Microgrid Primary Controller Performance Characterization

  • Chapter
  • First Online:
Real-Time Simulation and Hardware-in-the-Loop Testing Using Typhoon HIL

Abstract

This chapter reviews the main types of primary controllers for grid-forming converters found in microgrids with multiple distributed converter-based energy resource units. The main type of primary controllers are droop, virtual synchronous generator and dispatchable virtual oscillator, and some variations are described aiming to reveal their dynamic behavior and select their control parameters. This establishes the foundations for a fair comparison among the primary control alternatives considered. The large and small signal models for the primary controllers are derived, and it is demonstrated how the primary controller parameters impact the steady-state and transient behaviors; in addition, time domain simulation on Hardware-in-the-Loop (HIL) illustrates their performance. Since the microgrid controller presents different scenarios of operation, an automated Test-Driven Design (TDD) reveals from extensive simulations in the time domain the strong and weak points of each primary controller. Initially, metrics for both steady-state and transient performances are defined. Then, the key scenarios based on each operating mode such as grid-connected, islanded and unplanned islanding are selected to carry out the tests. Finally, an automated report is given, revealing the strengths and weaknesses of each considered a primary controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alipoor J, Miura Y, Ise T (2015) Power system stabilization using virtual synchronous generator with alternating moment of inertia. IEEE J Emerg Select Top Power Electron 3(2):451–458

    Article  Google Scholar 

  • Ashabani M, Mohamed YAI (2014) Novel comprehensive control framework for incorporating VSCS to smart power grids using bidirectional synchronous-vsc. IEEE Trans Power Syst 29(2):943–957

    Article  Google Scholar 

  • Awal MA, Yu H, Tu H, Lukic SM, Husain I (2020) Hierarchical control for virtual oscillator based grid-connected and islanded microgrids. IEEE Trans Power Electron 35(1):988–1001

    Article  Google Scholar 

  • Beheshtaein S, Golestan S, Cuzner R, Guerrero JM (2019) A new adaptive virtual impedance based fault current limiter for converters. In: IEEE energy conversion congress and exposition (ECCE) 2019, pp 2439–2444

    Google Scholar 

  • Bevrani YMH, Ise T (2014) Virtual synchronous generators: a survey and new perspectives. Int J Electr Power Energy Syst 54:244–254

    Article  Google Scholar 

  • Chandorkar MC, Divan DM, Hu Y, Banerjee B (1994) Novel architectures and control for distributed ups systems. In: Proceedings of 1994 IEEE applied power electronics conference and exposition - ASPEC’94, 1994, vol 2, pp 683–689

    Google Scholar 

  • Coelho EA, Wu D, Guerrero JM, Vasquez JC, Dragicevic T, Stefanovic C, Popovski P (2016) Small-signal analysis of the microgrid secondary control considering a communication time delay. IEEE Trans Indust Electron 63(10):6257–6269. Bevrani and Ise

    Google Scholar 

  • Colombino M, Groß D, Dörfler F (2017) Global phase and voltage synchronization for power inverters: a decentralized consensus-inspired approach. In: 2017 IEEE 56th annual conference on decision and control (CDC), 2017, pp 5690–5695

    Google Scholar 

  • D’Arco S, Suul JA (2014) Equivalence of virtual synchronous machines and frequency-droops for converter-based microgrids. IEEE Trans Smart Grid 5(1):394–395

    Article  Google Scholar 

  • Denis G, Prevost T, Debry M, Xavier F, Guillaud X, Menze A (2018) The migrate project: the challenges of operating a transmission grid with only inverter-based generation. a grid-forming control improvement with transient current-limiting control. IET Renew Power Gener 12(5):523–529

    Google Scholar 

  • Dhople SV, Johnson BB, Hamadeh AO (2013) Virtual oscillator control for voltage source inverters. In: 2013 51st annual allerton conference on communication, control, and computing (Allerton), 2013, pp 1359–1363

    Google Scholar 

  • Dong S, Chen C (2018) Adjusting synchronverter dynamic response speed via dam** correction loop. In: IEEE power energy society general meeting (PESGM) 2018, p 1

    Google Scholar 

  • Fucci D, Erdogmus H, Turhan B, Oivo M, Juristo N (2017) A dissection of the test-driven development process: does it really matter to test-first or to test-last? IEEE Trans Softw Eng 43(7):597–614

    Article  Google Scholar 

  • Guerrero JM, de Vicuna LG, Matas J, Castilla M, Miret J (2005) Output impedance design of parallel-connected ups inverters with wireless load-sharing control. IEEE Trans Indust Electron 52(4):1126–1135

    Article  Google Scholar 

  • Guerrero JM, de Vicuna LG, Matas J, Miret J, Castilla M (2004) Output impedance design of parallel-connected ups inverters. In: 2004 IEEE international symposium on industrial electronics, vol 2, pp 1123–1128

    Google Scholar 

  • Guerrero JM, Matas J, De Vicunagarcia Garcia, De Vicuna L, Castilla M, Miret J (2006) Wireless-control strategy for parallel operation of distributed-generation inverters. IEEE Trans Indust Electron 53(5):1461–1470

    Article  Google Scholar 

  • Guerrero JM, de Vicuna LG, Matas J, Castilla M, Miret J (2004) A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Trans Power Electron 19(5):1205–1213

    Article  Google Scholar 

  • Guerrero JM, Vasquez JC, Matas J, de Vicuna LG, Castilla M (2011) Hierarchical control of droop-controlled ac and dc microgrids-a general approach toward standardization. IEEE Trans Industr Electron 58(1):158–172

    Google Scholar 

  • Janzen D, Saiedian H (2008) Does test-driven development really improve software design quality? IEEE Softw 25(2):77–84

    Article  Google Scholar 

  • Janzen D, Saiedian H (2005) Test-driven development concepts, taxonomy, and future direction. Computer 38(9):43–50

    Article  Google Scholar 

  • Jeffries R, Melnik G (2007) Guest editors’ introduction: Tdd-the art of fearless programming. IEEE Softw 24(3):24–30

    Article  Google Scholar 

  • Johnson B, Rodriguez M, Sinha M, Dhople S (2017) Comparison of virtual oscillator and droop control. In: 2017 IEEE 18th workshop on control and modeling for power electronics (COMPEL), 2017, pp 1–6

    Google Scholar 

  • Johnson BB, Dhople SV, Hamadeh AO, Krein PT (2014) Synchronization of parallel single-phase inverters with virtual oscillator control. IEEE Trans Power Electron 29(11):6124–6138

    Article  Google Scholar 

  • Johnson BB, Dhople SV, Hamadeh AO, Krein PT (2014) Synchronization of nonlinear oscillators in an LTI electrical power network. IEEE Trans Circuits Syst I Regul Pap 61(3):834–844

    Article  Google Scholar 

  • Johnson BB, Sinha M, Ainsworth NG, Dörfler F, Dhople SV (2016) Synthesizing virtual oscillators to control islanded inverters. IEEE Trans Power Electron 31(8):6002–6015

    Article  Google Scholar 

  • Kawabata T, Higashino S (1988) Parallel operation of voltage source inverters. IEEE Trans Ind Appl 24(2):281–287

    Article  Google Scholar 

  • Kumar S, Bansal S (2013) Comparative study of test driven development with traditional techniques. Int J Soft Comput Eng 3(1):352–360

    Google Scholar 

  • Liu J, Miura Y, Ise T (2016) Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Trans Power Electron 31(5):3600–3611

    Article  Google Scholar 

  • Long B, Liao Y, Chong KT, Rodríguez J, Guerrero JM (2021) Mpc-controlled virtual synchronous generator to enhance frequency and voltage dynamic performance in islanded microgrids. IEEE Trans Smart Grid 12(2):953–964

    Article  Google Scholar 

  • Matevosyan J, Badrzadeh B, Prevost T, Quitmann E, Ramasubramanian D, Urdal H, Achilles S, MacDowell J, Huang SH, Vital V, O’Sullivan J, Quint R (2019) Grid-forming inverters: are they the key for high renewable penetration? IEEE Power Energy Mag 17(6):89–98

    Article  Google Scholar 

  • Olivares DE, Mehrizi-Sani A, Etemadi AH, Cañizares CA, Iravani R, Kazerani M, Hajimiragha AH, Gomis-Bellmunt O, Saeedifard M, Palma-Behnke R, Jiménez-Estévez GA, Hatziargyriou ND (2014) Trends in microgrid control. IEEE Trans Smart Grid 5(4):1905–1919

    Article  Google Scholar 

  • Sakimoto TIK, Miura Y (2011) Stabilization of a power system with a distributed generator by a virtual synchronous generator function. IEEE 8th international conference power electronics and ECCE Asia, pp 1498–1505

    Google Scholar 

  • Shintai T, Miura Y, Ise T (2014) Oscillation dam** of a distributed generator using a virtual synchronous generator. IEEE Trans Power Delivery 29(2):668–676

    Article  Google Scholar 

  • Sinha M, Dörfler F, Johnson BB, Dhople SV (2017) Uncovering droop control laws embedded within the nonlinear dynamics of van der pol oscillators. IEEE Trans Control Netw Syst 4(2):347–358

    Article  MathSciNet  MATH  Google Scholar 

  • Sinha M, Dörfler F, Johnson BB, Dhople SV (2015) Virtual oscillator control subsumes droop control. In: American control conference (ACC) 2015, pp 2353–2358

    Google Scholar 

  • Stallmann F, Mertens A (2020) Sequence impedance modeling of the matching control and comparison with virtual synchronous generator. In: 2020 IEEE 11th international symposium on power electronics for distributed generation systems (PEDG), 2020, pp 421–428

    Google Scholar 

  • Tuladhar A, ** H, Unger T, Mauch K (1997) Parallel operation of single phase inverter modules with no control interconnections. In: Proceedings of APEC 97 - applied power electronics conference, vol 1, pp 94–100

    Google Scholar 

  • Williams L, Maximilien E, Vouk M (2003) Test-driven development as a defect-reduction practice. In: 14th international symposium on software reliability engineering, 2003. ISSRE 2003, pp 34–45

    Google Scholar 

  • Zhong Q-C, Hornik T (2013) Control of power inverters in renewable energy and smart grid integration. Wiley

    Google Scholar 

  • Zhong Q, Weiss G (2009) Static synchronous generators for distributed generation and renewable energy. In: 2009 IEEE/PES power systems conference and exposition, March 2009, pp 1–6

    Google Scholar 

  • Zhong Q, Zeng Y (2011) Can the output impedance of an inverter be designed capacitive? In: IECON 2011 - 37th annual conference of the IEEE industrial electronics society, Nov 2011, pp 1220–1225

    Google Scholar 

  • Zhong Q, Weiss G (2011) Synchronverters: Inverters that mimic synchronous generators. IEEE Trans Industr Electron 58(4):1259–1267

    Article  Google Scholar 

  • Zhong Q, Nguyen P, Ma Z, Sheng W (2014) Self-synchronized synchronverters: inverters without a dedicated synchronization unit. IEEE Trans Power Electron 29(2):617–630

    Article  Google Scholar 

  • Zhong Q, Konstantopoulos GC, Ren B, Krstic M (2018) Improved synchronverters with bounded frequency and voltage for smart grid integration. IEEE Trans Smart Grid 9(2):786–796

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre T. Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, A.T., Pinheiro, H., Stefanello, M., Massing, J.R., Magnago, H., Carnielutti, F. (2023). Microgrid Primary Controller Performance Characterization. In: Tripathi, S.M., Gonzalez-Longatt, F.M. (eds) Real-Time Simulation and Hardware-in-the-Loop Testing Using Typhoon HIL. Transactions on Computer Systems and Networks. Springer, Singapore. https://doi.org/10.1007/978-981-99-0224-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0224-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0223-1

  • Online ISBN: 978-981-99-0224-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation