The Docking and Physiological Characteristics as Detectors of Nanoparticle’s Role in Plant Responses to Biotic Stress

  • Chapter
  • First Online:
Nanoparticles in Plant Biotic Stress Management

Abstract

Plant pathogens and other pests that feed on plants are a major cause of crop loss. Historically, many pesticides have been used to control plant pests, even though these chemicals are extremely toxic. However, these chemicals are considered fundamentals of supplying food and reducing crop loss. As a result, plant diseases are one of the biotic stresses that harm plants and productivity in general. Recently, nanomaterial has been utilized as a novel method to reduce the amount of hazardous substances released into the environment. The present chapter aims to shed light on the physiological effects of nanomaterial in terms of hormonal and enzymatic aspects as their role as exterminators for some diseases, in addition to highlighting some innovative new tools used to give a visualization of the nanomaterial-pathogen site of action, interaction, and their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM et al (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18(1):120

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdelkhalek A, Király L, Al-Mansori ANA, Younes HA, Zeid A, Elsharkawy MM, Behiry SI (2022) Defense responses and metabolic changes involving phenylpropanoid pathway and PR genes in squash (Cucurbita pepo L.) following Cucumber mosaic virus infection. Plants, 11(15):1908.

    Google Scholar 

  • Adil M, Bashir S, Bashir S, Aslam Z, Ahmad N, Younas T et al (2022) Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Front Plant Sci 13:932861

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal S, Jangir DK, Mehrotra R, Lohani N, Rajeswari M (2014) A structural insight into major groove directed binding of nitrosourea derivative nimustine with DNA: a spectroscopic study. PLoS One 9:e104115. https://doi.org/10.1371/journal.pone.0104115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrahari S, Dubey A (2020) Nanoparticles in plant growth and development. In: Biogenic nano-particles and their use in agro-ecosystems, pp 9–37

    Google Scholar 

  • Ahmed B, Rizvi A, Ali K, Lee J, Zaidi A, Khan MS, Musarrat J (2021) Nanoparticles in the soil–plant system: a review. Environ Chem Lett 19:1545–1609

    Article  CAS  Google Scholar 

  • Alanazi MA, Arafa WAA, Althobaiti IO, Altaleb HA, Bakr RB, Elkanzi NAA (2022) Green design, synthesis, and molecular docking study of novel quinoxaline derivatives with insecticidal potential against Aphis craccivora. ACS Omega 7(31):27674–27689. https://doi.org/10.1021/acsomega.2c03332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alhammad BA, Ahmad A, Seleiman MF (2023) Nano-hydroxyapatite and ZnO-NPs mitigate Pb stress in maize. Agronomy 13(4):1174

    Article  CAS  Google Scholar 

  • Ali S, Mehmood A, Khan N (2021) Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. J Nanomater 2021:1–17

    Article  Google Scholar 

  • Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR (2018) Pattern recognition receptors and the host cell death molecular machinery. Frontiers in immunology, 9:417707.

    Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P et al (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Befort BJ, DeFever RS, Tow GM, Dowling AW, Maginn EJ (2021) Machine learning directed optimization of classical molecular modeling force fields. J Chem Inf Model 61(9):4400–4414

    Article  CAS  PubMed  Google Scholar 

  • Benjamin SR, de Lima F, Nascimento VAD, de Andrade GM, Oriá RB (2023) Advancement in paper-based electrochemical biosensing and emerging diagnostic methods. Biosensors 13(7):689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang X, Pan D, Lyu S, Wei X, Wang C (2017) Titanium as a beneficial element for crop production

    Google Scholar 

  • Choudhary A, Singh S, Ravichandiran V (2022) Toxicity, preparation methods and applications of silver nanoparticles: an update. Toxicol Mech Methods 32(9):650–661

    Article  CAS  PubMed  Google Scholar 

  • Dar AM, Mir S (2017) Molecular docking: approaches, types, applications and basic challenges. J Anal Bioanal Tech 8:356. https://doi.org/10.4172/2155-9872.1000356

    Article  CAS  Google Scholar 

  • Daramola OB, Omole RK, Akinwale IV, Otuyelu FO, Akinsanola BA, Fadare TO et al (2022) Bio-receptors functionalized nanoparticles: a resourceful sensing and colorimetric detection tool for pathogenic bacteria and microbial biomolecules. Front Nanotechnol 4:885803

    Article  Google Scholar 

  • Desai AS, Singh A, Edis Z, Haj Bloukh S, Shah P, Pandey B, Bhagat N (2022) An in vitro and in vivo study of the efficacy and toxicity of plant-extract-derived silver nanoparticles. Journal of Functional Biomaterials, 13(2):54.

    Google Scholar 

  • Domínguez-Arrizabalaga M, Villanueva M, Escriche B, Ancín-Azpilicueta C, Caballero P (2020) Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins 12:430. https://doi.org/10.3390/toxins12070430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Abeid SE, Ahmed Y, Daròs JA, Mohamed MA (2020) Reduced graphene oxide nanosheet-decorated copper oxide nanoparticles: a potent antifungal nanocomposite against fusarium root rot and wilt diseases of tomato and pepper plants. Nanomaterials 10(5):1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmer W, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease-infested soil or soilless medium. Environ Sci Nano 3(5):1072. https://doi.org/10.1039/C6EN00146G

    Article  CAS  Google Scholar 

  • El-Sayed ESR, Mohamed SS, Mousa SA, El-Seoud MAA, Elmehlawy AA, Abdou DA (2023) Bifunctional role of some biogenic nanoparticles in controlling wilt disease and promoting growth of common bean. AMB Express 13(1):41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Chang J, Wang Z, Zhang H, Wang T (2023) Advances in transport and toxicity of nanoparticles in plants. J Nanobiotechnol 21(1):75

    Article  CAS  Google Scholar 

  • Ghamari R, Ahmadikhah A, Tohidfar M, Bakhtiarizadeh MR (2022) RNA-Seq analysis of Magnaporthe grisea transcriptome reveals the high potential of ZnO nanoparticles as a nanofungicide. Front Plant Sci 13:896283

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghorbanpour M, Movahedi A, Hatami M, Kariman K, Bovand F, Shahid MA (2021) Insights into nanoparticle-induced changes in plant photosynthesis. Photosynthetica 59(4):570–586

    Article  CAS  Google Scholar 

  • Gomaa EZ (2022) Nanozymes: a promising horizon for medical and environmental applications. J Clust Sci 33(4):1275–1297

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M (2021) Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int J Mol Sci 22:9326. https://doi.org/10.3390/ijms22179326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Martínez P, Vera-Velasco NM, Martínez-Solís M, Ghislain M, Ferré J, Escriche B (2014) Shared binding sites for the Bacillus thuringiensis proteins Cry3Bb, Cry3Ca, and Cry7Aa in the African sweet potato pest Cylas puncticollis (Brentidae). Appl Environ Microbiol 80:7545–7550. https://doi.org/10.1128/AEM.02514-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt PA, Chaires JB, Trent JO (2008) Molecular docking of intercalators and groove-binders to nucleic acids using Autodock and Surflex. J Chem Inf Model 48:1602–1615. https://doi.org/10.1021/ci800063v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain F, Hadi F, Rongliang Q (2021) Effects of zinc oxide nanoparticles on antioxidants, chlorophyll contents, and proline in Persicaria hydropiper L. and its potential for Pb phytoremediation. Environ Sci Pollut Res 28:34697–34713

    Article  CAS  Google Scholar 

  • Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21:281–306

    Article  CAS  PubMed  Google Scholar 

  • Jain D, Khurana JP (2018) Role of pathogenesis-related (PR) proteins in plant defense mechanism. In: Singh A, Singh IK (eds) Molecular aspects of plant-pathogen interaction. Springer, Singapore, pp 265–281

    Chapter  Google Scholar 

  • Jang JH, Shin HW, Lee JM, Lee HW, Kim EC, Park SH (2015) An overview of pathogen recognition receptors for innate immunity in dental pulp. Mediat Inflamm 2015:794143

    Article  Google Scholar 

  • Jeelani PG, Mulay P, Venkat R, Ramalingam C (2020) Multifaceted application of silica nanoparticles. A review. Silicon 12:1337–1354

    Article  CAS  Google Scholar 

  • Jiang HS, Yin LY, Ren NN, Zhao ST, Li Z, Zhi Y et al (2017) Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology 11:157–167. https://doi.org/10.1080/17435390.2017.1278802. [PubMed] [CrossRef] [Google Scholar]

    Article  CAS  PubMed  Google Scholar 

  • Jurat-Fuentes JL, Crickmore N (2017) Specificity determinants for Cry insecticidal proteins: insights from their mode of action. J Invertebr Pathol 142:5–10. https://doi.org/10.1016/j.jip.2016.07.018

    Article  CAS  PubMed  Google Scholar 

  • Kandhol N, Jain M, Tripathi DK (2022) Nanoparticles as potential hallmarks of drought stress tolerance in plants. Physiol Plant 174(2):e13665. https://doi.org/10.1111/ppl.13665

    Article  CAS  PubMed  Google Scholar 

  • Karvar M, Azari A, Rahimi A, Maddah-Hosseini S, Ahmadi-Lahijani MJ (2022) Titanium dioxide nanoparticles (TiO2-NPs) enhance drought tolerance and grain yield of sweet corn (Zea mays L.) under deficit irrigation regimes. Acta Physiol Plant 44(2):14

    Article  CAS  Google Scholar 

  • Khalid MF, Iqbal Khan R, Jawaid MZ, Shafqat W, Hussain S, Ahmed T, Rizwan M, Ercisli S, Pop OL, Alina Marc R (2022) Nanoparticles: the plant saviour under abiotic stresses. Nanomaterials 12:3915. https://doi.org/10.3390/nano12213915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MR, Adam V, Rizvi TF, Zhang B, Ahamad F, Jośko I, Zhu Y, Yang M, Mao C (2019) Nanoparticle-plant interactions: two-way traffic. Small 15:e1901794. https://doi.org/10.1002/smll.201901794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodakovskaya M et al (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135. https://doi.org/10.1021/nn204643g

    Article  CAS  PubMed  Google Scholar 

  • Khoshru B, Mitra D, Joshi K, Adhikari P, Rion MSI, Fadiji AE et al (2023) Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon 9:e13825. https://doi.org/10.1016/j.heliyon.2023.e13825

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnani KK, Boddu VM, Chadha NK, Chakraborty P, Kumar J, Krishna G, Pathak H (2022) Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes potential and valorization for application in agriculture. Environ Sci Pollut Res 29(54):81130–81165

    Article  CAS  Google Scholar 

  • Lambreva MD, Akhtar P, Sipka G, Margonelli A, Lambrev PH (2023) Fluorescence quenching in thylakoid membranes induced by single-walled carbon nanotubes. Photochem Photobiol Sci 22:1625–1635

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhang Y, Li C, Lin J, Li X (2022) Polyvinyl chloride nanoparticles affect cell membrane integrity by disturbing the properties of the multicomponent lipid bilayer in Arabidopsis thaliana. Molecules 27(18):5906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li DF, Tang Q, Yang MF, Xu HM, Zhu MZ, Zhang Y et al (2023a) Plant-derived exosomal nanoparticles: potential therapeutic for inflammatory bowel disease. Nanoscale Adv 5(14):3575–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, ** K, Liu X, Han S, Han X, Li G et al (2023b) Silica nanoparticles promote wheat growth by mediating hormones and sugar metabolism. J Nanobiotechnol 21(1):2

    Article  CAS  Google Scholar 

  • Lill MA (2011) Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. Biochemistry 50(28):6157–6169

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Li X, Lin X (2020) A review on applications of computational methods in drug screening and design. Molecules 25(6):1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, Zhang J, Xu JF, Pi J (2021) The advancing of selenium nanoparticles against infectious diseases. Front Pharmacol 12:682284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lokhande KB, Pawar SV, Madkaiker S, Nawani N, Venkateswara SK, Ghosh P (2023) High throughput virtual screening and molecular dynamics simulation analysis of phytomolecules against BfmR of Acinetobacter baumannii: anti-virulent drug development campaign. J Biomol Struct Dyn 41(7):2698–2712

    Article  CAS  PubMed  Google Scholar 

  • Majumder S, Eckersall PD, George S (2023) Bovine mastitis: examining factors contributing to treatment failure and prospects of nano-enabled antibacterial combination therapy. ACS Agric Sci Technol 3(7):562–582

    Article  CAS  Google Scholar 

  • Malla BA, Ali A, Maqbool I, Dar NA, Ahmad SB, Alsaffar RM, Rehman MU (2023) Insights into molecular docking and dynamics to reveal therapeutic potential of natural compounds against P53 protein. J Biomol Struct Dyn 41:8762–8781

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra R, Jangir DK, Agarwal S, Ray B, Singh P et al (2013) Interaction studies of anticancer drug lomustine with calf thymus DNA using surface enhanced Raman spectroscopy. MAPAN 28:273–277. https://doi.org/10.1007/s12647-013-0086-5

    Article  Google Scholar 

  • Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Puia C et al (2017) Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J Nanobiotechnol 15:1–14

    Article  Google Scholar 

  • Mosa MA, El-Abeid SE, Khalifa MMA, Elsharouny TH, El-Baz SM, Ahmed AY (2022) Smart pH responsive system based on hybrid mesoporous silica nanoparticles for delivery of fungicide to control fusarium crown and root rot in tomato. J Plant Pathol 104(3):979–992

    Article  Google Scholar 

  • Muhammad I, Shalmani A, Ali M, Yang QH, Ahmad H, Li FB (2021) Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front Plant Sci 11:615942

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair R (2016) Effects of nanoparticles on plant growth and development. In: Plant nanotechnology: principles and practices, pp 95–118

    Google Scholar 

  • Nazir R, Ayub Y, Tahir L. (2020) Green-nanotechnology for precision and sustainable agriculture. In: Biogenic nano-particles and their use in agro-ecosystems, pp 317–357

    Google Scholar 

  • Ochoa-Campuzano C, Real MD, Martínez-Ramírez AC, Bravo A, Rausell C (2007) An ADAM metalloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor. Biochem Biophys Res Commun 362:437–442. https://doi.org/10.1016/j.bbrc.2007.07.197

    Article  CAS  PubMed  Google Scholar 

  • Orihuela A, Ungerfeld R (2019) Tail docking in sheep (Ovis aries): a review on the arguments for and against the procedure, advantages/disadvantages, methods, and new evidence to revisit the topic. Livestock Sci 230:103837

    Article  Google Scholar 

  • Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6:3296–3325. https://doi.org/10.3390/toxins6123296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawar VA, Laware SL (2018) Seed priming a critical review. Int J Sci Res Biol Sci 5(5):94–101

    Google Scholar 

  • Pérez-Labrada F, Hernández-Hernández H, López-Pérez MC, González-Morales S, BenavidesMendoza A, Juárez-Maldonado A (2020) Chapter 13—nanoparticles in plants: morphophysiological, biochemical, and molecular responses. In: Tripathi DK, Singh VP, Chauhan DK, Sharma S, Prasad SM, Dubey NK, Ramawat N (eds) Plant life under changing environment. Academic, Cambridge, pp 289–322

    Chapter  Google Scholar 

  • Poddar K, Sarkar D, Sarkar A (2020) Nanoparticles on photosynthesis of plants: effects and role. In: Green nanoparticles: synthesis and biomedical applications, pp 273–287

    Google Scholar 

  • Rai M et al (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  • Rarey M, Wefing S, Lengauer T (1996) Placement of medium-sized molecular fragments into active sites of proteins. J Comput Aided Mol Des 10:41–54

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN et al (2022) The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: a review. Front Plant Sci 13:976179

    Article  PubMed  PubMed Central  Google Scholar 

  • Rausell C, García-Robles I, Sánchez J, Muñoz-Garay C, Martínez-Ramírez AC, Real MD, Bravo A (2004) Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say). Biochim Biophys Acta 1660:99–105. https://doi.org/10.1016/j.bbamem.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  • Ross GA, Morris GM, & Biggin PC (2012) Rapid and accurate prediction and scoring of water molecules in protein binding sites. PloS one, 7(3):e32036.

    Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806. https://doi.org/10.1128/mmbr.62.3.775-806.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvarajan V, Obuobi S, Ee PLR (2020) Silica nanoparticles—a versatile tool for the treatment of bacterial infections. Front Chem 8:602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheik Amamuddy O, Veldman W, Manyumwa C, Khairallah A, Agajanian S, Oluyemi O et al (2020) Integrated computational approaches and tools for allosteric drug discovery. Int J Mol Sci 21(3):847

    Article  PubMed  PubMed Central  Google Scholar 

  • Sicwetsha S, Mvango S, Nyokong T, Mashazi P (2021) Effective ROS generation and morphological effect of copper oxide nanoparticles as catalysts. J Nanopart Res 23:1–18

    Article  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Nanotechnology and plant sciences: nanoparticles and their impact on plants, pp 19–35

    Google Scholar 

  • Singh KD, Labala RK, Devi TB, Singh NI, Chanu HD, Sougrakpam S, Nameirakpam BS, Sahoo D, Rajashekar Y (2017) Biochemical efficacy, molecular docking and inhibitory effect of 2, 3-dimethylmaleic anhydride on insect acetylcholinesterase. Sci Rep 7(1):12483. https://doi.org/10.1038/s41598-017-12932-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swartzwelter BJ, Mayall C, Alijagic A, Barbero F, Ferrari E, Hernadi S, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Auguste M (2021) Cross-species comparisons of nanoparticle interactions with innate immune systems: a methodological review. Nanomaterials (Basel) 11(6):1528. https://doi.org/10.3390/nano11061528

    Article  CAS  PubMed  Google Scholar 

  • Thwala M, Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctata and the role of testing media parameters. Environ Sci Process Impacts 15:1830–1843. https://doi.org/10.1039/c3em00235g

    Article  CAS  PubMed  Google Scholar 

  • Tian EK, Wang Y, Ren R, Zheng W, Liao W (2021) Gold nanoparticle: recent progress on its antibacterial applications and mechanisms. J Nanomater 2021:2501345

    Article  Google Scholar 

  • Tortella G, Rubilar O, Pieretti JC, Fincheira P, de Melo Santana B, Fernández-Baldo MA et al (2023) Nanoparticles as a promising strategy to mitigate biotic stress in agriculture. Antibiotics (Basel) 12(2):338

    Article  CAS  PubMed  Google Scholar 

  • Tran NN, Le TNQ, Pho HQ, Tran TT, Hessel V (2022) Nanofertilizers and nanopesticides for crop growth. In: Plant and nanoparticles. Singapore, Springer Nature Singapore, pp 367–394

    Chapter  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S et al (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177. https://doi.org/10.1016/j.plaphy.2016.06.015. [PubMed] [CrossRef] [Google Scholar]

    Article  CAS  PubMed  Google Scholar 

  • Tripathi D, Singh M, Pandey-Rai S (2022) Crosstalk of nanoparticles and phytohormones regulate plant growth and metabolism under abiotic and biotic stress. Plant Stress, 100107

    Google Scholar 

  • Van Dijk AD, Boelens R, Bonvin AM (2005) Data-driven docking for the study of biomolecular complexes. FEBS J 272(2):293–312

    Article  PubMed  Google Scholar 

  • Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L et al (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8:e68752. https://doi.org/10.1371/journal.pone.0068752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanti GL, Masaphy S, Kurjogi M, Chakrasali S, Nargund VB (2020) Synthesis and application of chitosan-copper nanoparticles on dam** off causing plant pathogenic fungi. Int J Biol Macromol 156:1387–1395

    Article  CAS  PubMed  Google Scholar 

  • Vivancos J, Labbé C, Menzies JG, Bélanger RR (2015) Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid(SA)-dependent defence pathway. Mol Plant Pathol 16(6):572–582. https://doi.org/10.1111/mpp.12213

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Guo W, Hu Y, Wu J, Wei H, Wang X, …, Wei H (2016) Metal oxide-based nanomaterials for nanozymes. In: Nanozymes: next wave of artificial enzymes, pp 57–91

    Google Scholar 

  • Wang X, **e H, Wang P, Yin H (2023) Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials 16(8):3097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen T, Liu J, He W, Yang A (2020) Nanomaterials and reactive oxygen species (ROS). In: Nanotechnology in regenerative medicine and drug delivery therapy, pp 361–387

    Google Scholar 

  • Wong EL, Vuong KQ, Chow E (2021) Nanozymes for environmental pollutant monitoring and remediation. Sensors 21(2):408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Peng H, Zhu J, Zhao C, Xu H (2022) Design, synthesis, insecticidal activities, and molecular docking of novel pyridylpyrazolo carboxylate derivatives. J Heterocyclic Chem 59:1366–1375. https://doi.org/10.1002/jhet.4476

    Article  CAS  Google Scholar 

  • Yu Z, Li Q, Wang J, Yu Y, Wang Y, Zhou Q, Li P (2020) Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res Lett 15(1):115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhu C, Huang R, Ding Y, Ruan C, Shen XC (2021) Mechanisms of reactive oxygen species generated by inorganic nanomaterials for cancer therapeutics. Front Chem 9:630969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zribi I, Ghorbel M, Brini F (2021) Pathogenesis related proteins (PRs): from cellular mechanisms to plant defense. Curr Protein Pept Sci 22:396–412. https://doi.org/10.2174/1389203721999201231212736

    Article  CAS  PubMed  Google Scholar 

  • Zúñiga-Navarrete F, Gómez I, Peña G, Bravo A, Soberón M (2013) A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles. Peptides 41:81–86. https://doi.org/10.1016/j.peptides.2012.05.019

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sozan E. El-Abeid or Mohamed A. M. El-Tabakh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Abeid, S.E., El-Tabakh, M.A.M., Shehata, A.Z.I., AbdelHamid, R.I., Soliman, A.G. (2024). The Docking and Physiological Characteristics as Detectors of Nanoparticle’s Role in Plant Responses to Biotic Stress. In: Khan, M., Chen, JT. (eds) Nanoparticles in Plant Biotic Stress Management. Springer, Singapore. https://doi.org/10.1007/978-981-97-0851-2_10

Download citation

Publish with us

Policies and ethics

Navigation