Log in

Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The Surflex flexible molecular docking method has been generalized and extended in two primary areas related to the search component of docking. First, incorporation of a small-molecule force-field extends the search into Cartesian coordinates constrained by internal ligand energetics. Whereas previous versions searched only the alignment and acyclic torsional space of the ligand, the new approach supports dynamic ring flexibility and all-atom optimization of docked ligand poses. Second, knowledge of well established molecular interactions between ligand fragments and a target protein can be directly exploited to guide the search process. This offers advantages in some cases over the search strategy where ligand alignment is guided solely by a “protomol” (a pre-computed molecular representation of an idealized ligand). Results are presented on both docking accuracy and screening utility using multiple publicly available benchmark data sets that place Surflex’s performance in the context of other molecular docking methods. In terms of docking accuracy, Surflex-Dock 2.1 performs as well as the best available methods. In the area of screening utility, Surflex’s performance is extremely robust, and it is clearly superior to other methods within the set of cases for which comparative data are available, with roughly double the screening enrichment performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Walters PW, Stahl MT, Murcko MA (1998) Drug Discov Today 3:160–178

    Article  CAS  Google Scholar 

  2. Jain AN (1996) J Comput Aided Mol Des 10:427–440

    Article  CAS  Google Scholar 

  3. Bohm HJ (1994) J Comput Aided Mol Des 8:243–256

    Article  CAS  Google Scholar 

  4. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) J Comput Aided Mol Des 11:425–445

    Article  CAS  Google Scholar 

  5. Rognan D, Lauemoller SL, Holm A, Buus S, Tschinke V (1999) J Med Chem 42:4650–4658

    Article  CAS  Google Scholar 

  6. Wang R, Liu L, Lai L, Tang Y (1998) J Mol Model 4:379–384

    Article  CAS  Google Scholar 

  7. Muegge I, Martin YC (1999) J Med Chem 42:791–804

    Article  CAS  Google Scholar 

  8. Gohlke H, Hendlich M, Klebe G (2000) J Mol Biol 295:337–356

    Article  CAS  Google Scholar 

  9. Welch W, Ruppert J, Jain AN (1996) Chem Biol 3:449–462

    Article  CAS  Google Scholar 

  10. Goodsell DS, Morris GM, Olson AJ (1996) J Mol Recognit 9:1–5

    Article  CAS  Google Scholar 

  11. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  12. Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261:470–489

    Article  CAS  Google Scholar 

  13. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47:1750–1759

    Article  CAS  Google Scholar 

  14. Schulz-Gasch T, Stahl M (2003) J Mol Model (Online) 9:47–57

    CAS  Google Scholar 

  15. Zavodszky MI, Sanschagrin PC, Korde RS, Kuhn LA (2002) J Comput Aided Mol Des 16:883–902

    Article  CAS  Google Scholar 

  16. Jain AN (2003) J Med Chem 46:499–511

    Article  CAS  Google Scholar 

  17. Pham TA, Jain AN (2006) J Med Chem 49:5856–5868

    Article  CAS  Google Scholar 

  18. Bissantz C, Folkers G, Rognan D (2000) J Med Chem 43:4759–4767

    Article  CAS  Google Scholar 

  19. Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Proteins 57:225–242

    Article  CAS  Google Scholar 

  20. Miteva MA, Lee WH, Montes MO, Villoutreix BO (2005) J Med Chem 48:6012–6022

    Article  CAS  Google Scholar 

  21. Jain AN (2004) Curr Opin Drug Discov Devel 7:396–403

    CAS  Google Scholar 

  22. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49:5912–5931

    Article  CAS  Google Scholar 

  23. Perola E, Walters WP, Charifson PS (2004) Proteins 56:235–249

    Article  CAS  Google Scholar 

  24. Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, Jaeger EP (2005) J Med Chem 48:962–976

    Article  CAS  Google Scholar 

  25. Gasteiger J, Sadowski J, Schur J, Selzer P, Steinhauer L, Steinhauer V (1996) J Chem Inf Comput Sci 36:1030–1037

    Article  CAS  Google Scholar 

  26. Perkins E, Sun D, Nguyen A, Tulac S, Francesco M, Tavana H, Nguyen H, Tugendreich S, Barthmaier P, Couto J, Yeh E, Thode S, Jarnagin K, Jain AN, Morgans D, Melese T (2001) Cancer Res 61:4175–4183

    CAS  Google Scholar 

  27. Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbail R, Stallings WC, Connolly DT, Shoichet BK (2002) J Med Chem 45:2213–2221

    Article  CAS  Google Scholar 

  28. Wang R, Fang X, Lu Y, Wang S (2004) J Med Chem 47:2977–2980

    Article  CAS  Google Scholar 

  29. Jain AN (2006) Curr Protein Pept Sci 7:407–420

    Article  CAS  Google Scholar 

  30. Pham TA, Jain AN (2006) J Med Chem 49:5856–5868

    Article  CAS  Google Scholar 

  31. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Proteins 52:609–623

    Article  CAS  Google Scholar 

  32. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  33. Wang R, Lai L, Wang S (2002) J Comput Aided Mol Des 16:11–26

    Article  CAS  Google Scholar 

  34. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW (2000) J Comput Aided Mol Des 14:731–751

    Article  CAS  Google Scholar 

  35. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  36. Jain AN, Dietterich TG, Lathrop RH, Chapman D, Critchlow RE Jr, Bauer BE, Webster TA, Lozano-Perez T (1994) J Comput Aided Mol Des 8:635–652

    Article  CAS  Google Scholar 

  37. Jain AN, Koile K, Chapman D (1994) J Med Chem 37:2315–2327

    Article  CAS  Google Scholar 

  38. Jain AN, Harris NL, Park JY (1995) J Med Chem 38:1295–1308

    Article  CAS  Google Scholar 

  39. Dietterich TG, Lathrop RH, Lozano-Perez T (1997) Artif Intell 89:31–71

    Article  Google Scholar 

  40. Jain AN (2000) J Comput Aided Mol Des 14:199–213

    Article  CAS  Google Scholar 

  41. Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  42. Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  43. Jain AN (2004) J Med Chem 47:947–961

    Article  CAS  Google Scholar 

  44. Lei S, Smith MR (2003) IEEE Trans Softw Eng 29:996–1004

    Article  Google Scholar 

  45. Hawkins PC, Skillman AG, Nicholls A (2007) J Med Chem 50:74–82

    Article  CAS  Google Scholar 

  46. Huang N, Shoichet BK, Irwin JJ (2006) J Med Chem 49:6789–6801

    Article  CAS  Google Scholar 

  47. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) J Med Chem 49:6177–6196

    Article  CAS  Google Scholar 

  48. Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WT, Mortenson PN, Murray CW (2007) J Med Chem 50:726–741

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges NIH for partial funding of the work (grant GM070481). Dr. Jain is indebted to Max Cummings for sharing the J&J set, Emanuele Perola for sharing the Vertex Set and performance data, to Bob Clark and Essam Metwally for identifying structural inconsistencies within the original Pham set, and to Ann Cleves for comments on the manuscript. Dr. Jain has a financial interest in BioPharmics LLC, a biotechnology company whose main focus is in the development of methods for computational modeling in drug discovery. Tripos Inc., has exclusive commercial distribution rights for Surflex-Dock, licensed from BioPharmics LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay N. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A.N. Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21, 281–306 (2007). https://doi.org/10.1007/s10822-007-9114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9114-2

Keywords

Navigation