Log in

Design and Analysis of Decentralized Virtual Impedance Based Controller for Enhancing Power Sharing and Stability in an Islanded Microgrid

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

This paper investigates the role of a virtual impedance controller in improving the small-signal stability and power-sharing for an inverter-based islanded microgrid. The stability of microgrids is badly affected due to undamped low-frequency oscillations, which are often caused due to improper power-sharing among micro sources. The droop control approach has provided a viable solution to improve the power-sharing and hence the system’s stability. However, the droop gains suffer an inherent trade-off between power-sharing and stability, with a change in system dynamics like step load change. An increase in the droop gains improves power-sharing but causes low-frequency oscillating modes at the load terminals. It also deteriorates the micro sources voltage stability at the output terminals. This paper overcomes the trade-off faced by the droop controller with an approach of virtual impedance modeling along with voltage and current controller loops. A novel approach has been adapted by considering the virtual impedance as one state variable and investigating system stability by plotting the eigenvalue spectrum as a function of the droop coefficient. Participation factor-based sensitivity analysis for the proposed system has been carried out to measure the relative participation of corresponding state variables in respective oscillating modes. Time-domain simulation validates the role of virtual impedance in improving the dam** performance and enhancing the participation of DG’s during the transient mode. It also provides an insight into the role of a virtual impedance controller in improving reactive power sharing and voltage stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Lasseter RH, Eto JH, Schenkman B, Stevens J, Vollkommer H, Klapp D, Linton E, Hurtado H, Roy J (2011) CERTS microgrid laboratory test bed. IEEE Trans Power Delivery 26(1):325. https://doi.org/10.1109/TPWRD.2010.2051819

    Article  Google Scholar 

  2. Fan L (2017) Frequency Control. In: Control and Dynamics in Power Systems and Microgrids, pp 29–82. CRC Press

  3. Bevrani H, François B, Ise T (2017) Microgrid dynamics and control. Wiley

    Book  Google Scholar 

  4. Rajamand S (2020) Synchronous generator control concept and modified droop for frequency and voltage stability of microgrid including inverter-based DGs. J Electr Engi Technol 15(3):1035

    Article  Google Scholar 

  5. Farrokhabadi M, Cañizares CA, Simpson-Porco JW, Nasr E, Fan L, Mendoza-Araya PA, Tonkoski R, Tamrakar U, Hatziargyriou N, Lagos D et al (2019) Microgrid stability definitions, analysis, and examples. IEEE Trans Power Syst 35(1):13

    Article  Google Scholar 

  6. Le J, Zhao L, Liao X, Zhou Q, Liang H (2021) Stability analysis of grid-connected inverter system containing virtual synchronous generator under time delay and parameter uncertainty. J Electr Eng Technol 16(4):1779–1792

    Article  Google Scholar 

  7. Patan MK, Raja K, Azaharahmed M, Prasad CD, Ganeshan P (2021) Influence of primary regulation on frequency control of an isolated microgrid equipped with crow search algorithm tuned classical controllers. J Electr Eng Technol 16(2):681

    Article  Google Scholar 

  8. Blaabjerg F, Teodorescu R, Liserre M, Timbus A (2006) Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Industr Electron 53(5):1398. https://doi.org/10.1109/TIE.2006.881997

    Article  Google Scholar 

  9. Bevrani H (2014) Robust power system frequency control

  10. Hoang KD, Lee HH (2020) Economic power sharing to minimize generation cost in a DC microgrid. J Electr Eng Technol 15(2):737

    Article  Google Scholar 

  11. Dragičević T, Lu X, Vasquez JC, Guerrero JM (2015) DC microgrids-Part I: a review of control strategies and stabilization techniques. IEEE Trans Power Electron 31(7):4876

    Google Scholar 

  12. Bevrani H (2014) Frequency control in microgrids. Robust Power System Frequency Control, pp 319–347

  13. Majumder R, Chaudhuri B, Ghosh A, Majumder R, Ledwich G, Zare F (2009) Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop. IEEE Trans Power Syst 25(2):796

    Article  Google Scholar 

  14. Mahmood H, Michaelson D, Jiang J (2014) Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances. IEEE Trans Power Electron 30(3):1605–1617

    Article  Google Scholar 

  15. Wang X, Li YW, Blaabjerg F, Loh PC (2014) Virtual-impedance-based control for voltage-source and current-source converters. IEEE Trans Power Electron 30(12):7019

    Article  Google Scholar 

  16. Hosseinimehr T, Ghosh A, Shahnia F (2017) Cooperative control of battery energy storage systems in microgrids. Int J Electr Power Energy Syst 87:109

    Article  Google Scholar 

  17. Fani B, Zandi F, Karami-Horestani A (2018) An enhanced decentralized reactive power sharing strategy for inverter-based microgrid. Int J Electr Power Energy Syst 98:531

    Article  Google Scholar 

  18. Macana CA, Mojica-Nava E, Pota HR, Guerrero J, Vasquez JC (2020) Accurate proportional power sharing with minimum communication requirements for inverter-based islanded microgrids. Int J Electr Power Energy Syst 121:106036

    Article  Google Scholar 

  19. Han Y, Ning X, Li L, Yang P, Blaabjerg F (2021) Droop coefficient correction control for power sharing and voltage restoration in hierarchical controlled DC microgrids. Int J Electr Power Energy Syst 133:107277

    Article  Google Scholar 

  20. Zhong QC (2011) Robust droop controller for accurate proportional load sharing among inverters operated in parallel. IEEE Trans Industr Electron 60(4):1281

    Article  MathSciNet  Google Scholar 

  21. Sreekumar P, Khadkikar V (2015) A new virtual harmonic impedance scheme for harmonic power sharing in an islanded microgrid. IEEE Trans Power Delivery 31(3):936

    Article  Google Scholar 

  22. Zhang J, Shu J, Ning J, Huang L, Wang H (2018) Enhanced proportional power sharing strategy based on adaptive virtual impedance in low-voltage networked microgrid. IET Gener Trans Distrib 12(11):2566

    Article  Google Scholar 

  23. Han Y, Li H, Shen P, Coelho E, Guerrero J (2017) Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Trans Power Electron 32(3):2427. https://doi.org/10.1109/TPEL.2016.2569597

    Article  Google Scholar 

  24. Lu X, Wang J, Guerrero JM, Zhao D (2016) Virtual-impedance-based fault current limiters for inverter dominated AC microgrids. IEEE Trans on Smart Grid 9(3):1599

    Article  Google Scholar 

  25. Paquette AD, Divan DM (2014) Virtual impedance current limiting for inverters in microgrids with synchronous generators. IEEE Trans Ind Appl 51(2):1630

    Article  Google Scholar 

  26. Micallef A, Apap M, Spiteri-Staines C, Guerrero JM (2015) Mitigation of harmonics in grid-connected and islanded microgrids via virtual admittances and impedances. IEEE Trans Smart Grid 8(2):651

    Google Scholar 

  27. Eskandari M, Li L (2019) Microgrid operation improvement by adaptive virtual impedance. IET Renew Power Gener 13(2):296

    Article  Google Scholar 

  28. Wei B, Marzàbal A, Ruiz R, Guerrero JM, Vasquez JC (2018) DAVIC: a new distributed adaptive virtual impedance control for parallel-connected voltage source inverters in modular UPS system. IEEE Trans Power Electron 34(6):5953

    Article  Google Scholar 

  29. Guerrero JM, De Vicuna LG, Matas J, Castilla M, Miret J (2005) Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans Industr Electron 52(4):1126

    Article  Google Scholar 

  30. Guo L, Zhang S, Li X, Li YW, Wang C, Feng Y (2016) Stability analysis and dam** enhancement based on frequency-dependent virtual impedance for DC microgrids. IEEE J Emerg Sel Top Power Electron 5(1):338

    Article  Google Scholar 

  31. Wu X, Shen C, Iravani R (2016) Feasible range and optimal value of the virtual impedance for droop-based control of microgrids. IEEE Trans Smart Grid 8(3):1242

    Article  Google Scholar 

  32. Pogaku N, Prodanovic M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans Power Electron 22(2):613

    Article  Google Scholar 

  33. Kundur P (1994) Power system stability and Control Tata-McGraw Hill Co. Avenue of the Americas 1221

  34. Li Z, Shahidehpour M (2017) Small-signal modeling and stability analysis of hybrid AC/DC microgrids. IEEE Trans Smart Grid 10(2):2080

    Article  Google Scholar 

  35. Hamzeh M, Ghazanfari A, Mohamed YARI, Karimi Y (2015) Modeling and design of an oscillatory current-sharing control strategy in DC microgrids. IEEE Trans Industr Electron 62(11):6647

    Article  Google Scholar 

  36. Hamzeh M, Ghafouri M, Karimi H, Sheshyekani K, Guerrero JM (2016) Power oscillations dam** in DC microgrids. IEEE Trans Energy Convers 31(3):970

    Article  Google Scholar 

  37. Cao W, Ma Y, Wang F, Tolbert LM, Xue Y (2020) Low-frequency stability analysis of inverter-based islanded multiple-bus AC microgrids based on terminal characteristics. IEEE Trans Smart Grid 11(5):3662

    Article  Google Scholar 

  38. Rashidirad N, Hamzeh M, Sheshyekani K, Afjei E (2017) An effective method for low-frequency oscillations dam** in multibus DC microgrids. IEEE J Emerg Sel Top Circ Syst 7(3):403

    Article  Google Scholar 

  39. Lu X, Sun K, Guerrero JM, Vasquez JC, Huang L, Wang J (2015) Stability enhancement based on virtual impedance for DC microgrids with constant power loads. IEEE Trans Smart Grid 6(6):2770

    Article  Google Scholar 

  40. Zhu Y, Zhuo F, Wang F, Liu B, Gou R, Zhao Y (2015) A virtual impedance optimization method for reactive power sharing in networked microgrid. IEEE Trans Power Electron 31(4):2890

    Article  Google Scholar 

  41. Vijay A, Parth N, Doolla S, Chandorkar MC (2021) An adaptive virtual impedance control for improving power sharing among inverters in islanded AC microgrids. IEEE Trans Smart Grid 12(4):2991

    Article  Google Scholar 

  42. Razi R, Iman-Eini H, Hamzeh M, Bacha S (2020) A novel extended impedance-power droop for accurate active and reactive power sharing in a multi-bus microgrid with complex impedances. IEEE Trans Smart Grid 11(5):3795

    Article  Google Scholar 

  43. Gu Y, Li W, He X (2014) Frequency-coordinating virtual impedance for autonomous power management of DC microgrid. IEEE Trans Power Electron 30(4):2328

    Article  Google Scholar 

  44. Yazdani A, Iravani R (2010) Voltage-sourced converters in power systems: modeling, control, and applications. Wiley

    Book  Google Scholar 

  45. Laaksonen H, Saari P, Komulainen R (2005) Voltage and frequency control of inverter based weak LV network microgrid. In: 2005 International Conference on Future Power Systems, p 6, IEEE

  46. Rocabert J, Luna A, Blaabjerg F, Rodriguez P (2012) Control of power converters in AC microgrids. IEEE Trans Power Electron 27(11):4734

    Article  Google Scholar 

  47. Yao W, Chen M, Matas J, Guerrero JM, Qian ZM (2010) Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing. IEEE Trans Industr Electron 58(2):576

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Shambhu Prasad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Power Controller Modelling

$$\begin{aligned} A_{P}=\left[ \begin{array}{ccc} 0 &{} -m_{p} &{} 0 \\ 0 &{} -w_{c} &{} 0 \\ 0 &{} 0 &{} -w_{c} \end{array}\right] \end{aligned}$$
(A.1)
$$\begin{aligned} B_{P}=\left[ \begin{array}{cccccc} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} w_{c} I_{o d} &{} w_{c} I_{o q} &{} w_{c} V_{o d} &{} w_{c} V_{o q} \\ 0 &{} 0 &{} w_{c} I_{o q} &{} -w_{c} I_{o d} &{} -w_{c} V_{o q} &{} w_{c} V_{o d} \end{array}\right] \end{aligned}$$
(A.2)
$$\begin{aligned} B_{P c o m}=\left[ \begin{array}{c} -1 \\ 0 \\ 0 \end{array}\right] \end{aligned}$$
(A.3)
$$\begin{aligned} C_{P w}=\left[ \begin{array}{lll} 0&-m_{p}&0 \end{array}\right] \end{aligned}$$
(A.4)
$$\begin{aligned} C_{P v}=\left[ \begin{array}{ccc} 0 &{} 0 &{} -n_{q} \\ 0 &{} 0 &{} 0 \end{array}\right] \end{aligned}$$
(A.5)

Virtual Impedance Modelling

$$\begin{aligned} A_{Z}=\left[ \begin{array}{ll} 0 &{} 0 \\ 0 &{} 0 \end{array}\right] \end{aligned}$$
(B.1)
$$\begin{aligned} B_{Z 1}=\left[ \begin{array}{ll} 1 &{} 0 \\ 0 &{} 1 \end{array}\right] \end{aligned}$$
(B.2)
$$\begin{aligned} B_{Z 2}=\left[ \begin{array}{llllll} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \end{array}\right] \end{aligned}$$
(B.3)
$$\begin{aligned} C_{Z}=\left[ \begin{array}{ll} 0 &{} 0 \\ 0 &{} 0 \end{array}\right] \end{aligned}$$
(B.4)
$$\begin{aligned} D_{Z 1}=\left[ \begin{array}{cc} -I_{o d} Z_{V} &{} 0 \\ 0 &{} -I_{o q} Z_{V} \end{array}\right] \end{aligned}$$
(B.5)
$$\begin{aligned} D_{Z 2}=\left[ \begin{array}{cccccc} 0 &{} 0 &{} 0 &{} 0 &{} -Z_{V} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -Z_{V} \end{array}\right] \end{aligned}$$
(B.6)

Current Controller Modelling

$$\begin{aligned} A_{c}=\left[ \begin{array}{ll} 0 &{} 0 \\ 0 &{} 0 \end{array}\right] \end{aligned}$$
(C.1)
$$\begin{aligned} B_{C 1}=\left[ \begin{array}{ll} 1 &{} 0 \\ 0 &{} 1 \end{array}\right] \end{aligned}$$
(C.2)
$$\begin{aligned} B_{C 2}=\left[ \begin{array}{cccccc} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 \end{array}\right] \end{aligned}$$
(C.3)
$$\begin{aligned} C_{c}=\left[ \begin{array}{cc} K_{i c} &{} 0 \\ 0 &{} K_{i c} \end{array}\right] \end{aligned}$$
(C.4)
$$\begin{aligned} D_{C 1}=\left[ \begin{array}{cc} K_{p c} &{} 0 \\ 0 &{} K_{p c} \end{array}\right] \end{aligned}$$
(C.5)
$$\begin{aligned} D_{C 2}=\left[ \begin{array}{llllll} -K_{p c} &{} -w_{n} L_{f} &{} 0 &{} 0 &{} 0 &{} 0 \\ w_{n} L_{f} &{} -K_{p c} &{} 0 &{} 0 &{} 0 &{} 0 \end{array}\right] \end{aligned}$$
(C.6)

Filter Modelling

$$\begin{aligned} A_{L C L}=\left[ \begin{array}{cccccc} -\frac{r_{f}}{L_{f}} &{} w_{0} &{} -\frac{1}{L_{f}} &{} 0 &{} 0 &{} 0 \\ -w_{0} &{} -\frac{r_{f}}{L_{f}} &{} 0 &{} -\frac{1}{L_{f}} &{} 0 &{} 0 \\ \frac{1}{C_{f}} &{} 0 &{} 0 &{} w_{0} &{} -\frac{1}{C_{f}} &{} 0 \\ 0 &{} \frac{1}{C_{f}} &{} -w_{0} &{} 0 &{} 0 &{} -\frac{1}{C_{f}} \\ 0 &{} 0 &{} \frac{1}{L_{c}} &{} 0 &{} -\frac{r_{c}}{L_{c}} &{} w_{0} \\ 0 &{} 0 &{} 0 &{} \frac{1}{L_{c}} &{} -w_{0} &{} -\frac{r_{c}}{L_{c}} \end{array}\right] \end{aligned}$$
(D.1)
$$\begin{aligned} B_{L C L 1}=\left[ \begin{array}{cc} \frac{1}{L_{f}} &{} 0 \\ 0 &{} \frac{1}{L_{f}} \\ 0 &{} 0 \\ 0 &{} 0 \\ 0 &{} 0 \\ 0 &{} 0 \end{array}\right] \end{aligned}$$
(D.2)
$$\begin{aligned} B_{L C L 2}=\left[ \begin{array}{cc} 0 &{} 0 \\ 0 &{} 0 \\ 0 &{} 0 \\ 0 &{} 0 \\ -\frac{1}{L_{c}} &{} 0 \\ 0 &{} -\frac{1}{L_{c}} \end{array}\right] B_{L C L 3}=\left[ \begin{array}{c} I_{l q} \\ -I_{l d} \\ V_{o q} \\ -V_{o d} \\ I_{o q} \\ -I_{o d} \end{array}\right] \end{aligned}$$
(D.3)

System Parameters

See Table 7.

Table 7 System parameters

Inverter Modelling

$$\begin{aligned} B_{I N V i}=\left[ \begin{array}{c} 0 \\ 0 \\ 0 \\ B_{L C L 2} T_{s}^{-1} \end{array}\right] B_{i w c o m}=\left[ \begin{array}{c} B_{P w c o m} \\ 0 \\ 0 \\ 0 \end{array}\right] \end{aligned}$$
(F.1)
$$\begin{aligned} \begin{aligned} C_{I N V w_{i}}&=\left[ \begin{array}{lll} C_{P w}&0&0 \end{array}\right] \text{ for } i=1 \\ C_{I N V c i}&=\left[ \begin{array}{lllll} T_{c}&0&0 \end{array}\right]&0 \quad 0&\left. \left[ \begin{array}{lll} 0&0&T_{s} \end{array}\right] \right] \\&=\left[ \begin{array}{llll} 0&0&0&0 \end{array}\right] \text{ for } i \ne 1 \end{aligned} \end{aligned}$$
(F.2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, P.S., Parimi, A.M. Design and Analysis of Decentralized Virtual Impedance Based Controller for Enhancing Power Sharing and Stability in an Islanded Microgrid. J. Electr. Eng. Technol. 18, 1769–1783 (2023). https://doi.org/10.1007/s42835-022-01336-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-022-01336-4

Keywords

Navigation