 8(4):e62128. https://doi.org/10.1371/journal.pone.0062128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21(12):3995–4004. https://doi.org/10.1128/MCB.21.12.3995-4004.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carrera S, Senra J, Acosta MI, Althubiti M, Hammond EM, de Verdier PJ, Macip S (2014) The role of the HIF-1alpha transcription factor in increased cell division at physiological oxygen tensions. PLoS ONE 9(5):e97938. https://doi.org/10.1371/journal.pone.0097938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J (1999) p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274(46):32631–32637

    Article  CAS  PubMed  Google Scholar 

  36. Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, Caro J (2003) MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem 278(16):14013–14019. https://doi.org/10.1074/jbc.M209702200

    Article  CAS  PubMed  Google Scholar 

  37. Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, Gutkind JS (2000) The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 60(17):4873–4880

    CAS  PubMed  Google Scholar 

  38. Kietzmann T, Mennerich D, Dimova EY (2016) Hypoxia-inducible factors (HIFs) and phosphorylation: impact on stability, localization, and transactivity. Front Cell Dev Biol 4:11. https://doi.org/10.3389/fcell.2016.00011

    Article  PubMed  PubMed Central  Google Scholar 

  39. Flügel D, Görlach A, Michiels C, Kietzmann T (2007) Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol 27(9):3253–3265. https://doi.org/10.1128/MCB.00015-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu D, Yao Y, Lu L, Costa M, Dai W (2010) Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1alpha. J Biol Chem 285(50):38944–38950. https://doi.org/10.1074/jbc.M110.160325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cam H, Easton JB, High A, Houghton PJ (2010) mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol Cell 40(4):509–520. https://doi.org/10.1016/j.molcel.2010.10.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK (2001) Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 12(7):363–369

    CAS  PubMed  Google Scholar 

  43. Liu LZ, Hu XW, **a C, He J, Zhou Q, Shi X, Fang J, Jiang BH (2006) Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med 41(10):1521–1533. https://doi.org/10.1016/j.freeradbiomed.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  44. Nayak BK, Feliers D, Sudarshan S, Friedrichs WE, Day RT, New DD, Fitzgerald JP, Eid A, Denapoli T, Parekh DJ, Gorin Y, Block K (2013) Stabilization of HIF-2alpha through redox regulation of mTORC2 activation and initiation of mRNA translation. Oncogene 32(26):3147–3155. https://doi.org/10.1038/onc.2012.333

    Article  CAS  PubMed  Google Scholar 

  45. Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, Wang Y, **g Y, Yang H, Chen R, Chang L, Zhang Y, Goto J, Onda H, Chen T, Wang MR, Lu Y, You H, Kwiatkowski D, Zhang H (2011) Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA 108(10):4129–4134. https://doi.org/10.1073/pnas.1014769108

    Article  PubMed  PubMed Central  Google Scholar 

  46. El-Naggar AM, Veinotte CJ, Cheng H, Grunewald TG, Negri GL, Somasekharan SP, Corkery DP, Tirode F, Mathers J, Khan D, Kyle AH, Baker JH, LePard NE, McKinney S, Hajee S, Bosiljcic M, Leprivier G, Tognon CE, Minchinton AI, Bennewith KL, Delattre O, Wang Y, Dellaire G, Berman JN, Sorensen PH (2015) Translational activation of HIF1alpha by YB-1 promotes sarcoma metastasis. Cancer Cell 27(5):682–697. https://doi.org/10.1016/j.ccell.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  47. Xenaki G, Ontikatze T, Rajendran R, Stratford IJ, Dive C, Krstic-Demonacos M, Demonacos C (2008) PCAF is an HIF-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. Oncogene 27(44):5785–5796. https://doi.org/10.1038/onc.2008.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 38(6):864–878. https://doi.org/10.1016/j.molcel.2010.05.023

    Article  CAS  PubMed  Google Scholar 

  49. Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, Garcia JA (2009) Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 324(5932):1289–1293. https://doi.org/10.1126/science.1169956

    Article  CAS  PubMed  Google Scholar 

  50. Luo W, Wang Y (2018) Epigenetic regulators: multifunctional proteins modulating hypoxia-inducible factor-alpha protein stability and activity. Cell Mol Life Sci 75(6):1043–1056. https://doi.org/10.1007/s00018-017-2684-9

    Article  CAS  PubMed  Google Scholar 

  51. Gluck AA, Aebersold DM, Zimmer Y, Medova M (2015) Interplay between receptor tyrosine kinases and hypoxia signaling in cancer. Int J Biochem Cell Biol 62:101–114. https://doi.org/10.1016/j.biocel.2015.02.018

    Article  CAS  PubMed  Google Scholar 

  52. Lin SC, Liao WL, Lee JC, Tsai SJ (2014) Hypoxia-regulated gene network in drug resistance and cancer progression. Exp Biol Med (Maywood) 239(7):779–792. https://doi.org/10.1177/1535370214532755

    Article  CAS  Google Scholar 

  53. Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resistance Updat 14(3):191–201. https://doi.org/10.1016/j.drup.2011.03.001

    Article  CAS  Google Scholar 

  54. Chen H, Houshmand G, Mishra S, Fong GH, Gittes GK, Esni F (2010) Impaired pancreatic development in Hif2-alpha deficient mice. Biochem Biophys Res Commun 399(3):440–445. https://doi.org/10.1016/j.bbrc.2010.07.111

    Article  CAS  PubMed  Google Scholar 

  55. Chen J, Imanaka N, Chen J, Griffin JD (2010) Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer 102(2):351–360. https://doi.org/10.1038/sj.bjc.6605486

    Article  CAS  PubMed  Google Scholar 

  56. Gustafsson MV, Zheng X, Pereira T, Gradin K, ** S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628. https://doi.org/10.1016/j.devcel.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  57. Landor SK, Lendahl U (2017) The interplay between the cellular hypoxic response and Notch signaling. Exp Cell Res 356(2):146–151. https://doi.org/10.1016/j.yexcr.2017.04.030

    Article  CAS  PubMed  Google Scholar 

  58. Shareef MM, Udayakumar TS, Sinha VK, Saleem SM, Griggs WW (2013) Interaction of HIF-1alpha and Notch3 Is Required for the expression of carbonic anhydrase 9 in breast carcinoma cells. Genes Cancer 4(11–12):513–523. https://doi.org/10.1177/1947601913481670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang Q, Lou Y, Zhang J, Fu Q, Wei T, Sun X, Chen Q, Yang J, Bai X, Liang T (2017) Hypoxia-inducible factor-2alpha promotes tumor progression and has crosstalk with Wnt/beta-catenin signaling in pancreatic cancer. Mol Cancer 16(1):119. https://doi.org/10.1186/s12943-017-0689-5

    Article  PubMed  PubMed Central  Google Scholar 

  60. D’Ignazio L, Batie M, Rocha S (2017) Hypoxia and inflammation in cancer, focus on HIF and NF-kappaB. Biomedicines. https://doi.org/10.3390/biomedicines5020021

    Article  PubMed  PubMed Central  Google Scholar 

  61. Taylor CT, Cummins EP (2009) The role of NF-kappaB in hypoxia-induced gene expression. Ann N Y Acad Sci 1177:178–184. https://doi.org/10.1111/j.1749-6632.2009.05024.x

    Article  CAS  PubMed  Google Scholar 

  62. Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouyssegur J, Taylor CT (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci USA 103(48):18154–18159. https://doi.org/10.1073/pnas.0602235103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Belaiba RS, Bonello S, Zahringer C, Schmidt S, Hess J, Kietzmann T, Gorlach A (2007) Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell 18(12):4691–4697. https://doi.org/10.1091/mbc.e07-04-0391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453(7196):807–811. https://doi.org/10.1038/nature06905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van Uden P, Kenneth NS, Rocha S (2008) Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J 412(3):477–484. https://doi.org/10.1042/BJ20080476

    Article  PubMed  Google Scholar 

  66. Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, Sobolewski A, Condliffe AM, Cowburn AS, Johnson N, Chilvers ER (2005) Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med 201(1):105–115. https://doi.org/10.1084/jem.20040624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang W, **a Y, Cao Y, Zheng Y, Bu W, Zhang L, You MJ, Koh MY, Cote G, Aldape K, Li Y, Verma IM, Chiao PJ, Lu Z (2012) EGFR-induced and PKCepsilon monoubiquitylation-dependent NF-kappaB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell 48(5):771–784. https://doi.org/10.1016/j.molcel.2012.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bracken CP, Whitelaw ML, Peet DJ (2005) Activity of hypoxia-inducible factor 2alpha is regulated by association with the NF-kappaB essential modulator. J Biol Chem 280(14):14240–14251. https://doi.org/10.1074/jbc.M409987200

    Article  CAS  PubMed  Google Scholar 

  69. Wright CW, Duckett CS (2009) The aryl hydrocarbon nuclear translocator alters CD30-mediated NF-kappaB-dependent transcription. Science 323(5911):251–255. https://doi.org/10.1126/science.1162818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Amelio I, Melino G (2015) The p53 family and the hypoxia-inducible factors (HIFs): determinants of cancer progression. Trends Biochem Sci 40(8):425–434. https://doi.org/10.1016/j.tibs.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  71. Graeber TG, Peterson JF, Tsai M, Monica K, Fornace AJ Jr, Giaccia AJ (1994) Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 14(9):6264–6277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature 392(6674):405–408. https://doi.org/10.1038/32925

    Article  CAS  PubMed  Google Scholar 

  73. Hansson LO, Friedler A, Freund S, Rudiger S, Fersht AR (2002) Two sequence motifs from HIF-1alpha bind to the DNA-binding site of p53. Proc Natl Acad Sci USA 99(16):10305–10309. https://doi.org/10.1073/pnas.122347199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Amelio I, Inoue S, Markert EK, Levine AJ, Knight RA, Mak TW, Melino G (2015) TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1alpha degradation. Proc Natl Acad Sci USA 112(1):226–231. https://doi.org/10.1073/pnas.1410609111

    Article  CAS  PubMed  Google Scholar 

  75. Blagosklonny MV, An WG, Romanova LY, Trepel J, Fojo T, Neckers L (1998) p53 inhibits hypoxia-inducible factor-stimulated transcription. J Biol Chem 273(20):11995–11998

    Article  CAS  PubMed  Google Scholar 

  76. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14(1):34–44

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bangoura G, Liu ZS, Qian Q, Jiang CQ, Yang GF, **g S (2007) Prognostic significance of HIF-2alpha/EPAS1 expression in hepatocellular carcinoma. World J Gastroenterol 13(23):3176–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bangoura G, Yang LY, Huang GW, Wang W (2004) Expression of HIF-2alpha/EPAS1 in hepatocellular carcinoma. World J Gastroenterol 10(4):525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shi CY, Fan Y, Liu B, Lou WH (2013) HIF1 contributes to hypoxia-induced pancreatic cancer cells invasion via promoting QSOX1 expression. Cell Physiol Biochem 32(3):561–568. https://doi.org/10.1159/000354460

    Article  CAS  PubMed  Google Scholar 

  80. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157(2):411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835

    CAS  PubMed  Google Scholar 

  82. Calzada MJ, del Peso L (2007) Hypoxia-inducible factors and cancer. Clin Transl Oncol 9(5):278–289

    Article  CAS  PubMed  Google Scholar 

  83. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in hypoxic gene regulation. Mol Cell Biol 23(24):9361–9374. https://doi.org/10.1128/mcb.23.24.9361-9374.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Prabhakar NR, Kumar GK, Nanduri J (2009) Intermittent hypoxia-mediated plasticity of acute O2 sensing requires altered red-ox regulation by HIF-1 and HIF-2. Ann N Y Acad Sci 1177:162–168. https://doi.org/10.1111/j.1749-6632.2009.05034.x

    Article  CAS  PubMed  Google Scholar 

  85. Ratcliffe PJ (2007) HIF-1 and HIF-2: working alone or together in hypoxia? J Clin Investig 117(4):862–865. https://doi.org/10.1172/JCI31750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25(13):5675–5686. https://doi.org/10.1128/MCB.25.13.5675-5686.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR (2011) High-resolution genome-wide map** of HIF-binding sites by ChIP-sEq. Blood 117(23):e207–e217. https://doi.org/10.1182/blood-2010-10-314427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang V, Davis DA, Haque M, Huang LE, Yarchoan R (2005) Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res 65(8):3299–3306. https://doi.org/10.1158/0008-5472.CAN-04-4130

    Article  CAS  PubMed  Google Scholar 

  89. Yamamoto Y, Ibusuki M, Okumura Y, Kawasoe T, Kai K, Iyama K, Iwase H (2008) Hypoxia-inducible factor 1alpha is closely linked to an aggressive phenotype in breast cancer. Breast Cancer Res Treat 110(3):465–475. https://doi.org/10.1007/s10549-007-9742-1

    Article  CAS  PubMed  Google Scholar 

  90. Helczynska K, Larsson AM, Holmquist Mengelbier L, Bridges E, Fredlund E, Borgquist S, Landberg G, Pahlman S, Jirstrom K (2008) Hypoxia-inducible factor-2alpha correlates to distant recurrence and poor outcome in invasive breast cancer. Cancer Res 68(22):9212–9220. https://doi.org/10.1158/0008-5472.CAN-08-1135

    Article  CAS  PubMed  Google Scholar 

  91. Lidgren A, Hedberg Y, Grankvist K, Rasmuson T, Vasko J, Ljungberg B (2005) The expression of hypoxia-inducible factor 1alpha is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res 11(3):1129–1135

    CAS  PubMed  Google Scholar 

  92. Klatte T, Seligson DB, Riggs SB, Leppert JT, Berkman MK, Kleid MD, Yu H, Kabbinavar FF, Pantuck AJ, Belldegrun AS (2007) Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res 13(24):7388–7393. https://doi.org/10.1158/1078-0432.CCR-07-0411

    Article  CAS  PubMed  Google Scholar 

  93. Kroeger N, Seligson DB, Signoretti S, Yu H, Magyar CE, Huang J, Belldegrun AS, Pantuck AJ (2014) Poor prognosis and advanced clinicopathological features of clear cell renal cell carcinoma (ccRCC) are associated with cytoplasmic subcellular localisation of Hypoxia inducible factor-2alpha. Eur J Cancer 50(8):1531–1540. https://doi.org/10.1016/j.ejca.2014.01.031

    Article  CAS  PubMed  Google Scholar 

  94. Koukourakis MI, Kakouratos C, Kalamida D, Bampali Z, Mavropoulou S, Sivridis E, Giatromanolaki A (2016) Hypoxia-inducible proteins HIF1alpha and lactate dehydrogenase LDH5, key markers of anaerobic metabolism, relate with stem cell markers and poor post-radiotherapy outcome in bladder cancer. Int J Radiat Biol 92(7):353–363. https://doi.org/10.3109/09553002.2016.1162921

    Article  CAS  PubMed  Google Scholar 

  95. Onita T, Ji PG, Xuan JW, Sakai H, Kanetake H, Maxwell PH, Fong GH, Gabril MY, Moussa M, Chin JL (2002) Hypoxia-induced, perinecrotic expression of endothelial Per- ARNT-Sim domain protein-1/hypoxia-inducible factor-2alpha correlates with tumor progression, vascularization, and focal macrophage infiltration in bladder cancer. Clin Cancer Res 8(2):471–480

    CAS  PubMed  Google Scholar 

  96. Wang Q, Hu DF, Rui Y, Jiang AB, Liu ZL, Huang LN (2014) Prognosis value of HIF-1alpha expression in patients with non-small cell lung cancer. Gene 541(2):69–74. https://doi.org/10.1016/j.gene.2014.03.025

    Article  CAS  PubMed  Google Scholar 

  97. He J, Hu Y, Hu M, Zhang S, Li B (2016) The relationship between the preoperative plasma level of HIF-1alpha and clinic pathological features, prognosis in non-small cell lung cancer. Sci Rep 6:20586. https://doi.org/10.1038/srep20586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Giatromanolaki A, Koukourakis MI, Sivridis E, Turley H, Talks K, Pezzella F, Gatter KC, Harris AL (2001) Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 85(6):881–890. https://doi.org/10.1054/bjoc.2001.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. dos Santos M, Mercante AM, Louro ID, Goncalves AJ, de Carvalho MB, da Silva EH, da Silva AM (2012) HIF1-alpha expression predicts survival of patients with squamous cell carcinoma of the oral cavity. PLoS ONE 7(9):e45228. https://doi.org/10.1371/journal.pone.0045228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Koukourakis MI, Bentzen SM, Giatromanolaki A, Wilson GD, Daley FM, Saunders MI, Dische S, Sivridis E, Harris AL (2006) Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol 24(5):727–735. https://doi.org/10.1200/JCO.2005.02.7474

    Article  CAS  PubMed  Google Scholar 

  101. Jia YF, **ao DJ, Ma XL, Song YY, Hu R, Kong Y, Zheng Y, Han SY, Hong RL, Wang YS (2013) Differentiated embryonic chondrocyte-expressed gene 1 is associated with hypoxia-inducible factor 1alpha and Ki67 in human gastric cancer. Diagn Pathol 8:37. https://doi.org/10.1186/1746-1596-8-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tong WW, Tong GH, Chen XX, Zheng HC, Wang YZ (2015) HIF2alpha is associated with poor prognosis and affects the expression levels of survivin and cyclin D1 in gastric carcinoma. Int J Oncol 46(1):233–242. https://doi.org/10.3892/ijo.2014.2719

    Article  CAS  PubMed  Google Scholar 

  103. El Naggar A, Clarkson P, Zhang F, Mathers J, Tognon C, Sorensen PH (2012) Expression and stability of hypoxia inducible factor 1alpha in osteosarcoma. Pediatr Blood Cancer 59(7):1215–1222. https://doi.org/10.1002/pbc.24191

    Article  PubMed  Google Scholar 

  104. Wang S, Ren T, Huang Y, Bao X, Sun K, Shen D, Guo W (2017) BMPR2 and HIF1-alpha overexpression in resected osteosarcoma correlates with distant metastasis and patient survival. Chin J Cancer Res 29(5):447–454. https://doi.org/10.21147/j.issn.1000-9604.2017.05.09

    Article  PubMed  PubMed Central  Google Scholar 

  105. Li W, He X, Xue R, Zhang Y, Zhang X, Lu J, Zhang Z, Xue L (2016) Combined over-expression of the hypoxia-inducible factor 2alpha gene and its long non-coding RNA predicts unfavorable prognosis of patients with osteosarcoma. Pathol Res Pract 212(10):861–866. https://doi.org/10.1016/j.prp.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  106. Korkolopoulou P, Patsouris E, Konstantinidou AE, Pavlopoulos PM, Kavantzas N, Boviatsis E, Thymara I, Perdiki M, Thomas-Tsagli E, Angelidakis D, Rologis D, Sakkas D (2004) Hypoxia-inducible factor 1alpha/vascular endothelial growth factor axis in astrocytomas. Associations with microvessel morphometry, proliferation and prognosis. Neuropathol Appl Neurobiol 30(3):267–278. https://doi.org/10.1111/j.1365-2990.2003.00535.x

    Article  CAS  PubMed  Google Scholar 

  107. Scrideli CA, Carlotti CG Jr, Mata JF, Neder L, Machado HR, Oba-Sinjo SM, Rosemberg S, Marie SK, Tone LG (2007) Prognostic significance of co-overexpression of the EGFR/IGFBP-2/HIF-2A genes in astrocytomas. J Neurooncol 83(3):233–239. https://doi.org/10.1007/s11060-007-9328-0

    Article  CAS  PubMed  Google Scholar 

  108. Huang M, Chen Q, **ao J, Yao T, Bian L, Liu C, Lin Z (2014) Overexpression of hypoxia-inducible factor-1alpha is a predictor of poor prognosis in cervical cancer: a clinicopathologic study and a meta-analysis. Int J Gynecol Cancer 24(6):1054–1064. https://doi.org/10.1097/IGC.0000000000000162

    Article  PubMed  Google Scholar 

  109. Ishikawa H, Sakurai H, Hasegawa M, Mitsuhashi N, Takahashi M, Masuda N, Nakajima M, Kitamoto Y, Saitoh J, Nakano T (2004) Expression of hypoxic-inducible factor 1alpha predicts metastasis-free survival after radiation therapy alone in stage IIIB cervical squamous cell carcinoma. Int J Radiat Oncol Biol Phys 60(2):513–521. https://doi.org/10.1016/j.ijrobp.2004.03.025

    Article  CAS  PubMed  Google Scholar 

  110. Kawanaka T, Kubo A, Ikushima H, Sano T, Takegawa Y, Nishitani H (2008) Prognostic significance of HIF-2alpha expression on tumor infiltrating macrophages in patients with uterine cervical cancer undergoing radiotherapy. J Med Investig 55(1–2):78–86

    Article  Google Scholar 

  111. Zhang L, Chen Q, Hu J, Chen Y, Liu C, Xu C (2016) Expression of HIF-2alpha and VEGF in cervical squamous cell carcinoma and its clinical significance. Biomed Res Int. https://doi.org/10.1155/2016/5631935

    Article  PubMed  PubMed Central  Google Scholar 

  112. Feng L, Tao L, Dawei H, Xuliang L, **aodong L (2014) HIF-1alpha expression correlates with cellular apoptosis, angiogenesis and clinical prognosis in rectal carcinoma. Pathol Oncol Res 20(3):603–610. https://doi.org/10.1007/s12253-013-9738-6

    Article  CAS  PubMed  Google Scholar 

  113. Yoshimura H, Dhar DK, Kohno H, Kubota H, Fujii T, Ueda S, Kinugasa S, Tachibana M, Nagasue N (2004) Prognostic impact of hypoxia-inducible factors 1alpha and 2alpha in colorectal cancer patients: correlation with tumor angiogenesis and cyclooxygenase-2 expression. Clin Cancer Res 10(24):8554–8560. https://doi.org/10.1158/1078-0432.CCR-0946-03

    Article  CAS  PubMed  Google Scholar 

  114. Rawluszko-Wieczorek AA, Horbacka K, Krokowicz P, Misztal M, Jagodzinski PP (2014) Prognostic potential of DNA methylation and transcript levels of HIF1A and EPAS1 in colorectal cancer. Mol Cancer Res 12(8):1112–1127. https://doi.org/10.1158/1541-7786.MCR-14-0054

    Article  CAS  PubMed  Google Scholar 

  115. Chen WT, Huang CJ, Wu MT, Yang SF, Su YC, Chai CY (2005) Hypoxia-inducible factor-1alpha is associated with risk of aggressive behavior and tumor angiogenesis in gastrointestinal stromal tumor. Jpn J Clin Oncol 35(4):207–213. https://doi.org/10.1093/jjco/hyi067

    Article  PubMed  Google Scholar 

  116. Clara CA, Marie SK, de Almeida JR, Wakamatsu A, Oba-Shinjo SM, Uno M, Neville M, Rosemberg S (2014) Angiogenesis and expression of PDGF-C, VEGF, CD105 and HIF-1alpha in human glioblastoma. Neuropathology 34(4):343–352. https://doi.org/10.1111/neup.12111

    Article  CAS  PubMed  Google Scholar 

  117. Bache M, Rot S, Kessler J, Guttler A, Wichmann H, Greither T, Wach S, Taubert H, Soling A, Bilkenroth U, Kappler M, Vordermark D (2015) mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma. Oncol Rep 33(6):3155–3161. https://doi.org/10.3892/or.2015.3932

    Article  CAS  PubMed  Google Scholar 

  118. Liu Q, Cao P (2015) Clinical and prognostic significance of HIF-1alpha in glioma patients: a meta-analysis. Int J Clin Exp Med 8(12):22073–22083

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6):501–513. https://doi.org/10.1016/j.ccr.2009.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Martinez-Garcia MA, Riveiro-Falkenbach E, Rodriguez-Peralto JL, Nagore E, Martorell-Calatayud A, Campos-Rodriguez F, Farre R, Hernandez Blasco L, Banuls Roca J, Chiner Vives E, Sanchez-de-la-Torre A, Abad Capa J, Montserrat JM, Almendros I, Perez-Gil A, Cabriada Nuno V, Cano-Pumarega I, Corral Penafiel J, Diaz Cambriles T, Mediano O, Dalmau Arias J, Gozal D, Spanish Sleep N (2017) A prospective multicenter cohort study of cutaneous melanoma: clinical staging and potential associations with HIF-1alpha and VEGF expressions. Melanoma Res 27(6):558–564. https://doi.org/10.1097/CMR.0000000000000393

    Article  CAS  PubMed  Google Scholar 

  121. Giatromanolaki A, Sivridis E, Kouskoukis C, Gatter KC, Harris AL, Koukourakis MI (2003) Hypoxia-inducible factors 1alpha and 2alpha are related to vascular endothelial growth factor expression and a poorer prognosis in nodular malignant melanomas of the skin. Melanoma Res 13(5):493–501. https://doi.org/10.1097/01.cmr.0000056268.56735.4c

    Article  CAS  PubMed  Google Scholar 

  122. Dungwa JV, Hunt LP, Ramani P (2012) HIF-1alpha up-regulation is associated with adverse clinicopathological and biological factors in neuroblastomas. Histopathology 61(3):417–427. https://doi.org/10.1111/j.1365-2559.2012.04227.x

    Article  PubMed  Google Scholar 

  123. Noguera R, Fredlund E, Piqueras M, Pietras A, Beckman S, Navarro S, Pahlman S (2009) HIF-1alpha and HIF-2alpha are differentially regulated in vivo in neuroblastoma: high HIF-1alpha correlates negatively to advanced clinical stage and tumor vascularization. Clin Cancer Res 15(23):7130–7136. https://doi.org/10.1158/1078-0432.CCR-09-0223

    Article  CAS  PubMed  Google Scholar 

  124. Holmquist-Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H, Pietras A, Vallon-Christersson J, Borg A, Gradin K, Poellinger L, Pahlman S (2006) Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10(5):413–423. https://doi.org/10.1016/j.ccr.2006.08.026

    Article  CAS  PubMed  Google Scholar 

  125. Shen W, Li HL, Liu L, Cheng JX (2017) Expression levels of PTEN, HIF-1alpha, and VEGF as prognostic factors in ovarian cancer. Eur Rev Med Pharmacol Sci 21(11):2596–2603

    CAS  PubMed  Google Scholar 

  126. Raspaglio G, Petrillo M, Martinelli E, Li Puma DD, Mariani M, De Donato M, Filippetti F, Mozzetti S, Prislei S, Zannoni GF, Scambia G, Ferlini C (2014) Sox9 and Hif-2alpha regulate TUBB3 gene expression and affect ovarian cancer aggressiveness. Gene 542(2):173–181. https://doi.org/10.1016/j.gene.2014.03.037

    Article  CAS  PubMed  Google Scholar 

  127. Fu**o M, Aishima S, Shindo K, Oda Y, Morimatsu K, Tsutsumi K, Otsuka T, Tanaka M, Oda Y (2016) Expression of glucose transporter-1 is correlated with hypoxia-inducible factor 1alpha and malignant potential in pancreatic neuroendocrine tumors. Oncol Lett 12(5):3337–3343. https://doi.org/10.3892/ol.2016.5092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang M, Chen MY, Guo XJ, Jiang JX (2015) Expression and significance of HIF-1alpha and HIF-2alpha in pancreatic cancer. J Huazhong Univ Sci Technol Med Sci 35(6):874–879. https://doi.org/10.1007/s11596-015-1521-3

    Article  CAS  Google Scholar 

  129. Zhou X, Guo X, Chen M, **e C, Jiang J (2017) HIF-3alpha promotes metastatic phenotypes in pancreatic cancer by transcriptional regulation of the RhoC-ROCK1 signaling pathway. Mol Cancer Res. https://doi.org/10.1158/1541-7786.MCR-17-0256

    Article  PubMed  PubMed Central  Google Scholar 

  130. Ambrosio MR, Di Serio C, Danza G, Rocca BJ, Ginori A, Prudovsky I, Marchionni N, Del Vecchio MT, Tarantini F (2016) Carbonic anhydrase IX is a marker of hypoxia and correlates with higher Gleason scores and ISUP grading in prostate cancer. Diagn Pathol 11(1):45. https://doi.org/10.1186/s13000-016-0495-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nanni S, Benvenuti V, Grasselli A, Priolo C, Aiello A, Mattiussi S, Colussi C, Lirangi V, Illi B, D’Eletto M, Cianciulli AM, Gallucci M, De Carli P, Sentinelli S, Mottolese M, Carlini P, Strigari L, Finn S, Mueller E, Arcangeli G, Gaetano C, Capogrossi MC, Donnorso RP, Bacchetti S, Sacchi A, Pontecorvi A, Loda M, Farsetti A (2009) Endothelial NOS, estrogen receptor beta, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer. J Clin Investig 119(5):1093–1108. https://doi.org/10.1172/JCI35079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Klaus A, Fathi O, Tatjana TW, Bruno N, Oskar K (2017) Expression of hypoxia-associated protein HIF-1alpha in follicular thyroid cancer is associated with distant metastasis. Pathol Oncol Res. https://doi.org/10.1007/s12253-017-0232-4

    Article  PubMed  Google Scholar 

  133. Duan C (2016) Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol 310(4):C260–C269. https://doi.org/10.1152/ajpcell.00315.2015

    Article  PubMed  Google Scholar 

  134. Yang SL, Wu C, **ong ZF, Fang X (2015) Progress on hypoxia-inducible factor-3: its structure, gene regulation and biological function (review). Mol Med Rep 12(2):2411–2416. https://doi.org/10.3892/mmr.2015.3689

    Article  CAS  PubMed  Google Scholar 

  135. Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414(6863):550–554. https://doi.org/10.1038/35107085

    Article  CAS  PubMed  Google Scholar 

  136. Tanaka T, Wiesener M, Bernhardt W, Eckardt KU, Warnecke C (2009) The human HIF (hypoxia-inducible factor)-3alpha gene is a HIF-1 target gene and may modulate hypoxic gene induction. Biochem J 424(1):143–151. https://doi.org/10.1042/BJ20090120

    Article  CAS  PubMed  Google Scholar 

  137. Cuomo F, Coppola A, Botti C, Maione C, Forte A, Scisciola L, Liguori G, Caiafa I, Ursini MV, Galderisi U, Cipollaro M, Altucci L, Cobellis G (2018) Pro-inflammatory cytokines activate hypoxia-inducible factor 3alpha via epigenetic changes in mesenchymal stromal/stem cells. Sci Rep 8(1):5842. https://doi.org/10.1038/s41598-018-24221-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Heikkila M, Pasanen A, Kivirikko KI, Myllyharju J (2011) Roles of the human hypoxia-inducible factor (HIF)-3alpha variants in the hypoxia response. Cell Mol Life Sci 68(23):3885–3901. https://doi.org/10.1007/s00018-011-0679-5

    Article  CAS  PubMed  Google Scholar 

  139. Huang Y, Kapere Ochieng J, Kempen MB, Munck AB, Swagemakers S, van Ijcken W, Grosveld F, Tibboel D, Rottier RJ (2013) Hypoxia inducible factor 3alpha plays a critical role in alveolarization and distal epithelial cell differentiation during mouse lung development. PLoS ONE 8(2):e57695. https://doi.org/10.1371/journal.pone.0057695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang P, Yao Q, Lu L, Li Y, Chen PJ, Duan C (2014) Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep 6(6):1110–1121. https://doi.org/10.1016/j.celrep.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  141. Wang F, Zhang H, Xu N, Huang N, Tian C, Ye A, Hu G, He J, Zhang Y (2016) A novel hypoxia-induced miR-147a regulates cell proliferation through a positive feedback loop of stabilizing HIF-1alpha. Cancer Biol Ther 17(8):790–798. https://doi.org/10.1080/15384047.2016.1195040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Xue X, Jungles K, Onder G, Samhoun J, Gyorffy B, Hardiman KM (2016) HIF-3alpha1 promotes colorectal tumor cell growth by activation of JAK-STAT3 signaling. Oncotarget 7(10):11567–11579. https://doi.org/10.18632/oncotarget.7272

    Article  PubMed  PubMed Central  Google Scholar 

  143. Acker T, Diez-Juan A, Aragones J, Tjwa M, Brusselmans K, Moons L, Fukumura D, Moreno-Murciano MP, Herbert JM, Burger A, Riedel J, Elvert G, Flamme I, Maxwell PH, Collen D, Dewerchin M, Jain RK, Plate KH, Carmeliet P (2005) Genetic evidence for a tumor suppressor role of HIF-2alpha. Cancer Cell 8(2):131–141. https://doi.org/10.1016/j.ccr.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  144. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394(6692):485–490. https://doi.org/10.1038/28867

    Article  CAS  PubMed  Google Scholar 

  145. Keith B, Johnson RS, Simon MC (2011) HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12(1):9–22. https://doi.org/10.1038/nrc3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ravenna L, Salvatori L, Russo MA (2016) HIF3alpha: the little we know. FEBS J 283(6):993–1003. https://doi.org/10.1111/febs.13572

    Article  CAS  PubMed  Google Scholar 

  147. Massague J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529(7586):298–306. https://doi.org/10.1038/nature17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, Bissell MJ, Cox TR, Giaccia AJ, Erler JT, Hiratsuka S, Ghajar CM, Lyden D (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17(5):302–317. https://doi.org/10.1038/nrc.2017.6

    Article  CAS  PubMed  Google Scholar 

  149. Wan L, Pantel K, Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nat Med 19(11):1450–1464. https://doi.org/10.1038/nm.3391

    Article  CAS  PubMed  Google Scholar 

  150. Rankin EB, Nam JM, Giaccia AJ (2016) Hypoxia: signaling the metastatic cascade. Trends Cancer 2(6):295–304. https://doi.org/10.1016/j.trecan.2016.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  151. Azab AK, Hu J, Quang P, Azab F, Pitsillides C, Awwad R, Thompson B, Maiso P, Sun JD, Hart CP, Roccaro AM, Sacco A, Ngo HT, Lin CP, Kung AL, Carrasco RD, Vanderkerken K, Ghobrial IM (2012) Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood 119(24):5782–5794. https://doi.org/10.1182/blood-2011-09-380410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cairns RA, Hill RP (2004) Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res 64(6):2054–2061

    Article  CAS  PubMed  Google Scholar 

  153. Cairns RA, Kalliomaki T, Hill RP (2001) Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 61(24):8903–8908

    CAS  PubMed  Google Scholar 

  154. Osinsky SP, Ganusevich II, Bubnovskaya LN, Valkovskaya NV, Kovelskaya AV, Sergienko TK, Zimina SV (2005) Hypoxia level and matrix metalloproteinases-2 and -9 activity in Lewis lung carcinoma: correlation with metastasis. Exp Oncol 27(3):202–205

    CAS  PubMed  Google Scholar 

  155. Chang Q, Jurisica I, Do T, Hedley DW (2011) Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer. Cancer Res 71(8):3110–3120. https://doi.org/10.1158/0008-5472.CAN-10-4049

    Article  CAS  PubMed  Google Scholar 

  156. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56(5):941–943

    CAS  PubMed  Google Scholar 

  157. Terry S, Buart S, Chouaib S (2017) Hypoxic Stress-induced tumor and immune plasticity, suppression, and impact on tumor heterogeneity. Front Immunol 8:1625. https://doi.org/10.3389/fimmu.2017.01625

    Article  PubMed  PubMed Central  Google Scholar 

  158. Noman MZ, Janji B, Kaminska B, Van Moer K, Pierson S, Przanowski P, Buart S, Berchem G, Romero P, Mami-Chouaib F, Chouaib S (2011) Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res 71(18):5976–5986. https://doi.org/10.1158/0008-5472.CAN-11-1094

    Article  CAS  PubMed  Google Scholar 

  159. Tittarelli A, Janji B, Van Moer K, Noman MZ, Chouaib S (2015) The selective degradation of synaptic connexin 43 Protein by hypoxia-induced autophagy impairs natural killer cell-mediated tumor cell killing. J Biol Chem 290(39):23670–23679. https://doi.org/10.1074/jbc.M115.651547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Noman MZ, Buart S, Van Pelt J, Richon C, Hasmim M, Leleu N, Suchorska WM, Jalil A, Lecluse Y, El Hage F, Giuliani M, Pichon C, Azzarone B, Mazure N, Romero P, Mami-Chouaib F, Chouaib S (2009) The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. J Immunol 182(6):3510–3521. https://doi.org/10.4049/jimmunol.0800854

    Article  CAS  PubMed  Google Scholar 

  161. Lee YH, Bae HC, Noh KH, Song KH, Ye SK, Mao CP, Lee KM, Wu TC, Kim TW (2015) Gain of HIF-1alpha under normoxia in cancer mediates immune adaptation through the AKT/ERK and VEGFA axes. Clin Cancer Res 21(6):1438–1446. https://doi.org/10.1158/1078-0432.CCR-14-1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Noman MZ, Buart S, Romero P, Ketari S, Janji B, Mari B, Mami-Chouaib F, Chouaib S (2012) Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells. Cancer Res 72(18):4629–4641. https://doi.org/10.1158/0008-5472.CAN-12-1383

    Article  CAS  PubMed  Google Scholar 

  163. Samanta D, Park Y, Ni X, Li H, Zahnow CA, Gabrielson E, Pan F, Semenza GL (2018) Chemotherapy induces enrichment of CD47(+)/CD73(+)/PDL1(+) immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1718197115

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hatfield SM, Sitkovsky M (2016) A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1alpha driven immunosuppression and improve immunotherapies of cancer. Curr Opin Pharmacol 29:90–96. https://doi.org/10.1016/j.coph.2016.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R, Sethumadhavan S, Philbrook P, Ko K, Cannici R, Thayer M, Rodig S, Kutok JL, Jackson EK, Karger B, Podack ER, Ohta A, Sitkovsky MV (2015) Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 7(277):277ra230. https://doi.org/10.1126/scitranslmed.aaa1260

    Article  CAS  Google Scholar 

  166. Ye LY, Chen W, Bai XL, Xu XY, Zhang Q, **a XF, Sun X, Li GG, Hu QD, Fu QH, Liang TB (2016) Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Res 76(4):818–830. https://doi.org/10.1158/0008-5472.CAN-15-0977

    Article  CAS  PubMed  Google Scholar 

  167. Palazon A, Tyrakis PA, Macias D, Velica P, Rundqvist H, Fitzpatrick S, Vojnovic N, Phan AT, Loman N, Hedenfalk I, Hatschek T, Lovrot J, Foukakis T, Goldrath AW, Bergh J, Johnson RS (2017) An HIF-1alpha/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell 32(5):669–683 e665. https://doi.org/10.1016/j.ccell.2017.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xu H, Yuan Y, Wu W, Zhou M, Jiang Q, Niu L, Ji J, Liu N, Zhang L, Wang X (2017) Hypoxia stimulates invasion and migration of human cervical cancer cell lines HeLa/SiHa through the Rab11 trafficking of integrin alphavbeta3/FAK/PI3K pathway-mediated Rac1 activation. J Biosci 42(3):491–499

    Article  CAS  PubMed  Google Scholar 

  169. Eckerich C, Zapf S, Fillbrandt R, Loges S, Westphal M, Lamszus K (2007) Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer 121(2):276–283. https://doi.org/10.1002/ijc.22679

    Article  CAS  PubMed  Google Scholar 

  170. Rankin EB, Fuh KC, Castellini L, Viswanathan K, Finger EC, Diep AN, LaGory EL, Kariolis MS, Chan A, Lindgren D, Axelson H, Miao YR, Krieg AJ, Giaccia AJ (2014) Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc Natl Acad Sci USA 111(37):13373–13378. https://doi.org/10.1073/pnas.1404848111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Xu L, Nilsson MB, Saintigny P, Cascone T, Herynk MH, Du Z, Nikolinakos PG, Yang Y, Prudkin L, Liu D, Lee JJ, Johnson FM, Wong KK, Girard L, Gazdar AF, Minna JD, Kurie JM, Wistuba II, Heymach JV (2010) Epidermal growth factor receptor regulates MET levels and invasiveness through hypoxia-inducible factor-1alpha in non-small cell lung cancer cells. Oncogene 29(18):2616–2627. https://doi.org/10.1038/onc.2010.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang Y, Yan J, Wang L, Dai H, Li N, Hu W, Cai H (2017) HIF-1alpha promotes breast cancer cell MCF-7 proliferation and invasion through regulating miR-210. Cancer Biother Radiopharm 32(8):297–301. https://doi.org/10.1089/cbr.2017.2270

    Article  CAS  PubMed  Google Scholar 

  173. He C, Wang L, Zhang J, Xu H (2017) Hypoxia-inducible microRNA-224 promotes the cell growth, migration and invasion by directly targeting RASSF8 in gastric cancer. Mol Cancer 16(1):35. https://doi.org/10.1186/s12943-017-0603-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nagpal N, Ahmad HM, Chameettachal S, Sundar D, Ghosh S, Kulshreshtha R (2015) HIF-inducible miR-191 promotes migration in breast cancer through complex regulation of TGFbeta-signaling in hypoxic microenvironment. Sci Rep 5:9650. https://doi.org/10.1038/srep09650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801. https://doi.org/10.1038/nrm3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Varga J, Greten FR (2017) Cell plasticity in epithelial homeostasis and tumorigenesis. Nat Cell Biol 19(10):1133–1141. https://doi.org/10.1038/ncb3611

    Article  CAS  PubMed  Google Scholar 

  177. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18(2):128–134. https://doi.org/10.1038/nrc.2017.118

    Article  CAS  PubMed  Google Scholar 

  178. Chaffer CL, San Juan BP, Lim E, Weinberg RA (2016) EMT, cell plasticity and metastasis. Cancer Metastasis Rev 35(4):645–654. https://doi.org/10.1007/s10555-016-9648-7

    Article  PubMed  Google Scholar 

  179. Esteban MA, Tran MG, Harten SK, Hill P, Castellanos MC, Chandra A, Raval R, O’Brien TS, Maxwell PH (2006) Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 66(7):3567–3575. https://doi.org/10.1158/0008-5472.CAN-05-2670

    Article  CAS  PubMed  Google Scholar 

  180. Evans AJ, Russell RC, Roche O, Burry TN, Fish JE, Chow VW, Kim WY, Saravanan A, Maynard MA, Gervais ML, Sufan RI, Roberts AM, Wilson LA, Betten M, Vandewalle C, Berx G, Marsden PA, Irwin MS, Teh BT, Jewett MA, Ohh M (2007) VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol 27(1):157–169. https://doi.org/10.1128/MCB.00892-06

    Article  CAS  PubMed  Google Scholar 

  181. Krishnamachary B, Zagzag D, Nagasawa H, Rainey K, Okuyama H, Baek JH, Semenza GL (2006) Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 66(5):2725–2731. https://doi.org/10.1158/0008-5472.CAN-05-3719

    Article  CAS  PubMed  Google Scholar 

  182. Huang CH, Yang WH, Chang SY, Tai SK, Tzeng CH, Kao JY, Wu KJ, Yang MH (2009) Regulation of membrane-type 4 matrix metalloproteinase by SLUG contributes to hypoxia-mediated metastasis. Neoplasia 11(12):1371–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Luo D, Wang J, Li J, Post M (2011) Mouse snail is a target gene for HIF. Mol Cancer Res 9(2):234–245. https://doi.org/10.1158/1541-7786.MCR-10-0214

    Article  CAS  PubMed  Google Scholar 

  184. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC, Wu KJ (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10(3):295–305. https://doi.org/10.1038/ncb1691

    Article  CAS  PubMed  Google Scholar 

  185. Zhang W, Shi X, Peng Y, Wu M, Zhang P, **e R, Wu Y, Yan Q, Liu S, Wang J (2015) HIF-1alpha promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS ONE 10(6):e0129603. https://doi.org/10.1371/journal.pone.0129603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Shang Y, Chen H, Ye J, Wei X, Liu S, Wang R (2017) HIF-1alpha/Ascl2/miR-200b regulatory feedback circuit modulated the epithelial-mesenchymal transition (EMT) in colorectal cancer cells. Exp Cell Res 360(2):243–256. https://doi.org/10.1016/j.yexcr.2017.09.014

    Article  CAS  PubMed  Google Scholar 

  187. Dopeso H, Jiao HK, Cuesta AM, Henze AT, Jurida L, Kracht M, Acker-Palmer A, Garvalov BK, Acker T (2018) PHD3 controls lung cancer metastasis and resistance to EGFR inhibitors through TGFalpha. Cancer Res 78(7):1805–1819. https://doi.org/10.1158/0008-5472.CAN-17-1346

    Article  CAS  PubMed  Google Scholar 

  188. Sahlgren C, Gustafsson MV, ** S, Poellinger L, Lendahl U (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA 105(17):6392–6397. https://doi.org/10.1073/pnas.0802047105

    Article  PubMed  PubMed Central  Google Scholar 

  189. Lei J, Ma J, Ma Q, Li X, Liu H, Xu Q, Duan W, Sun Q, Xu J, Wu Z, Wu E (2013) Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand-independent manner. Mol Cancer 12:66. https://doi.org/10.1186/1476-4598-12-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chou CC, Chuang HC, Salunke SB, Kulp SK, Chen CS (2015) A novel HIF-1alpha-integrin-linked kinase regulatory loop that facilitates hypoxia-induced HIF-1alpha expression and epithelial-mesenchymal transition in cancer cells. Oncotarget 6(10):8271–8285. https://doi.org/10.18632/oncotarget.3186

    Article  PubMed  PubMed Central  Google Scholar 

  191. Cheng ZX, Sun B, Wang SJ, Gao Y, Zhang YM, Zhou HX, Jia G, Wang YW, Kong R, Pan SH, Xue DB, Jiang HC, Bai XW (2011) Nuclear factor-kappaB-dependent epithelial to mesenchymal transition induced by HIF-1alpha activation in pancreatic cancer cells under hypoxic conditions. PLoS ONE 6(8):e23752. https://doi.org/10.1371/journal.pone.0023752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cheng ZX, Wang DW, Liu T, Liu WX, **a WB, Xu J, Zhang YH, Qu YK, Guo LQ, Ding L, Hou J, Zhong ZH (2014) Effects of the HIF-1alpha and NF-kappaB loop on epithelial-mesenchymal transition and chemoresistance induced by hypoxia in pancreatic cancer cells. Oncol Rep 31(4):1891–1898. https://doi.org/10.3892/or.2014.3022

    Article  CAS  PubMed  Google Scholar 

  193. Liu L, Salnikov AV, Bauer N, Aleksandrowicz E, Labsch S, Nwaeburu C, Mattern J, Gladkich J, Schemmer P, Werner J, Herr I (2014) Triptolide reverses hypoxia-induced epithelial-mesenchymal transition and stem-like features in pancreatic cancer by NF-kappaB downregulation. Int J Cancer 134(10):2489–2503. https://doi.org/10.1002/ijc.28583

    Article  CAS  PubMed  Google Scholar 

  194. Pantuck AJ, An J, Liu H, Rettig MB (2010) NF-kappaB-dependent plasticity of the epithelial to mesenchymal transition induced by Von Hippel-Lindau inactivation in renal cell carcinomas. Cancer Res 70(2):752–761. https://doi.org/10.1158/0008-5472.CAN-09-2211

    Article  CAS  PubMed  Google Scholar 

  195. Wang J, Tian L, Khan MN, Zhang L, Chen Q, Zhao Y, Yan Q, Fu L, Liu J (2018) Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NF-kappaB mediated epithelial-mesenchymal transition and stemness. Cancer Lett 415:73–85. https://doi.org/10.1016/j.canlet.2017.11.037

    Article  CAS  PubMed  Google Scholar 

  196. Zhang J, Zhang Q, Lou Y, Fu Q, Chen Q, Wei T, Yang J, Tang J, Wang J, Chen Y, Zhang X, Zhang J, Bai X, Liang T (2018) Hypoxia-inducible factor-1alpha/interleukin-1beta signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment. Hepatology 67(5):1872–1889. https://doi.org/10.1002/hep.29681

    Article  CAS  PubMed  Google Scholar 

  197. Jiang J, Wang GZ, Wang Y, Huang HZ, Li WT, Qu XD (2018) Hypoxia-induced HMGB1 expression of HCC promotes tumor invasiveness and metastasis via regulating macrophage-derived IL-6. Exp Cell Res 367(1):81–88. https://doi.org/10.1016/j.yexcr.2018.03.025

    Article  CAS  PubMed  Google Scholar 

  198. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239. https://doi.org/10.1016/j.ccr.2009.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231. https://doi.org/10.1016/j.ccr.2009.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Rey S, Schito L, Wouters BG, Eliasof S, Kerbel RS (2017) Targeting hypoxia-inducible factors for antiangiogenic cancer therapy. Trends Cancer 3(7):529–541. https://doi.org/10.1016/j.trecan.2017.05.002

    Article  PubMed  Google Scholar 

  201. Yin L, He J, Xue J, Na F, Tong R, Wang J, Gao H, Tang F, Mo X, Deng L, Lu Y (2018) PDGFR-beta inhibitor slows tumor growth but increases metastasis in combined radiotherapy and endostar therapy. Biomed Pharmacother 99:615–621. https://doi.org/10.1016/j.biopha.2018.01.095

    Article  CAS  PubMed  Google Scholar 

  202. Depner C, Zum Buttel H, Böğürcü N, Cuesta AM, Aburto MR, Seidel S, Finkelmeier F, Foss F, Hofmann J, Kaulich K, Barbus S, Segarra M, Reifenberger G, Garvalov BK, Acker T, Acker-Palmer A (2016) EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance. Nat Commun 7:12329. https://doi.org/10.1038/ncomms12329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Cooke VG, LeBleu VS, Keskin D, Khan Z, O’Connell JT, Teng Y, Duncan MB, **e L, Maeda G, Vong S, Sugimoto H, Rocha RM, Damascena A, Brentani RR, Kalluri R (2012) Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21(1):66–81. https://doi.org/10.1016/j.ccr.2011.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Maione F, Capano S, Regano D, Zentilin L, Giacca M, Casanovas O, Bussolino F, Serini G, Giraudo E (2012) Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. J Clin Investig 122(5):1832–1848. https://doi.org/10.1172/JCI58976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science 352(6282):175–180. https://doi.org/10.1126/science.aaf4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sudhan DR, Siemann DW (2013) Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells. Clin Exp Metastasis 30(7):891–902. https://doi.org/10.1007/s10585-013-9590-9

    Article  CAS  PubMed  Google Scholar 

  207. Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G, Iyer N, LaRusch J, Pak B, Taghavi P, Semenza GL (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63(5):1138–1143

    CAS  PubMed  Google Scholar 

  208. Kai AK, Chan LK, Lo RC, Lee JM, Wong CC, Wong JC, Ng IO (2016) Down-regulation of TIMP2 by HIF-1alpha/miR-210/HIF-3alpha regulatory feedback circuit enhances cancer metastasis in hepatocellular carcinoma. Hepatology 64(2):473–487. https://doi.org/10.1002/hep.28577

    Article  CAS  PubMed  Google Scholar 

  209. Gilkes DM, Chaturvedi P, Bajpai S, Wong CC, Wei H, Pitcairn S, Hubbi ME, Wirtz D, Semenza GL (2013) Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res 73(11):3285–3296. https://doi.org/10.1158/0008-5472.CAN-12-3963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Gilkes DM, Bajpai S, Wong CC, Chaturvedi P, Hubbi ME, Wirtz D, Semenza GL (2013) Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol Cancer Res 11(5):456–466. https://doi.org/10.1158/1541-7786.MCR-12-0629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Eisinger-Mathason TS, Zhang M, Qiu Q, Skuli N, Nakazawa MS, Karakasheva T, Mucaj V, Shay JE, Stangenberg L, Sadri N, Pure E, Yoon SS, Kirsch DG, Simon MC (2013) Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov 3(10):1190–1205. https://doi.org/10.1158/2159-8290.CD-13-0118

    Article  CAS  PubMed  Google Scholar 

  212. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16(9):582–598. https://doi.org/10.1038/nrc.2016.73

    Article  CAS  PubMed  Google Scholar 

  213. Ammirante M, Shalapour S, Kang Y, Jamieson CA, Karin M (2014) Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc Natl Acad Sci USA 111(41):14776–14781. https://doi.org/10.1073/pnas.1416498111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Gilkes DM, Semenza GL, Wirtz D (2014) Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14(6):430–439. https://doi.org/10.1038/nrc3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I (2018) The hypoxic tumour microenvironment. Oncogenesis 7(1):10. https://doi.org/10.1038/s41389-017-0011-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Chiavarina B, Whitaker-Menezes D, Migneco G, Martinez-Outschoorn UE, Pavlides S, Howell A, Tanowitz HB, Casimiro MC, Wang C, Pestell RG, Grieshaber P, Caro J, Sotgia F, Lisanti MP (2010) HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: autophagy drives compartment-specific oncogenesis. Cell Cycle 9(17):3534–3551. https://doi.org/10.4161/cc.9.17.12908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL (2013) Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem 288(15):10819–10829. https://doi.org/10.1074/jbc.M112.442939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Madsen CD, Pedersen JT, Venning FA, Singh LB, Moeendarbary E, Charras G, Cox TR, Sahai E, Erler JT (2015) Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep 16(10):1394–1408. https://doi.org/10.15252/embr.201540107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ju JA, Godet I, Ye IC, Byun J, Jayatilaka H, Lee SJ, **ang L, Samanta D, Lee MH, Wu PH, Wirtz D, Semenza GL, Gilkes DM (2017) Hypoxia selectively enhances integrin alpha5beta1 receptor expression in breast cancer to promote metastasis. Mol Cancer Res 15(6):723–734. https://doi.org/10.1158/1541-7786.MCR-16-0338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Rahbari NN, Kedrin D, Incio J, Liu H, Ho WW, Nia HT, Edrich CM, Jung K, Daubriac J, Chen I, Heishi T, Martin JD, Huang Y, Maimon N, Reissfelder C, Weitz J, Boucher Y, Clark JW, Grodzinsky AJ, Duda DG, Jain RK, Fukumura D (2016) Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Sci Transl Med 8(360):360ra135. https://doi.org/10.1126/scitranslmed.aaf5219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Aguilera KY, Rivera LB, Hur H, Carbon JG, Toombs JE, Goldstein CD, Dellinger MT, Castrillon DH, Brekken RA (2014) Collagen signaling enhances tumor progression after anti-VEGF therapy in a murine model of pancreatic ductal adenocarcinoma. Cancer Res 74(4):1032–1044. https://doi.org/10.1158/0008-5472.CAN-13-2800

    Article  CAS  PubMed  Google Scholar 

  222. Hu L, Zang MD, Wang HX, Li JF, Su LP, Yan M, Li C, Yang QM, Liu BY, Zhu ZG (2016) Biglycan stimulates VEGF expression in endothelial cells by activating the TLR signaling pathway. Mol Oncol 10(9):1473–1484. https://doi.org/10.1016/j.molonc.2016.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Gan L, Meng J, Xu M, Liu M, Qi Y, Tan C, Wang Y, Zhang P, Weng W, Sheng W, Huang M, Wang Z (2017) Extracellular matrix protein 1 promotes cell metastasis and glucose metabolism by inducing integrin beta4/FAK/SOX2/HIF-1alpha signaling pathway in gastric cancer. Oncogene. https://doi.org/10.1038/onc.2017.363

    Article  PubMed  PubMed Central  Google Scholar 

  224. Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23(10):1124–1134. https://doi.org/10.1038/nm.4409

    Article  CAS  PubMed  Google Scholar 

  225. Sampieri K, Fodde R (2012) Cancer stem cells and metastasis. Semin Cancer Biol 22(3):187–193

    Article  CAS  PubMed  Google Scholar 

  226. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323. https://doi.org/10.1016/j.stem.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  227. Pang R, Law WL, Chu AC, Poon JT, Lam CS, Chow AK, Ng L, Cheung LW, Lan XR, Lan HY, Tan VP, Yau TC, Poon RT, Wong BC (2010) A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6(6):603–615. https://doi.org/10.1016/j.stem.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  228. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313. https://doi.org/10.1158/0008-5472.CAN-08-2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13(8B):2236–2252. https://doi.org/10.1111/j.1582-4934.2008.00455.x

    Article  PubMed  Google Scholar 

  230. Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14(10):611–629. https://doi.org/10.1038/nrclinonc.2017.44

    Article  PubMed  PubMed Central  Google Scholar 

  231. Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, Yeger H (2008) Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells 26(7):1818–1830. https://doi.org/10.1634/stemcells.2007-0724

    Article  PubMed  Google Scholar 

  232. Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177(3):1491–1502. https://doi.org/10.2353/ajpath.2010.091021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Seidel S, Garvalov BK, Wirta V, von Stechow L, Schänzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nister M, Reifenberger G, Lundeberg J, Frisen J, Acker T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133(Pt 4):983–995. https://doi.org/10.1093/brain/awq042

    Article  PubMed  Google Scholar 

  234. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB, Pollack IF, Park DM (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28(45):3949–3959. https://doi.org/10.1038/onc.2009.252

    Article  CAS  PubMed  Google Scholar 

  235. Wang Y, Liu Y, Malek SN, Zheng P, Liu Y (2011) Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8(4):399–411. https://doi.org/10.1016/j.stem.2011.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zhang H, Li H, ** HS, Li S (2012) HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells. Blood 119(11):2595–2607. https://doi.org/10.1182/blood-2011-10-387381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Schwab LP, Peacock DL, Majumdar D, Ingels JF, Jensen LC, Smith KD, Cushing RC, Seagroves TN (2012) Hypoxia-inducible factor 1alpha promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res 14(1):R6. https://doi.org/10.1186/bcr3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Qiang L, Wu T, Zhang HW, Lu N, Hu R, Wang YJ, Zhao L, Chen FH, Wang XT, You QD, Guo QL (2012) HIF-1alpha is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ 19(2):284–294. https://doi.org/10.1038/cdd.2011.95

    Article  CAS  PubMed  Google Scholar 

  239. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8(20):3274–3284. https://doi.org/10.4161/cc.8.20.9701

    Article  CAS  PubMed  Google Scholar 

  240. Tang YA, Chen YF, Bao Y, Mahara S, Yatim S, Oguz G, Lee PL, Feng M, Cai Y, Tan EY, Fong SS, Yang ZH, Lan P, Wu XJ, Yu Q (2018) Hypoxic tumor microenvironment activates GLI2 via HIF-1alpha and TGF-beta2 to promote chemoresistance in colorectal cancer. Proc Natl Acad Sci USA 115(26):E5990–E5999. https://doi.org/10.1073/pnas.1801348115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, Clouthier SG, Wicha MS (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA 109(8):2784–2789. https://doi.org/10.1073/pnas.1018866109

    Article  PubMed  PubMed Central  Google Scholar 

  242. **ang L, Gilkes DM, Hu H, Takano N, Luo W, Lu H, Bullen JW, Samanta D, Liang H, Semenza GL (2014) Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype. Oncotarget 5(24):12509–12527. https://doi.org/10.18632/oncotarget.2997

    Article  PubMed  PubMed Central  Google Scholar 

  243. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X, Semenza GL (2016) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 113(14):E2047–E2056. https://doi.org/10.1073/pnas.1602883113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Samanta D, Park Y, Andrabi SA, Shelton LM, Gilkes DM, Semenza GL (2016) PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis. Cancer Res 76(15):4430–4442. https://doi.org/10.1158/0008-5472.CAN-16-0530

    Article  CAS  PubMed  Google Scholar 

  245. Deryugina EI, Kiosses WB (2017) Intratumoral cancer cell intravasation can occur independent of invasion into the adjacent stroma. Cell Rep 19(3):601–616. https://doi.org/10.1016/j.celrep.2017.03.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. De Bock K, Mazzone M, Carmeliet P (2011) Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol 8(7):393–404. https://doi.org/10.1038/nrclinonc.2011.83

    Article  CAS  PubMed  Google Scholar 

  247. Zhang H, Wong CC, Wei H, Gilkes DM, Korangath P, Chaturvedi P, Schito L, Chen J, Krishnamachary B, Winnard PT Jr, Raman V, Zhen L, Mitzner WA, Sukumar S, Semenza GL (2012) HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 31(14):1757–1770. https://doi.org/10.1038/onc.2011.365

    Article  CAS  PubMed  Google Scholar 

  248. ** F, Brockmeier U, Otterbach F, Metzen E (2012) New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation. Mol Cancer Res 10(8):1021–1031. https://doi.org/10.1158/1541-7786.MCR-11-0498

    Article  CAS  PubMed  Google Scholar 

  249. Cianfrocca R, Tocci P, Rosano L, Caprara V, Sestito R, Di Castro V, Bagnato A (2016) Nuclear beta-arrestin1 is a critical cofactor of hypoxia-inducible factor-1alpha signaling in endothelin-1-induced ovarian tumor progression. Oncotarget 7(14):17790–17804. https://doi.org/10.18632/oncotarget.7461

    Article  PubMed  PubMed Central  Google Scholar 

  250. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82. https://doi.org/10.1016/j.ccr.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  251. Branco-Price C, Zhang N, Schnelle M, Evans C, Katschinski DM, Liao D, Ellies L, Johnson RS (2012) Endothelial cell HIF-1alpha and HIF-2alpha differentially regulate metastatic success. Cancer Cell 21(1):52–65. https://doi.org/10.1016/j.ccr.2011.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Mazzone M, Dettori D, de Oliveira RL, Loges S, Schmidt T, Jonckx B, Tian YM, Lanahan AA, Pollard P, de Almodovar CR, De Smet F, Vinckier S, Aragones J, Debackere K, Luttun A, Wyns S, Jordan B, Pisacane A, Gallez B, Lampugnani MG, Dejana E, Simons M, Ratcliffe P, Maxwell P, Carmeliet P (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851. https://doi.org/10.1016/j.cell.2009.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Rofstad EK, Rasmussen H, Galappathi K, Mathiesen B, Nilsen K, Graff BA (2002) Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor. Cancer Res 62(6):1847–1853

    CAS  PubMed  Google Scholar 

  254. Schito L, Rey S, Tafani M, Zhang H, Wong CC, Russo A, Russo MA, Semenza GL (2012) Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc Natl Acad Sci USA 109(40):E2707–E2716. https://doi.org/10.1073/pnas.1214019109

    Article  PubMed  PubMed Central  Google Scholar 

  255. Lee E, Fertig EJ, ** K, Sukumar S, Pandey NB, Popel AS (2014) Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun 5:4715. https://doi.org/10.1038/ncomms5715

    Article  CAS  PubMed  Google Scholar 

  256. Rohwer N, Welzel M, Daskalow K, Pfander D, Wiedenmann B, Detjen K, Cramer T (2008) Hypoxia-inducible factor 1alpha mediates anoikis resistance via suppression of alpha5 integrin. Cancer Res 68(24):10113–10120. https://doi.org/10.1158/0008-5472.CAN-08-1839

    Article  CAS  PubMed  Google Scholar 

  257. Baba K, Kitajima Y, Miyake S, Nakamura J, Wakiyama K, Sato H, Okuyama K, Kitagawa H, Tanaka T, Hiraki M, Yanagihara K, Noshiro H (2017) Hypoxia-induced ANGPTL4 sustains tumour growth and anoikis resistance through different mechanisms in scirrhous gastric cancer cell lines. Sci Rep 7(1):11127. https://doi.org/10.1038/s41598-017-11769-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Sun L, Li T, Wei Q, Zhang Y, Jia X, Wan Z, Han L (2014) Upregulation of BNIP3 mediated by ERK/HIF-1alpha pathway induces autophagy and contributes to anoikis resistance of hepatocellular carcinoma cells. Future Oncol 10(8):1387–1398. https://doi.org/10.2217/fon.14.70

    Article  CAS  PubMed  Google Scholar 

  259. Whelan KA, Caldwell SA, Shahriari KS, Jackson SR, Franchetti LD, Johannes GJ, Reginato MJ (2010) Hypoxia suppression of Bim and Bmf blocks anoikis and luminal clearing during mammary morphogenesis. Mol Biol Cell 21(22):3829–3837. https://doi.org/10.1091/mbc.E10-04-0353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Ameri K, Luong R, Zhang H, Powell AA, Montgomery KD, Espinosa I, Bouley DM, Harris AL, Jeffrey SS (2010) Circulating tumour cells demonstrate an altered response to hypoxia and an aggressive phenotype. Br J Cancer 102(3):561–569. https://doi.org/10.1038/sj.bjc.6605491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Kallergi G, Markomanolaki H, Giannoukaraki V, Papadaki MA, Strati A, Lianidou ES, Georgoulias V, Mavroudis D, Agelaki S (2009) Hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression in circulating tumor cells of breast cancer patients. Breast Cancer Res 11(6):R84. https://doi.org/10.1186/bcr2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Lee SH, Koo KH, Park JW, Kim HJ, Ye SK, Park JB, Park BK, Kim YN (2009) HIF-1 is induced via EGFR activation and mediates resistance to anoikis-like cell death under lipid rafts/caveolae-disrupting stress. Carcinogenesis 30(12):1997–2004. https://doi.org/10.1093/carcin/bgp233

    Article  CAS  PubMed  Google Scholar 

  263. Jahangiri A, Nguyen A, Chandra A, Sidorov MK, Yagnik G, Rick J, Han SW, Chen W, Flanigan PM, Schneidman-Duhovny D, Mascharak S, De Lay M, Imber B, Park CC, Matsumoto K, Lu K, Bergers G, Sali A, Weiss WA, Aghi MK (2017) Cross-activating c-Met/beta1 integrin complex drives metastasis and invasive resistance in cancer. Proc Natl Acad Sci USA 114(41):E8685–E8694. https://doi.org/10.1073/pnas.1701821114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Muz B, de la Puente P, Azab F, Ghobrial IM, Azab AK (2015) Hypoxia promotes dissemination and colonization in new bone marrow niches in Waldenstrom macroglobulinemia. Mol Cancer Res 13(2):263–272. https://doi.org/10.1158/1541-7786.MCR-14-0150

    Article  CAS  PubMed  Google Scholar 

  265. Herrmann A, Rice M, Levy R, Pizer BL, Losty PD, Moss D, See V (2015) Cellular memory of hypoxia elicits neuroblastoma metastasis and enables invasion by non-aggressive neighbouring cells. Oncogenesis 4:e138. https://doi.org/10.1038/oncsis.2014.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Reymond N, d’Agua BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13(12):858–870. https://doi.org/10.1038/nrc3628

    Article  CAS  PubMed  Google Scholar 

  267. Cowden Dahl KD, Robertson SE, Weaver VM, Simon MC (2005) Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression. Mol Biol Cell 16(4):1901–1912. https://doi.org/10.1091/mbc.E04-12-1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Koike T, Kimura N, Miyazaki K, Yabuta T, Kumamoto K, Takenoshita S, Chen J, Kobayashi M, Hosokawa M, Taniguchi A, Kojima T, Ishida N, Kawakita M, Yamamoto H, Takematsu H, Suzuki A, Kozutsumi Y, Kannagi R (2004) Hypoxia induces adhesion molecules on cancer cells: a missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc Natl Acad Sci USA 101(21):8132–8137. https://doi.org/10.1073/pnas.0402088101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E, Zeng Z, Saltz L, Paty PB, Tavazoie SF (2015) Extracellular metabolic energetics can promote cancer progression. Cell 160(3):393–406. https://doi.org/10.1016/j.cell.2014.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Dupuy F, Tabaries S, Andrzejewski S, Dong Z, Blagih J, Annis MG, Omeroglu A, Gao D, Leung S, Amir E, Clemons M, Aguilar-Mahecha A, Basik M, Vincent EE, St-Pierre J, Jones RG, Siegel PM (2015) PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab 22(4):577–589. https://doi.org/10.1016/j.cmet.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  271. Lu X, Yan CH, Yuan M, Wei Y, Hu G, Kang Y (2010) In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer. Cancer Res 70(10):3905–3914. https://doi.org/10.1158/0008-5472.CAN-09-3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H (2014) HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep 4:3793. https://doi.org/10.1038/srep03793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Itoh H, Kadomatsu T, Tanoue H, Yugami M, Miyata K, Endo M, Morinaga J, Kobayashi E, Miyamoto T, Kurahashi R, Terada K, Mizuta H, Oike Y (2018) TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma. Oncogene. https://doi.org/10.1038/s41388-018-0160-0

    Article  PubMed  Google Scholar 

  274. Chin AR, Wang SE (2016) Cancer tills the premetastatic field: mechanistic basis and clinical implications. Clin Cancer Res 22(15):3725–3733. https://doi.org/10.1158/1078-0432.CCR-16-0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Sceneay J, Chow MT, Chen A, Halse HM, Wong CS, Andrews DM, Sloan EK, Parker BS, Bowtell DD, Smyth MJ, Moller A (2012) Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 72(16):3906–3911. https://doi.org/10.1158/0008-5472.CAN-11-3873

    Article  CAS  PubMed  Google Scholar 

  276. Cox TR, Rumney RMH, Schoof EM, Perryman L, Hoye AM, Agrawal A, Bird D, Latif NA, Forrest H, Evans HR, Huggins ID, Lang G, Linding R, Gartland A, Erler JT (2015) The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522(7554):106–110. https://doi.org/10.1038/nature14492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15(1):35–44. https://doi.org/10.1016/j.ccr.2008.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(7088):1222–1226. https://doi.org/10.1038/nature04695

    Article  CAS  PubMed  Google Scholar 

  279. Wong CC, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P, Fraley SI, Wong CM, Khoo US, Ng IO, Wirtz D, Semenza GL (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci USA 108(39):16369–16374. https://doi.org/10.1073/pnas.1113483108

    Article  PubMed  PubMed Central  Google Scholar 

  280. Wong CC, Zhang H, Gilkes DM, Chen J, Wei H, Chaturvedi P, Hubbi ME, Semenza GL (2012) Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J Mol Med (Berl) 90(7):803–815. https://doi.org/10.1007/s00109-011-0855-y

    Article  CAS  Google Scholar 

  281. Schietke R, Warnecke C, Wacker I, Schodel J, Mole DR, Campean V, Amann K, Goppelt-Struebe M, Behrens J, Eckardt KU, Wiesener MS (2010) The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J Biol Chem 285(9):6658–6669. https://doi.org/10.1074/jbc.M109.042424

    Article  CAS  PubMed  Google Scholar 

  282. Manisterski M, Golan M, Amir S, Weisman Y, Mabjeesh NJ (2010) Hypoxia induces PTHrP gene transcription in human cancer cells through the HIF-2alpha. Cell Cycle 9(18):3723–3729

    Article  CAS  PubMed  Google Scholar 

  283. Syn N, Wang L, Sethi G, Thiery JP, Goh BC (2016) Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci 37(7):606–617. https://doi.org/10.1016/j.tips.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  284. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335. https://doi.org/10.1038/nature15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, **ang J, Zhang T, Theilen TM, Garcia-Santos G, Williams C, Ararso Y, Huang Y, Rodrigues G, Shen TL, Labori KJ, Lothe IM, Kure EH, Hernandez J, Doussot A, Ebbesen SH, Grandgenett PM, Hollingsworth MA, Jain M, Mallya K, Batra SK, Jarnagin WR, Schwartz RE, Matei I, Peinado H, Stanger BZ, Bromberg J, Lyden D (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826. https://doi.org/10.1038/ncb3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891. https://doi.org/10.1038/nm.2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N, Yoshizaki T, Pagano JS, Shackelford J (2014) Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 33(37):4613–4622. https://doi.org/10.1038/onc.2014.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Belting M, Christianson HC (2015) Role of exosomes and microvesicles in hypoxia-associated tumour development and cardiovascular disease. J Intern Med 278(3):251–263. https://doi.org/10.1111/joim.12393

    Article  CAS  PubMed  Google Scholar 

  289. King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421. https://doi.org/10.1186/1471-2407-12-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Horie K, Kawakami K, Fujita Y, Sugaya M, Kameyama K, Mizutani K, Deguchi T, Ito M (2017) Exosomes expressing carbonic anhydrase 9 promote angiogenesis. Biochem Biophys Res Commun 492(3):356–361. https://doi.org/10.1016/j.bbrc.2017.08.107

    Article  CAS  PubMed  Google Scholar 

  291. Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, Wu CY, Kuo PL (2017) Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 36(34):4929–4942. https://doi.org/10.1038/onc.2017.105

    Article  CAS  PubMed  Google Scholar 

  292. Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH (2014) Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 124(25):3748–3757. https://doi.org/10.1182/blood-2014-05-576116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Huang Z, Feng Y (2017) Exosomes derived from hypoxic colorectal cancer cells promote angiogenesis through Wnt4-induced beta-catenin signaling in endothelial cells. Oncol Res 25(5):651–661. https://doi.org/10.3727/096504016X14752792816791

    Article  PubMed  PubMed Central  Google Scholar 

  294. Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, Li X, Chen J, Liu K, Li C, Zhu G (2016) Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res 76(7):1770–1780. https://doi.org/10.1158/0008-5472.CAN-15-1625

    Article  CAS  PubMed  Google Scholar 

  295. Wang Y, Yi J, Chen X, Zhang Y, Xu M, Yang Z (2016) The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-beta and IL-10. Oncol Lett 11(2):1527–1530. https://doi.org/10.3892/ol.2015.4044

    Article  CAS  PubMed  Google Scholar 

  296. Berchem G, Noman MZ, Bosseler M, Paggetti J, Baconnais S, Le Cam E, Nanbakhsh A, Moussay E, Mami-Chouaib F, Janji B, Chouaib S (2016) Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-beta and miR23a transfer. Oncoimmunology 5(4):e1062968. https://doi.org/10.1080/2162402X.2015.1062968

    Article  CAS  PubMed  Google Scholar 

  297. Dorayappan KDP, Wanner R, Wallbillich JJ, Saini U, Zingarelli R, Suarez AA, Cohn DE, Selvendiran K (2018) Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: a novel mechanism linking STAT3/Rab proteins. Oncogene. https://doi.org/10.1038/s41388-018-0189-0

    Article  PubMed  PubMed Central  Google Scholar 

  298. Shan Y, You B, Shi S, Shi W, Zhang Z, Zhang Q, Gu M, Chen J, Bao L, Liu D, You Y (2018) Hypoxia-induced matrix metalloproteinase-13 expression in exosomes from nasopharyngeal carcinoma enhances metastases. Cell Death Dis 9(3):382. https://doi.org/10.1038/s41419-018-0425-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Hara T, Nakaoka HJ, Hayashi T, Mimura K, Hoshino D, Inoue M, Nagamura F, Murakami Y, Seiki M, Sakamoto T (2017) Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci USA 114(22):E4416–E4424. https://doi.org/10.1073/pnas.1703171114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Devignes CS, Aslan Y, Brenot A, Devillers A, Schepers K, Fabre S, Chou J, Casbon AJ, Werb Z, Provot S (2018) HIF signaling in osteoblast-lineage cells promotes systemic breast cancer growth and metastasis in mice. Proc Natl Acad Sci USA 115(5):E992–E1001. https://doi.org/10.1073/pnas.1718009115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846. https://doi.org/10.1038/nrc2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Manjili MH (2017) Tumor dormancy and relapse: from a natural byproduct of evolution to a disease state. Cancer Res 77(10):2564–2569. https://doi.org/10.1158/0008-5472.CAN-17-0068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, Avivar-Valderas A, Nagi C, Girnius N, Davis RJ, Farias EF, Condeelis J, Klein CA, Aguirre-Ghiso JA (2016) Mechanism of early dissemination and metastasis in Her2(+) mammary cancer. Nature. https://doi.org/10.1038/nature20609

    Article  PubMed  PubMed Central  Google Scholar 

  304. Hosseini H, Obradovic MM, Hoffmann M, Harper KL, Sosa MS, Werner-Klein M, Nanduri LK, Werno C, Ehrl C, Maneck M, Patwary N, Haunschild G, Guzvic M, Reimelt C, Grauvogl M, Eichner N, Weber F, Hartkopf AD, Taran FA, Brucker SY, Fehm T, Rack B, Buchholz S, Spang R, Meister G, Aguirre-Ghiso JA, Klein CA (2016) Early dissemination seeds metastasis in breast cancer. Nature. https://doi.org/10.1038/nature20785

    Article  PubMed  PubMed Central  Google Scholar 

  305. Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS (2003) Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol 23(1):359–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Leontieva OV, Natarajan V, Demidenko ZN, Burdelya LG, Gudkov AV, Blagosklonny MV (2012) Hypoxia suppresses conversion from proliferative arrest to cellular senescence. Proc Natl Acad Sci USA 109(33):13314–13318. https://doi.org/10.1073/pnas.1205690109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, Shima H, Johnson RS, Hirao A, Suematsu M, Suda T (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7(3):391–402. https://doi.org/10.1016/j.stem.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  308. Carcereri de Prati A, Butturini E, Rigo A, Oppici E, Rossin M, Boriero D, Mariotto S (2017) Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia. J Cell Biochem 118(10):3237–3248. https://doi.org/10.1002/jcb.25972

    Article  CAS  PubMed  Google Scholar 

  309. Endo H, Okuyama H, Ohue M, Inoue M (2014) Dormancy of cancer cells with suppression of AKT activity contributes to survival in chronic hypoxia. PLoS ONE 9(6):e98858. https://doi.org/10.1371/journal.pone.0098858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Endo H, Okami J, Okuyama H, Nishizawa Y, Imamura F, Inoue M (2017) The induction of MIG6 under hypoxic conditions is critical for dormancy in primary cultured lung cancer cells with activating EGFR mutations. Oncogene 36(20):2824–2834. https://doi.org/10.1038/onc.2016.431

    Article  CAS  PubMed  Google Scholar 

  311. Fluegen G, Avivar-Valderas A, Wang Y, Padgen MR, Williams JK, Nobre AR, Calvo V, Cheung JF, Bravo-Cordero JJ, Entenberg D, Castracane J, Verkhusha V, Keely PJ, Condeelis J, Aguirre-Ghiso JA (2017) Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol 19(2):120–132. https://doi.org/10.1038/ncb3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Johnson RW, Finger EC, Olcina MM, Vilalta M, Aguilera T, Miao Y, Merkel AR, Johnson JR, Sterling JA, Wu JY, Giaccia AJ (2016) Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol 18(10):1078–1089. https://doi.org/10.1038/ncb3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Horsman MR, Overgaard J (2016) The impact of hypoxia and its modification of the outcome of radiotherapy. J Radiat Res 57(Suppl 1):i90–i98. https://doi.org/10.1093/jrr/rrw007

    Article  PubMed  PubMed Central  Google Scholar 

  314. Kuonen F, Secondini C, Ruegg C (2012) Molecular pathways: emerging pathways mediating growth, invasion, and metastasis of tumors progressing in an irradiated microenvironment. Clin Cancer Res 18(19):5196–5202. https://doi.org/10.1158/1078-0432.CCR-11-1758

    Article  CAS  PubMed  Google Scholar 

  315. Monnier Y, Farmer P, Bieler G, Imaizumi N, Sengstag T, Alghisi GC, Stehle JC, Ciarloni L, Andrejevic-Blant S, Moeckli R, Mirimanoff RO, Goodman SL, Delorenzi M, Ruegg C (2008) CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Res 68(18):7323–7331. https://doi.org/10.1158/0008-5472.CAN-08-0841

    Article  CAS  PubMed  Google Scholar 

  316. Rofstad EK, Mathiesen B, Henriksen K, Kindem K, Galappathi K (2005) The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Res 65(6):2387–2396. https://doi.org/10.1158/0008-5472.CAN-04-3039

    Article  CAS  PubMed  Google Scholar 

  317. Ghattass K, Assah R, El-Sabban M, Gali-Muhtasib H (2013) Targeting hypoxia for sensitization of tumors to radio- and chemotherapy. Curr Cancer Drug Targets 13(6):670–685

    Article  CAS  PubMed  Google Scholar 

  318. Schoning JP, Monteiro M, Gu W (2017) Drug resistance and cancer stem cells: the shared but distinct roles of hypoxia-inducible factors HIF1alpha and HIF2alpha. Clin Exp Pharmacol Physiol 44(2):153–161. https://doi.org/10.1111/1440-1681.12693

    Article  CAS  PubMed  Google Scholar 

  319. Maiti R (2014) Metronomic chemotherapy. J Pharmacol Pharmacother 5(3):186–192. https://doi.org/10.4103/0976-500X.136098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Mavroeidis L, Sheldon H, Briasoulis E, Marselos M, Pappas P, Harris AL (2015) Metronomic vinorelbine: Anti-angiogenic activity in vitro in normoxic and severe hypoxic conditions, and severe hypoxia-induced resistance to its anti-proliferative effect with reversal by Akt inhibition. Int J Oncol 47(2):455–464. https://doi.org/10.3892/ijo.2015.3059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Zhang M, Chen C, Su F, Huang Z, Li X, Li X (2017) Knockdown of hypoxia-inducible factor 1alpha improved the efficacy of low-dose metronomic chemotherapy of paclitaxel in human colon cancer xenografts. Technol Cancer Res Treat 16(5):609–619. https://doi.org/10.1177/1533034616665720

    Article  CAS  PubMed  Google Scholar 

  322. Holland WS, Tepper CG, Pietri JE, Chinn DC, Gandara DR, Mack PC, Lara PN Jr (2012) Evaluating rational non-cross-resistant combination therapy in advanced clear cell renal cell carcinoma: combined mTOR and AKT inhibitor therapy. Cancer Chemother Pharmacol 69(1):185–194. https://doi.org/10.1007/s00280-011-1684-y

    Article  CAS  PubMed  Google Scholar 

  323. Cho DC, Cohen MB, Panka DJ, Collins M, Ghebremichael M, Atkins MB, Signoretti S, Mier JW (2010) The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma. Clin Cancer Res 16(14):3628–3638. https://doi.org/10.1158/1078-0432.CCR-09-3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Martinez-Saez O, Gajate Borau P, Alonso-Gordoa T, Molina-Cerrillo J, Grande E (2017) Targeting HIF-2 alpha in clear cell renal cell carcinoma: a promising therapeutic strategy. Crit Rev Oncol Hematol 111:117–123. https://doi.org/10.1016/j.critrevonc.2017.01.013

    Article  PubMed  Google Scholar 

  325. Shen C, Beroukhim R, Schumacher SE, Zhou J, Chang M, Signoretti S, Kaelin WG Jr (2011) Genetic and functional studies implicate HIF1alpha as a 14q kidney cancer suppressor gene. Cancer Discov 1(3):222–235. https://doi.org/10.1158/2159-8290.CD-11-0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Chintala S, Toth K, Cao S, Durrani FA, Vaughan MM, Jensen RL, Rustum YM (2010) Se-methylselenocysteine sensitizes hypoxic tumor cells to irinotecan by targeting hypoxia-inducible factor 1alpha. Cancer Chemother Pharmacol 66(5):899–911. https://doi.org/10.1007/s00280-009-1238-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Lee K, Zhang H, Qian DZ, Rey S, Liu JO, Semenza GL (2009) Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci USA 106(42):17910–17915. https://doi.org/10.1073/pnas.0909353106

    Article  PubMed  PubMed Central  Google Scholar 

  328. Lu H, Dalgard CL, Mohyeldin A, McFate T, Tait AS, Verma A (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem 280(51):41928–41939. https://doi.org/10.1074/jbc.M508718200

    Article  CAS  PubMed  Google Scholar 

  329. Liu J, Zhang C, Zhao Y, Yue X, Wu H, Huang S, Chen J, Tomsky K, **e H, Khella CA, Gatza ML, **a D, Gao J, White E, Haffty BG, Hu W, Feng Z (2017) Parkin targets HIF-1alpha for ubiquitination and degradation to inhibit breast tumor progression. Nat Commun 8(1):1823. https://doi.org/10.1038/s41467-017-01947-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Kummar S, Raffeld M, Juwara L, Horneffer Y, Strassberger A, Allen D, Steinberg SM, Rapisarda A, Spencer SD, Figg WD, Chen X, Turkbey IB, Choyke P, Murgo AJ, Doroshow JH, Melillo G (2011) Multihistology, target-driven pilot trial of oral topotecan as an inhibitor of hypoxia-inducible factor-1alpha in advanced solid tumors. Clin Cancer Res 17(15):5123–5131. https://doi.org/10.1158/1078-0432.CCR-11-0682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Pang Y, Yang C, Schovanek J, Wang H, Bullova P, Caisova V, Gupta G, Wolf KI, Semenza GL, Zhuang Z, Pacak K (2017) Anthracyclines suppress pheochromocytoma cell characteristics, including metastasis, through inhibition of the hypoxia signaling pathway. Oncotarget 8(14):22313–22324. https://doi.org/10.18632/oncotarget.16224

    Article  PubMed  PubMed Central  Google Scholar 

  332. Wei Z, Shan Y, Tao L, Liu Y, Zhu Z, Liu Z, Wu Y, Chen W, Wang A, Lu Y (2017) Diallyl trisulfides, a natural histone deacetylase inhibitor, attenuate HIF-1alpha synthesis, and decreases breast cancer metastasis. Mol Carcinog 56(10):2317–2331. https://doi.org/10.1002/mc.22686

    Article  CAS  PubMed  Google Scholar 

  333. Xu Y, ** X, Huang Y, Dong J, Wang H, Wang X, Cao X (2016) Inhibition of peritoneal metastasis of human gastric cancer cells by dextran sulphate through the reduction in HIF-1alpha and ITGbeta1 expression. Oncol Rep 35(5):2624–2634. https://doi.org/10.3892/or.2016.4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Kim WY, Oh SH, Woo JK, Hong WK, Lee HY (2009) Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res 69(4):1624–1632. https://doi.org/10.1158/0008-5472.CAN-08-0505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Pham E, Birrer MJ, Eliasof S, Garmey EG, Lazarus D, Lee CR, Man S, Matulonis UA, Peters CG, Xu P, Krasner C, Kerbel RS (2015) Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clin Cancer Res 21(4):808–818. https://doi.org/10.1158/1078-0432.CCR-14-2810

    Article  CAS  PubMed  Google Scholar 

  336. Pham E, Yin M, Peters CG, Lee CR, Brown D, Xu P, Man S, Jayaraman L, Rohde E, Chow A, Lazarus D, Eliasof S, Foster FS, Kerbel RS (2016) Preclinical efficacy of bevacizumab with CRLX101, an investigational nanoparticle-drug conjugate, in treatment of metastatic triple-negative breast cancer. Cancer Res 76(15):4493–4503. https://doi.org/10.1158/0008-5472.CAN-15-3435

    Article  CAS  PubMed  Google Scholar 

  337. Terzuoli E, Puppo M, Rapisarda A, Uranchimeg B, Cao L, Burger AM, Ziche M, Melillo G (2010) Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1alpha expression in an AhR-independent fashion. Cancer Res 70(17):6837–6848. https://doi.org/10.1158/0008-5472.CAN-10-1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Mohlin S, Hamidian A, von Stedingk K, Bridges E, Wigerup C, Bexell D, Pahlman S (2015) PI3K-mTORC2 but not PI3K-mTORC1 regulates transcription of HIF2A/EPAS1 and vascularization in neuroblastoma. Cancer Res 75(21):4617–4628. https://doi.org/10.1158/0008-5472.CAN-15-0708

    Article  CAS  PubMed  Google Scholar 

  339. Greenberger LM, Horak ID, Filpula D, Sapra P, Westergaard M, Frydenlund HF, Albaek C, Schroder H, Orum H (2008) A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther 7(11):3598–3608. https://doi.org/10.1158/1535-7163.MCT-08-0510

    Article  CAS  PubMed  Google Scholar 

  340. Schwartz DL, Bankson JA, Lemos R Jr, Lai SY, Thittai AK, He Y, Hostetter G, Demeure MJ, Von Hoff DD, Powis G (2010) Radiosensitization and stromal imaging response correlates for the HIF-1 inhibitor PX-478 given with or without chemotherapy in pancreatic cancer. Mol Cancer Ther 9(7):2057–2067. https://doi.org/10.1158/1535-7163.MCT-09-0768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Carroll VA, Ashcroft M (2006) Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res 66(12):6264–6270. https://doi.org/10.1158/0008-5472.CAN-05-2519

    Article  CAS  PubMed  Google Scholar 

  342. Kuonen F, Laurent J, Secondini C, Lorusso G, Stehle JC, Rausch T, Faes-Van’t Hull E, Bieler G, Alghisi GC, Schwendener R, Andrejevic-Blant S, Mirimanoff RO, Ruegg C (2012) Inhibition of the Kit ligand/c-Kit axis attenuates metastasis in a mouse model mimicking local breast cancer relapse after radiotherapy. Clin Cancer Res 18(16):4365–4374. https://doi.org/10.1158/1078-0432.CCR-11-3028

    Article  CAS  PubMed  Google Scholar 

  343. Ushijima H, Suzuki Y, Oike T, Komachi M, Yoshimoto Y, Ando K, Okonogi N, Sato H, Noda SE, Saito J, Nakano T (2015) Radio-sensitization effect of an mTOR inhibitor, temsirolimus, on lung adenocarcinoma A549 cells under normoxic and hypoxic conditions. J Radiat Res 56(4):663–668. https://doi.org/10.1093/jrr/rrv021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, Manola J, Brugarolas J, McDonnell TJ, Golub TR, Loda M, Lane HA, Sellers WR (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10(6):594–601. https://doi.org/10.1038/nm1052

    Article  CAS  PubMed  Google Scholar 

  345. Zhu YR, Zhou XZ, Zhu LQ, Yao C, Fang JF, Zhou F, Deng XW, Zhang YQ (2016) The anti-cancer activity of the mTORC1/2 dual inhibitor XL388 in preclinical osteosarcoma models. Oncotarget 7(31):49527–49538. https://doi.org/10.18632/oncotarget.10389

    Article  PubMed  PubMed Central  Google Scholar 

  346. Wei D, Peng JJ, Gao H, Li H, Li D, Tan Y, Zhang T (2013) Digoxin downregulates NDRG1 and VEGF through the inhibition of HIF-1alpha under hypoxic conditions in human lung adenocarcinoma A549 cells. Int J Mol Sci 14(4):7273–7285. https://doi.org/10.3390/ijms14047273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Nigim F, Cavanaugh J, Patel AP, Curry WT Jr, Esaki S, Kasper EM, Chi AS, Louis DN, Martuza RL, Rabkin SD, Wakimoto H (2015) Targeting hypoxia-inducible factor 1alpha in a new orthotopic model of glioblastoma recapitulating the hypoxic tumor microenvironment. J Neuropathol Exp Neurol 74(7):710–722. https://doi.org/10.1097/NEN.0000000000000210

    Article  CAS  PubMed  Google Scholar 

  348. Carbonaro M, O’Brate A, Giannakakou P (2011) Microtubule disruption targets HIF-1alpha mRNA to cytoplasmic P-bodies for translational repression. J Cell Biol 192(1):83–99. https://doi.org/10.1083/jcb.201004145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Oh ET, Kim CW, Kim SJ, Lee JS, Hong SS, Park HJ (2016) Docetaxel induced-JNK2/PHD1 signaling pathway increases degradation of HIF-1alpha and causes cancer cell death under hypoxia. Sci Rep 6:27382. https://doi.org/10.1038/srep27382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Creighton-Gutteridge M, Cardellina JH 2nd, Stephen AG, Rapisarda A, Uranchimeg B, Hite K, Denny WA, Shoemaker RH, Melillo G (2007) Cell type-specific, topoisomerase II-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation by NSC 644221. Clin Cancer Res 13(3):1010–1018. https://doi.org/10.1158/1078-0432.CCR-06-2301

    Article  CAS  PubMed  Google Scholar 

  351. Zhao W, Li A, Feng X, Hou T, Liu K, Liu B, Zhang N (2016) Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue. Cell Signal 28(9):1401–1411. https://doi.org/10.1016/j.cellsig.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  352. Gstalder C, Ader I, Cuvillier O (2016) FTY720 (Fingolimod) inhibits HIF1 and HIF2 signaling, promotes vascular remodeling, and chemosensitizes in renal cell carcinoma animal model. Mol Cancer Ther 15(10):2465–2474. https://doi.org/10.1158/1535-7163.MCT-16-0167

    Article  CAS  PubMed  Google Scholar 

  353. Guan Y, Reddy KR, Zhu Q, Li Y, Lee K, Weerasinghe P, Prchal J, Semenza GL, **g N (2010) G-rich oligonucleotides inhibit HIF-1alpha and HIF-2alpha and block tumor growth. Mol Ther 18(1):188–197. https://doi.org/10.1038/mt.2009.219

    Article  CAS  PubMed  Google Scholar 

  354. Gao P, Zhang H, Dinavahi R, Li F, **ang Y, Raman V, Bhujwalla ZM, Felsher DW, Cheng L, Pevsner J, Lee LA, Semenza GL, Dang CV (2007) HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 12(3):230–238. https://doi.org/10.1016/j.ccr.2007.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Kim YH, Coon A, Baker AF, Powis G (2011) Antitumor agent PX-12 inhibits HIF-1alpha protein levels through an Nrf2/PMF-1-mediated increase in spermidine/spermine acetyl transferase. Cancer Chemother Pharmacol 68(2):405–413. https://doi.org/10.1007/s00280-010-1500-0

    Article  CAS  PubMed  Google Scholar 

  356. Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA, Atadja P, Pili R (2006) Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res 66(17):8814–8821. https://doi.org/10.1158/0008-5472.CAN-05-4598

    Article  CAS  PubMed  Google Scholar 

  357. Hamsa TP, Kuttan G (2012) Antiangiogenic activity of berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators. Drug Chem Toxicol 35(1):57–70. https://doi.org/10.3109/01480545.2011.589437

    Article  CAS  PubMed  Google Scholar 

  358. Harada H, Itasaka S, Zhu Y, Zeng L, **e X, Morinibu A, Shinomiya K, Hiraoka M (2009) Treatment regimen determines whether an HIF-1 inhibitor enhances or inhibits the effect of radiation therapy. Br J Cancer 100(5):747–757. https://doi.org/10.1038/sj.bjc.6604939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Tang C, Lei H, Zhang J, Liu M, ** J, Luo H, Xu H, Wu Y (2018) Montelukast inhibits hypoxia inducible factor-1alpha translation in prostate cancer cells. Cancer Biol Ther. https://doi.org/10.1080/15384047.2018.1451279

    Article  PubMed  PubMed Central  Google Scholar 

  360. Wallace EM, Rizzi JP, Han G, Wehn PM, Cao Z, Du X, Cheng T, Czerwinski RM, Dixon DD, Goggin BS, Grina JA, Halfmann MM, Maddie MA, Olive SR, Schlachter ST, Tan H, Wang B, Wang K, **e S, Xu R, Yang H, Josey JA (2016) A small-molecule antagonist of HIF2alpha is efficacious in preclinical models of renal cell carcinoma. Cancer Res 76(18):5491–5500. https://doi.org/10.1158/0008-5472.CAN-16-0473

    Article  CAS  PubMed  Google Scholar 

  361. Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, Homayoun F, Ma Y, Patel N, Yell P, Hao G, Yousuf Q, Joyce A, Pedrosa I, Geiger H, Zhang H, Chang J, Gardner KH, Bruick RK, Reeves C, Hwang TH, Courtney K, Frenkel E, Sun X, Zojwalla N, Wong T, Rizzi JP, Wallace EM, Josey JA, **e Y, **e XJ, Kapur P, McKay RM, Brugarolas J (2016) Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539(7627):112–117. https://doi.org/10.1038/nature19796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Cho H, Du X, Rizzi JP, Liberzon E, Chakraborty AA, Gao W, Carvo I, Signoretti S, Bruick RK, Josey JA, Wallace EM, Kaelin WG (2016) On-target efficacy of a HIF-2alpha antagonist in preclinical kidney cancer models. Nature 539(7627):107–111. https://doi.org/10.1038/nature19795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Lee K, Qian DZ, Rey S, Wei H, Liu JO, Semenza GL (2009) Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc Natl Acad Sci U S A 106(7):2353–2358. https://doi.org/10.1073/pnas.0812801106

    Article  PubMed  PubMed Central  Google Scholar 

  364. Befani CD, Vlachostergios PJ, Hatzidaki E, Patrikidou A, Bonanou S, Simos G, Papandreou CN, Liakos P (2012) Bortezomib represses HIF-1alpha protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. J Mol Med (Berl) 90(1):45–54. https://doi.org/10.1007/s00109-011-0805-8

    Article  CAS  Google Scholar 

  365. Kaluz S, Kaluzova M, Stanbridge EJ (2006) Proteasomal inhibition attenuates transcriptional activity of hypoxia-inducible factor 1 (HIF-1) via specific effect on the HIF-1alpha C-terminal activation domain. Mol Cell Biol 26(15):5895–5907. https://doi.org/10.1128/MCB.00552-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Conrad PW, Freeman TL, Beitner-Johnson D, Millhorn DE (1999) EPAS1 trans-activation during hypoxia requires p42/p44 MAPK. J Biol Chem 274(47):33709–33713

    Article  CAS  PubMed  Google Scholar 

  367. Bhattarai D, Xu X, Lee K (2017) Hypoxia-inducible factor-1 (HIF-1) inhibitors from the last decade (2007 to 2016): a “structure-activity relationship” perspective. Med Res Rev. https://doi.org/10.1002/med.21477

    Article  PubMed  Google Scholar 

  368. Wigerup C, Pahlman S, Bexell D (2016) Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 164:152–169. https://doi.org/10.1016/j.pharmthera.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  369. Koh MY, Spivak-Kroizman T, Venturini S, Welsh S, Williams RR, Kirkpatrick DL, Powis G (2008) Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol Cancer Ther 7(1):90–100. https://doi.org/10.1158/1535-7163.MCT-07-0463

    Article  CAS  PubMed  Google Scholar 

  370. Welsh S, Williams R, Kirkpatrick L, Paine-Murrieta G, Powis G (2004) Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol Cancer Ther 3(3):233–244

    CAS  PubMed  Google Scholar 

  371. Zhao T, Ren H, Jia L, Chen J, **n W, Yan F, Li J, Wang X, Gao S, Qian D, Huang C, Hao J (2015) Inhibition of HIF-1alpha by PX-478 enhances the anti-tumor effect of gemcitabine by inducing immunogenic cell death in pancreatic ductal adenocarcinoma. Oncotarget 6(4):2250–2262. https://doi.org/10.18632/oncotarget.2948

    Article  PubMed  Google Scholar 

  372. Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, Fisher RJ, Shoemaker RH, Melillo G (2005) Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 65(19):9047–9055. https://doi.org/10.1158/0008-5472.CAN-05-1235

    Article  CAS  PubMed  Google Scholar 

  373. Zhao X, Li F, Li Y, Wang H, Ren H, Chen J, Nie G, Hao J (2015) Co-delivery of HIF1alpha siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 46:13–25. https://doi.org/10.1016/j.biomaterials.2014.12.028

    Article  CAS  PubMed  Google Scholar 

  374. Scheuermann TH, Li Q, Ma HW, Key J, Zhang L, Chen R, Garcia JA, Naidoo J, Longgood J, Frantz DE, Tambar UK, Gardner KH, Bruick RK (2013) Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat Chem Biol 9(4):271–276. https://doi.org/10.1038/nchembio.1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG Jr (2002) Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1(3):237–246

    Article  CAS  PubMed  Google Scholar 

  376. Courtney KD, Infante JR, Lam ET, Figlin RA, Rini BI, Brugarolas J, Zojwalla NJ, Lowe AM, Wang K, Wallace EM, Josey JA, Choueiri TK (2018) Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2alpha antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J Clin Oncol 36(9):867–874. https://doi.org/10.1200/JCO.2017.74.2627

    Article  PubMed  Google Scholar 

  377. Xu J, Zheng L, Chen J, Sun Y, Lin H, ** RA, Tang M, Liang X, Cai X (2017) Increasing AR by HIF-2alpha inhibitor (PT-2385) overcomes the side-effects of sorafenib by suppressing hepatocellular carcinoma invasion via alteration of pSTAT3, pAKT and pERK signals. Cell Death Dis 8(10):e3095. https://doi.org/10.1038/cddis.2017.411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Nakazawa MS, Eisinger-Mathason TS, Sadri N, Ochocki JD, Gade TP, Amin RK, Simon MC (2016) Epigenetic re-expression of HIF-2alpha suppresses soft tissue sarcoma growth. Nat Commun 7:10539. https://doi.org/10.1038/ncomms10539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Zhang Q, Gu J, Li L, Liu J, Luo B, Cheung HW, Boehm JS, Ni M, Geisen C, Root DE, Polyak K, Brown M, Richardson AL, Hahn WC, Kaelin WG Jr, Bommi-Reddy A (2009) Control of cyclin D1 and breast tumorigenesis by the EglN2 prolyl hydroxylase. Cancer Cell 16(5):413–424. https://doi.org/10.1016/j.ccr.2009.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Leite de Oliveira R, Deschoemaeker S, Henze AT, Debackere K, Finisguerra V, Takeda Y, Roncal C, Dettori D, Tack E, Jonsson Y, Veschini L, Peeters A, Anisimov A, Hofmann M, Alitalo K, Baes M, D’Hooge J, Carmeliet P, Mazzone M (2012) Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell 22(2):263–277. https://doi.org/10.1016/j.ccr.2012.06.028

    Article  CAS  PubMed  Google Scholar 

  381. Kuchnio A, Moens S, Bruning U, Kuchnio K, Cruys B, Thienpont B, Broux M, Ungureanu AA, Leite de Oliveira R, Bruyere F, Cuervo H, Manderveld A, Carton A, Hernandez-Fernaud JR, Zanivan S, Bartic C, Foidart JM, Noel A, Vinckier S, Lambrechts D, Dewerchin M, Mazzone M, Carmeliet P (2015) The cancer cell oxygen sensor PHD2 promotes metastasis via activation of cancer-associated fibroblasts. Cell Rep 12(6):992–1005. https://doi.org/10.1016/j.celrep.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  382. Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT, Giaccia AJ (2009) Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 15(6):527–538. https://doi.org/10.1016/j.ccr.2009.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Erez N, Milyavsky M, Eilam R, Shats I, Goldfinger N, Rotter V (2003) Expression of prolyl-hydroxylase-1 (PHD1/EGLN2) suppresses hypoxia inducible factor-1alpha activation and inhibits tumor growth. Cancer Res 63(24):8777–8783

    CAS  PubMed  Google Scholar 

  384. Garvalov BK, Foss F, Henze AT, Bethani I, Gräf-Höchst S, Singh D, Filatova A, Dopeso H, Seidel S, Damm M, Acker-Palmer A, Acker T (2014) PHD3 regulates EGFR internalization and signalling in tumours. Nat Commun 5:5577. https://doi.org/10.1038/ncomms6577

    Article  CAS  PubMed  Google Scholar 

  385. Henze AT, Garvalov BK, Seidel S, Cuesta AM, Ritter M, Filatova A, Foss F, Dopeso H, Essmann CL, Maxwell PH, Reifenberger G, Carmeliet P, Acker-Palmer A, Acker T (2014) Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR. Nat Commun 5:5582. https://doi.org/10.1038/ncomms6582

    Article  CAS  PubMed  Google Scholar 

  386. Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC (2014) The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 21(10):1516–1554. https://doi.org/10.1089/ars.2013.5378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Conway JRW, Warren SC, Herrmann D, Murphy KJ, Cazet AS, Vennin C, Shearer RF, Killen MJ, Magenau A, Melenec P, Pinese M, Nobis M, Zaratzian A, Boulghourjian A, Da Silva AM, Del Monte-Nieto G, Adam ASA, Harvey RP, Haigh JJ, Wang Y, Croucher DR, Sansom OJ, Pajic M, Caldon CE, Morton JP, Timpson P (2018) Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep 23(11):3312–3326. https://doi.org/10.1016/j.celrep.2018.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Burr SP, Costa AS, Grice GL, Timms RT, Lobb IT, Freisinger P, Dodd RB, Dougan G, Lehner PJ, Frezza C, Nathan JA (2016) Mitochondrial protein lipoylation and the 2-oxoglutarate dehydrogenase complex controls HIF1alpha stability in aerobic conditions. Cell Metab 24(5):740–752. https://doi.org/10.1016/j.cmet.2016.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Danhier P, Krishnamachary B, Bharti S, Kakkad S, Mironchik Y, Bhujwalla ZM (2015) Combining optical reporter proteins with different half-lives to detect temporal evolution of hypoxia and reoxygenation in tumors. Neoplasia 17(12):871–881. https://doi.org/10.1016/j.neo.2015.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Epel B, Halpern HJ (2015) In vivo pO2 Imaging of tumors: oxymetry with very low-frequency electron paramagnetic resonance. Methods Enzymol 564:501–527. https://doi.org/10.1016/bs.mie.2015.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Gaertner FC, Souvatzoglou M, Brix G, Beer AJ (2012) Imaging of hypoxia using PET and MRI. Curr Pharm Biotechnol 13(4):552–570

    Article  CAS  PubMed  Google Scholar 

  392. Hernandez-Agudo E, Mondejar T, Soto-Montenegro ML, Megias D, Mouron S, Sanchez J, Hidalgo M, Lopez-Casas PP, Mulero F, Desco M, Quintela-Fandino M (2016) Monitoring vascular normalization induced by antiangiogenic treatment with (18)F-fluoromisonidazole-PET. Mol Oncol 10(5):704–718. https://doi.org/10.1016/j.molonc.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  393. Kikuchi M, Yamane T, Shinohara S, Fujiwara K, Hori SY, Tona Y, Yamazaki H, Naito Y, Senda M (2011) 18F-fluoromisonidazole positron emission tomography before treatment is a predictor of radiotherapy outcome and survival prognosis in patients with head and neck squamous cell carcinoma. Ann Nucl Med 25(9):625–633. https://doi.org/10.1007/s12149-011-0508-9

    Article  CAS  PubMed  Google Scholar 

  394. Wiedenmann NE, Bucher S, Hentschel M, Mix M, Vach W, Bittner MI, Nestle U, Pfeiffer J, Weber WA, Grosu AL (2015) Serial [18F]-fluoromisonidazole PET during radiochemotherapy for locally advanced head and neck cancer and its correlation with outcome. Radiother Oncol 117(1):113–117. https://doi.org/10.1016/j.radonc.2015.09.015

    Article  PubMed  Google Scholar 

  395. Zhang X, Wojtkowiak JW, Martinez GV, Cornnell HH, Hart CP, Baker AF, Gillies R (2016) MR imaging biomarkers to monitor early response to hypoxia-activated prodrug TH-302 in pancreatic cancer xenografts. PLoS ONE 11(5):e0155289. https://doi.org/10.1371/journal.pone.0155289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Shi Y, Oeh J, Hitz A, Hedehus M, Eastham-Anderson J, Peale FV Jr, Hamilton P, O’Brien T, Sampath D, Carano RAD (2017) Monitoring and targeting anti-VEGF induced hypoxia within the viable tumor by 19F-MRI and multispectral analysis. Neoplasia 19(11):950–959. https://doi.org/10.1016/j.neo.2017.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Hugonnet F, Fournier L, Medioni J, Smadja C, Hindie E, Huchet V, Itti E, Cuenod CA, Chatellier G, Oudard S, Faraggi M, Hypoxia in Renal Cancer Multicenter G (2011) Metastatic renal cell carcinoma: relationship between initial metastasis hypoxia, change after 1 month’s sunitinib, and therapeutic response: an 18F-fluoromisonidazole PET/CT study. J Nucl Med 52(7):1048–1055. https://doi.org/10.2967/jnumed.110.084517

    Article  PubMed  Google Scholar 

  398. Eustace A, Mani N, Span PN, Irlam JJ, Taylor J, Betts GN, Denley H, Miller CJ, Homer JJ, Rojas AM, Hoskin PJ, Buffa FM, Harris AL, Kaanders JH, West CM (2013) A 26-gene hypoxia signature predicts benefit from hypoxia-modifying therapy in laryngeal cancer but not bladder cancer. Clin Cancer Res 19(17):4879–4888. https://doi.org/10.1158/1078-0432.CCR-13-0542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8(12):967–975. https://doi.org/10.1038/nrc2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  400. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26(2):225–239. https://doi.org/10.1007/s10555-007-9055-1

    Article  CAS  PubMed  Google Scholar 

  401. Michiels C, Tellier C, Feron O (2016) Cycling hypoxia: a key feature of the tumor microenvironment. Biochim Biophys Acta 1866(1):76–86. https://doi.org/10.1016/j.bbcan.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  402. Chen A, Sceneay J, Godde N, Kinwel T, Ham S, Thompson EW, Humbert PO, Moller A (2018) Intermittent hypoxia induces a metastatic phenotype in breast cancer. Oncogene. https://doi.org/10.1038/s41388-018-0259-3

    Article  PubMed  PubMed Central  Google Scholar 

  403. Chen WL, Wang CC, Lin YJ, Wu CP, Hsieh CH (2015) Cycling hypoxia induces chemoresistance through the activation of reactive oxygen species-mediated B-cell lymphoma extra-long pathway in glioblastoma multiforme. J Transl Med 13:389. https://doi.org/10.1186/s12967-015-0758-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Gaustad JV, Simonsen TG, Roa AM, Rofstad EK (2013) Tumors exposed to acute cyclic hypoxia show increased vessel density and delayed blood supply. Microvasc Res 85:10–15. https://doi.org/10.1016/j.mvr.2012.11.002

    Article  PubMed  Google Scholar 

  405. Hsieh CH, Lee CH, Liang JA, Yu CY, Shyu WC (2010) Cycling hypoxia increases U87 glioma cell radioresistance via ROS induced higher and long-term HIF-1 signal transduction activity. Oncol Rep 24(6):1629–1636

    Article  CAS  PubMed  Google Scholar 

  406. Li L, Ren F, Qi C, Xu L, Fang Y, Liang M, Feng J, Chen B, Ning W, Cao J (2018) Intermittent hypoxia promotes melanoma lung metastasis via oxidative stress and inflammation responses in a mouse model of obstructive sleep apnea. Respir Res 19(1):28. https://doi.org/10.1186/s12931-018-0727-x

    Article  PubMed  PubMed Central  Google Scholar 

  407. Louie E, Nik S, Chen JS, Schmidt M, Song B, Pacson C, Chen XF, Park S, Ju J, Chen EI (2010) Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 12(6):R94. https://doi.org/10.1186/bcr2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Rofstad EK, Galappathi K, Mathiesen B, Ruud EB (2007) Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin Cancer Res 13(7):1971–1978. https://doi.org/10.1158/1078-0432.CCR-06-1967

    Article  CAS  PubMed  Google Scholar 

  409. Tellier C, Desmet D, Petit L, Finet L, Graux C, Raes M, Feron O, Michiels C (2015) Cycling hypoxia induces a specific amplified inflammatory phenotype in endothelial cells and enhances tumor-promoting inflammation in vivo. Neoplasia 17(1):66–78. https://doi.org/10.1016/j.neo.2014.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. Zhu H, Wang D, Zhang L, **e X, Wu Y, Liu Y, Shao G, Su Z (2014) Upregulation of autophagy by hypoxia-inducible factor-1alpha promotes EMT and metastatic ability of CD133+ pancreatic cancer stem-like cells during intermittent hypoxia. Oncol Rep 32(3):935–942. https://doi.org/10.3892/or.2014.3298

    Article  CAS  PubMed  Google Scholar 

  411. Hammond EM, Dorie MJ, Giaccia AJ (2003) ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem 278(14):12207–12213. https://doi.org/10.1074/jbc.M212360200

    Article  CAS  PubMed  Google Scholar 

  412. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21(1):103–115. https://doi.org/10.1038/cr.2010.178

    Article  CAS  PubMed  Google Scholar 

  413. Kowitdamrong A, Chanvorachote P, Sritularak B, Pongrakhananon V (2013) Moscatilin inhibits lung cancer cell motility and invasion via suppression of endogenous reactive oxygen species. Biomed Res Int. https://doi.org/10.1155/2013/765894

    Article  PubMed  PubMed Central  Google Scholar 

  414. Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441

    Article  CAS  PubMed  Google Scholar 

  415. Martinive P, Defresne F, Quaghebeur E, Daneau G, Crokart N, Gregoire V, Gallez B, Dessy C, Feron O (2009) Impact of cyclic hypoxia on HIF-1alpha regulation in endothelial cells–new insights for anti-tumor treatments. FEBS J 276(2):509–518. https://doi.org/10.1111/j.1742-4658.2008.06798.x

    Article  CAS  PubMed  Google Scholar 

  416. Chen Y, Zhang B, Bao L, ** L, Yang M, Peng Y, Kumar A, Wang JE, Wang C, Zou X, **ng C, Wang Y, Luo W (2018) ZMYND8 acetylation mediates HIF-dependent breast cancer progression and metastasis. J Clin Investig 128(5):1937–1955. https://doi.org/10.1172/JCI95089

    Article  PubMed  PubMed Central  Google Scholar 

  417. Choudhry H, Harris AL (2018) Advances in hypoxia-inducible factor biology. Cell Metab 27(2):281–298. https://doi.org/10.1016/j.cmet.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  418. Casciello F, Al-Ejeh F, Kelly G, Brennan DJ, Ngiow SF, Young A, Stoll T, Windloch K, Hill MM, Smyth MJ, Gannon F, Lee JS (2017) G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proc Natl Acad Sci USA 114(27):7077–7082. https://doi.org/10.1073/pnas.1618706114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Kang J, Shin SH, Yoon H, Huh J, Shin HW, Chun YS, Park JW (2018) FIH is an oxygen sensor in ovarian cancer for G9a/GLP-driven epigenetic regulation of metastasis-related genes. Cancer Res 78(5):1184–1199. https://doi.org/10.1158/0008-5472.CAN-17-2506

    Article  CAS  PubMed  Google Scholar 

  420. Koivunen P, Laukka T (2018) The TET enzymes. Cell Mol Life Sci 75(8):1339–1348. https://doi.org/10.1007/s00018-017-2721-8

    Article  CAS  PubMed  Google Scholar 

  421. Thienpont B, Steinbacher J, Zhao H, D’Anna F, Kuchnio A, Ploumakis A, Ghesquiere B, Van Dyck L, Boeckx B, Schoonjans L, Hermans E, Amant F, Kristensen VN, Peng Koh K, Mazzone M, Coleman M, Carell T, Carmeliet P, Lambrechts D (2016) Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537(7618):63–68. https://doi.org/10.1038/nature19081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Hancock RL, Dunne K, Walport LJ, Flashman E, Kawamura A (2015) Epigenetic regulation by histone demethylases in hypoxia. Epigenomics 7(5):791–811. https://doi.org/10.2217/epi.15.24

    Article  CAS  PubMed  Google Scholar 

  423. Bensaad K, Harris AL (2014) Hypoxia and metabolism in cancer. Adv Exp Med Biol 772:1–39. https://doi.org/10.1007/978-1-4614-5915-6_1

    Article  CAS  PubMed  Google Scholar 

  424. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705. https://doi.org/10.1146/annurev-physiol-030212-183653

    Article  CAS  PubMed  Google Scholar 

  425. Kato H, Inoue T, Asanoma K, Nishimura C, Matsuda T, Wake N (2006) Induction of human endometrial cancer cell senescence through modulation of HIF-1alpha activity by EGLN1. Int J Cancer 118(5):1144–1153. https://doi.org/10.1002/ijc.21488

    Article  CAS  PubMed  Google Scholar 

  426. Kilic Eren M, Tabor V (2014) The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence. PLoS ONE 9(7):e101064. https://doi.org/10.1371/journal.pone.0101064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Sullivan R, Pare GC, Frederiksen LJ, Semenza GL, Graham CH (2008) Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol Cancer Ther 7(7):1961–1973. https://doi.org/10.1158/1535-7163.MCT-08-0198

    Article  CAS  PubMed  Google Scholar 

  428. Coleman PR, Chang G, Hutas G, Grimshaw M, Vadas MA, Gamble JR (2013) Age-associated stresses induce an anti-inflammatory senescent phenotype in endothelial cells. Aging (Albany NY) 5(12):913–924. https://doi.org/10.18632/aging.100622

    Article  CAS  Google Scholar 

  429. Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33(4):207–214. https://doi.org/10.1016/j.tips.2012.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported through an Erasmus Mundus Joint Master Degree (EMJMD) scholarship of the Erasmus+ EU-Programme, awarded to J. A. under the auspices of the International Master in Innovative Medicine (IMIM) programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyan K. Garvalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araos, J., Sleeman, J.P. & Garvalov, B.K. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 35, 563–599 (2018). https://doi.org/10.1007/s10585-018-9930-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-018-9930-x

Keywords

Navigation