The Application of 4-Hexylresorcinol in Tissue Engineering

  • Chapter
  • First Online:
Biomedical Application of 4-Hexylresorcinol
  • 33 Accesses

Abstract

This chapter explores the potential applications of 4-hexylresorcinol (4HR) in tissue engineering, focusing on its use in silk fibroin membrane (SFM), bone graft materials, vessel regeneration, and inhibition of foreign body reactions. The incorporation of 4HR into SFM demonstrated improved bone regeneration and an acceleration of partial degradation of the SFM. However, further research is required to determine if complete resorption can be achieved. Additionally, the chapter discusses the development of 4HR-incorporated bone graft materials, including the combination of 4HR with hydroxyapatite, porcine bone, bovine bone, and sericin. These materials show promising results in enhancing bone formation and vessel regeneration while inhibiting foreign body reactions. Despite these promising findings, more research and human clinical trials are necessary to confirm their efficacy and safety. Overall, this chapter highlights the potential of 4HR-incorporated materials in tissue engineering and provides a foundation for future investigations in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Q, Lan P (2023) Activation of immune signals during organ transplantation. Signal Transduct Target Ther 8:110

    Article  PubMed  PubMed Central  Google Scholar 

  2. Troeltzsch M, Troeltzsch M, Kauffmann P et al (2016) Clinical efficacy of grafting materials in alveolar ridge augmentation: a systematic review. J Craniomaxillofac Surg 44(10):1618–1629

    Article  PubMed  Google Scholar 

  3. Batoni E, Bonatti AF, De Maria C et al (2023) A computational model for the release of bioactive molecules by the hydrolytic degradation of a functionalized polyester-based scaffold. Pharmaceutics 15(3):815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matsumoto A, Kajiya H, Yamamoto MN et al (2019) Degradation rate of DNA scaffolds and bone regeneration. J Biomed Mater Res B Appl Biomater 107(1):122–128

    Article  CAS  PubMed  Google Scholar 

  5. Wegner SV, Sentürk OI, Spatz JP (2015) Photocleavable linker for the patterning of bioactive molecules. Sci Rep 5:18309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang H, Zhou L, Zhang W (2014) Control of scaffold degradation in tissue engineering: a review. Tissue Eng Part B Rev 20(5):492–502

    Article  CAS  PubMed  Google Scholar 

  7. Nikolaev YA, Tutel'yan AV, Loiko NG et al (2020) The use of 4-hexylresorcinol as antibiotic adjuvant. PLoS One 15(9):e0239147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim SG (2022) 4-hexylresorcinol: pharmacologic chaperone and its application for wound healing. Maxillofac Plast Reconstr Surg 44:5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jo YY, Kweon H, Kim DW et al (2017) Accelerated biodegradation of silk sutures through matrix metalloproteinase activation by incorporating 4-hexylresorcinol. Sci Rep 7:42441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jo YY, Kim DW, Choi JY, Kim SG (2019) 4-hexylresorcinol and silk sericin increase the expression of vascular endothelial growth factor via different pathways. Sci Rep 9:3448

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kazi S, Raptis S, Abbaspour F, Zeng W (2022) Foreign body-type giant cell reaction with extensive granulation tissue and intense inflammation after chemotherapy mimicking residual lymphoma on FDG PET. Eur J Hybrid Imaging 6:18

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eslami-Kaliji F, Hedayat Nia N, Lakey JR, Smink AM, Mohammadi M (2023) Mechanisms of foreign body giant cell formation in response to implantable biomaterials. Polymers 15:1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ahmadzadeh K, Vanoppen M, Rose C, Matthys P, Wouters C (2022) Multinucleated Giant cells: current insights in phenotype, biological activities, and mechanism of formation. Front Cell Dev Biol 10:724

    Article  Google Scholar 

  14. Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M (2015) Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials 8:5671–5701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jakubczyk K, Dec K, Kałduńska J, Kawczuga D, Kochman J, Janda K (2020) Reactive oxygen species—sources, functions, oxidative damage. Pol Merkur Lekarski 48:124–127

    PubMed  Google Scholar 

  16. Ren X, Liu H, Wu X, Weng W, Wang X, Su J (2022) Reactive oxygen species (ROS)-responsive biomaterials for the treatment of bone-related diseases. Front Bioeng Biotechnol 9:820468

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shafiq M, Chen Y, Hashim R, He C, Mo X, Zhou X (2021) Reactive oxygen species-based biomaterials for regenerative medicine and tissue engineering applications. Front Bioeng Biotechnol 9:821288

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hasanuzzaman M, Raihan MRH, Masud AAC et al (2021) Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int J Mol Sci 22:9326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hunyadi A (2019) The mechanism(s) of action of antioxidants: from scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med Res Rev 39:2505–2533

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z, Ren Z, Zhang J et al (2018) Role of ROS and nutritional antioxidants in human diseases. Front Physiol 9:477

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhi Z, Su Y, ** Y et al (2017) Dual-functional polyethylene glycol-b-polyhexanide surface coating with in vitro and in vivo antimicrobial and antifouling activities. ACS Appl Mater Interfaces 9:10383–10397

    Article  CAS  PubMed  Google Scholar 

  22. McNally AK, Anderson JM (2003) Foreign body-type multinucleated giant cell formation is potently induced by alpha-tocopherol and prevented by the diacylglycerol kinase inhibitor R59022. Am J Pathol 163:1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knight JA (2000) Review: free radicals, antioxidants, and the immune system. Ann Clin Lab Sci 30:145–158

    CAS  PubMed  Google Scholar 

  24. Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV (2020) Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Front Immunol 11:570122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown J, Lu CL, Coburn J, Kaplan DL (2015) Impact of silk biomaterial structure on proteolysis. Acta Biomater 11:212–221

    Article  CAS  PubMed  Google Scholar 

  26. Kweon H, Kim SG, Choi JY (2014) Inhibition of foreign body giant cell formation by 4-hexylresorcinol through suppression of diacylglycerol kinase delta gene expression. Biomaterials 35:8576–8584

    Article  CAS  PubMed  Google Scholar 

  27. Sakai H, Sakane F (2012) Recent progress on type II diacylglycerol kinases: the physiological functions of diacylglycerol kinase delta, eta and kappa and their involvement in disease. J Biochem 152:397–406

    Article  CAS  PubMed  Google Scholar 

  28. Gassaway BM, Petersen MC, Surovtseva YV et al (2018) PKCε contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proc Natl Acad Sci USA 115:E8996–E9005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carman GM, Kersting MC (2004) Phospholipid synthesis in yeast: regulation by phosphorylation. Biochem Cell Biol 82(1):62–70

    Article  CAS  PubMed  Google Scholar 

  30. Canton M, Sánchez-Rodríguez R, Spera I et al (2021) Reactive oxygen species in macrophages: sources and targets. Front Immunol 12:734229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Di Cera E (2009) Serine proteases. IUBMB Life 61(5):510–515

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vérollet C, Charrière GM, Labrousse A, Cougoule C, Le Cabec V, Maridonneau-Parini I (2011) Extracellular proteolysis in macrophage migration: losing grip for a breakthrough. Eur J Immunol 41(10):2805–2813

    Article  PubMed  Google Scholar 

  33. Skjøt-Arkil H, Barascuk N, Register T, Karsdal MA (2010) Macrophage-mediated proteolytic remodeling of the extracellular matrix in atherosclerosis results in neoepitopes: a potential new class of biochemical markers. Assay Drug Dev Technol 8(5):542–552

    Article  PubMed  Google Scholar 

  34. Kawano T, Inokuchi J, Eto M, Murata M, Kang JH (2021) Activators and inhibitors of protein kinase C (PKC): their applications in clinical trials. Pharmaceutics 13(11):1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mellor H, Parker P (1998) The extended protein kinase C superfamily. Biochem J 332:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheleznyak A, Brown EJ (1992) Immunoglobulin-mediated phagocytosis by human monocytes requires protein kinase C activation. Evidence for protein kinase C translocation to phagosomes. J Biol Chem 267:12042

    Article  CAS  PubMed  Google Scholar 

  37. Larsen EC, DiGennaro JA, Saito N et al (2000) Differential requirement for classic and novel PKC isoforms in respiratory burst and phagocytosis in RAW 264.7 cells. J Immunol 165:2809

    Article  CAS  PubMed  Google Scholar 

  38. Lutz MA, Correll PH (2003) Activation of CR3-mediated phagocytosis by MSP requires the RON receptor, tyrosine kinase activity, phosphatidylinositol 3-kinase, and protein kinase C ζ. J Leukoc Biol 73:802

    Article  CAS  PubMed  Google Scholar 

  39. Kolczynska K, Loza-Valdes A, Hawro I, Sumara G (2020) Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis 19:113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Allen L, Aderem A (1996) Molecular definition of distinct cytoskeletal structures involved in complement- and fc receptor-mediated phagocytosis in macrophages. J Exp Med 184:627

    Article  CAS  PubMed  Google Scholar 

  41. Keranen LM, Dutil EM, Newton AC (1995) Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Curr Biol 5:1394

    Article  CAS  PubMed  Google Scholar 

  42. Tsutakawa SE, Medzihradszky KF, Flint AJ et al (1995) Determination of in vivo phosphorylation sites in protein kinase C. J Biol Chem 270:26807

    Article  CAS  PubMed  Google Scholar 

  43. Zhang F, Zhao G, Dong Z (2001) Phosphatidylcholine-specific phospholipase C and D in stimulation of RAW264.7 mouse macrophage like cells by lipopolysaccharide. Int Immunopharmacol 1(7):1375–1384

    Article  CAS  PubMed  Google Scholar 

  44. Aslam N, Alvi F (2019) How the DAG generation, transient shuttling of effector molecules and assembly of a signalosome at immunological synapse can regulate the early T cell response and L-selectin shedding? FASEB J 33(S1):802–807

    Article  Google Scholar 

  45. McNally AK, Anderson JM (2011) Chapter 7. Macrophage fusion and multinucleated giant cells of inflammation. In: Dittmar T, Zänker KS (eds) Cell fusion in health and disease, advances in experimental medicine and biology, vol 713. Springer, Heidelberg, pp 97–111

    Google Scholar 

  46. Zachman AL, Page JM, Prabhakar G, Guelcher SA, Sung HJ (2013) Elucidation of adhesion-dependent spontaneous apoptosis in macrophages using phase separated PEG/polyurethane films. Acta Biomater 9(2):4964–4975

    Article  CAS  PubMed  Google Scholar 

  47. El Kebir D, Gjorstrup P, Filep JG (2012) Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc Natl Acad Sci USA 109:14983–14988

    Article  PubMed  PubMed Central  Google Scholar 

  48. **ao W, Chen P, Wang R, Dong J (2013) Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF. Eur J Appl Physiol 113:117–125

    Article  CAS  PubMed  Google Scholar 

  49. Miura M, Hiwatashi N (1987) Impaired monocyte macrophages function in patients with Crohn's disease. J Clin Lab Immunol 24:167–170

    CAS  PubMed  Google Scholar 

  50. Nakanishi-Matsui M, Yano S, Futai M (2013) Lipopolysaccharide-induced multinuclear cells: increased internalization of polystyrene beads and possible signals for cell fusion. Biochem Biophys Res Commun 440:611–616

    Article  CAS  PubMed  Google Scholar 

  51. Wang D, Xu Y, Li Q, Turng LS (2020) Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B 8:1801–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sarkar S, Sales KM, Hamilton G, Seifalian AM (2007) Addressing thrombogenicity in vascular graft construction. J Biomed Mater Res B Appl Biomater 82:100–108

    Article  PubMed  Google Scholar 

  53. Kyriakides TR, Kim HJ, Zheng C, Harkins L, Tao W, Deschenes E (2022) Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity. Biomed Mater 17:022007

    Article  CAS  Google Scholar 

  54. Schwartz BS (1990) Heparin: what is it? How does it work? Clin Cardiol 13:VI12-VI15

    Article  Google Scholar 

  55. Biran R, Pond D (2017) Heparin coatings for improving blood compatibility of medical devices. Adv Drug Deliv Rev 112:12–23

    Article  CAS  PubMed  Google Scholar 

  56. Gryglewski RJ (1995) Endothelial nitric oxide, prostacyclin (PGI2) and tissue plasminogen activator (t-PA): alliance or neutrality? Pol J Pharmacol 47:467–472

    CAS  PubMed  Google Scholar 

  57. Maidoub H, Ben Mansour M, Chaubet F, Roudesli MS, Maaroufi RM (2009) Anticoagulant activity of a sulfated polysaccharide from the green alga arthrospira platensis. Biochim Biophys Acta 1790:1377–1381

    Article  Google Scholar 

  58. Son MH, Park KH, Choi AR et al (2009) Investigation of biological activities of enzymatic hydrolysate of spirulina. J Korean Soc Food Sci Nutr 38:136–141

    Article  CAS  Google Scholar 

  59. Park AR, Park YH, Kim HJ et al (2015) Tri-layered silk fibroin and poly-ɛ-caprolactone small diameter vascular grafts tested in vitro and in vivo. Macromol Res 23:924–936

    Article  CAS  Google Scholar 

  60. Kweon H, Jo YY, Seok H et al (2017) In vivo bone regeneration ability of different layers of natural silk cocoon processed using an eco-friendly method. Macromol Res 25:806–816

    Article  CAS  Google Scholar 

  61. Liu S, Dong C, Lu G et al (2013) Bilayered vascular grafts based on silk proteins. Acta Biomater 9:8991–9003

    Article  CAS  PubMed  Google Scholar 

  62. Chantawong P, Tanaka T, Uemura A et al (2017) Silk fibroin-pellethane® cardiovascular patches: effect of silk fibroin concentration on vascular remodeling in rat model. J Mater Sci Mater Med 28:191

    Article  PubMed  Google Scholar 

  63. Ha YY, Park YW, Kweon H, Jo YY, Kim SG (2014) Comparison of the physical properties and in vivo bioactivities of silkworm-cocoon-derived silk membrane, collagen membrane, and polytetrafluoroethylene membrane for guided bone regeneration. Macromol Res 22:1018–1023

    Article  CAS  Google Scholar 

  64. Kim CW, Kim MK, Kim SG et al (2018) Angioplasty using 4-hexylresorcinol-incorporated silk vascular patch in rat carotid defect model. Appl Sci 8:2388

    Article  CAS  Google Scholar 

  65. Cao Y, Wang B (2009) Biodegradation of silk biomaterials. Int J Mol Sci 10:1514–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pérez-Rigueiro J, Elices M, Llorca J, Viney C (2001) Tensile properties of silkworm silk obtained by forced silking. J Appl Polym Sci 82:1928–1935

    Article  Google Scholar 

  67. Lamboni L, Gauthier M, Yang G, Wang Q (2015) Silk sericin: a versatile material for tissue engineering and drug delivery. Biotechnol Adv 33:1855–1867

    Article  CAS  PubMed  Google Scholar 

  68. Bond R, Rerkasem K, Naylor AR, Aburahma AF, Rothwell PM (2004) Systematic review of randomized controlled trials of patch angioplasty versus primary closure and different types of patch materials during carotid endarterectomy. J Vasc Surg 40:1126–1135

    Article  CAS  PubMed  Google Scholar 

  69. Harrison GJ, How TV, Poole RJ et al (2014) Closure technique after carotid endarterectomy influences local hemodynamics. J Vasc Surg 60:418–427

    Article  PubMed  Google Scholar 

  70. Byrne J, Feustel P, Darling RC III (2007) In primary closure, routine patching, and eversion endarterectomy: what is the current state of the literature supporting use of these techniques? Semin Vasc Surg 20:226–235

    Article  PubMed  Google Scholar 

  71. Kang YJ, Noh JE, Lee MJ, Chae WS, Lee SY, Kim SG (2016) The effect of 4-hexylresorcinol on xenograft degradation in a rat calvarial defect model. Maxillofac Plast Reconstr Surg 38:29

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ahn J, Kim SG, Kim MK et al (2016) Topical delivery of 4-hexylresorcinol promotes wound healing via tumor necrosis factor-α suppression. Burns 42:1534–1541

    Article  PubMed  Google Scholar 

  73. Pye AD, Lockhart DE, Dawson MP, Murray CA, Smith AJ (2009) A review of dental implants and infection. J Hosp Infect 72:104–110

    Article  CAS  PubMed  Google Scholar 

  74. Bornstein MM, Cionca N, Mombelli A (2009) Systemic conditions and treatments as risks for implant therapy. Int J Oral Maxillofac Implants 24(Suppl):12–27

    PubMed  Google Scholar 

  75. Yamashita D, Machigashira M, Miyamoto M et al (2009) Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent Mater J 28:461–470

    Article  CAS  PubMed  Google Scholar 

  76. Hayes JS, Khan IM, Archer CW, Richards RG (2010) The role of surface microtopography in the modulation of osteoblast differentiation. Eur Cell Mater 20:98–108

    Article  CAS  PubMed  Google Scholar 

  77. Aykent F, Yondem I, Ozyesil AG, Gunal SK, Avunduk MC, Ozkan S (2010) Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J Prosthet Dent 103:221–227

    Article  CAS  PubMed  Google Scholar 

  78. Burgers R, Gerlach T, Hahnel S, Schwarz F, Handel G, Gosau M (2010) In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clin Oral Implants Res 21:156–164

    Article  PubMed  Google Scholar 

  79. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC (2003) The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann Periodontol 8:227–265

    Article  PubMed  Google Scholar 

  80. Jordan DR, Brownstein S, Faraji H (2004) Clinicopathologic analysis of 15 explanted hydroxyapatite implants. Ophthalmic Plast Reconstr Surg 20:285–290

    Article  PubMed  Google Scholar 

  81. Ganguli A, Steward C, Butler SL et al (2005) Bacterial adhesion to bisphosphonate-coated hydroxyapatite. J Mater Sci Mater Med 16:283–287

    Article  CAS  PubMed  Google Scholar 

  82. Fine DH, Furgang D, Kaplan J, Charlesworth J, Figurski DH (1999) Tenacious adhesion of Actinobacillus actinomycetemcomitans strain CU1000 to salivary-coated hydroxyapatite. Arch Oral Biol 44:1063–1076

    Article  CAS  PubMed  Google Scholar 

  83. Singh U, Grenier D, McBride BC (1989) Bacteroides gingivalis vesicles mediate attachment of Streptococci to serum-coated hydroxyapatite. Oral Microbiol Immunol 4:199–203

    Article  CAS  PubMed  Google Scholar 

  84. Thierer T, Davliakos JP, Keith JD Jr, Sanders JJ, Tarnow DP, Rivers JA (2008) Five-year prospective clinical evaluation of highly crystalline HA MP-1-coated dental implants. J Oral Implantol 34:39–46

    Article  PubMed  Google Scholar 

  85. Weyant RJ (2005) Multiple factors associated with HA-coated implants had more marginal bone loss but greater survival rates at 12 years than pure titanium implants. J Evid Based Dent Pract 5:198–199

    Article  PubMed  Google Scholar 

  86. Wheeler SL (1996) Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int J Oral Maxillofac Implants 11:340–350

    CAS  PubMed  Google Scholar 

  87. Lee EH, Ryu SM, Kim JY et al (2010) Effects of installation depth on survival of a hydroxyapatite-coated Bicon implant for single-tooth restoration. J Oral Maxillofac Surg 68:1345–1352

    Article  PubMed  Google Scholar 

  88. Evans RT, Baker PJ, Coburn RA, Fischman SL, Genco RJ (1977) In vitro antiplaque effects of antiseptic phenols. J Periodontol 48:156–162

    Article  CAS  PubMed  Google Scholar 

  89. Guandalini E, Ioppolo A, Mantovani A, Stacchini P, Giovannini C (1998) 4-hexylresorcinol as inhibitor of shrimp melanosis: efficacy and residues studies; evaluation of possible toxic effect in a human intestinal in vitro model (Caco-2); preliminary safety assessment. Food Addit Contam 15:171–180

    Article  CAS  PubMed  Google Scholar 

  90. Hahn BD, Lee JM, Park DS et al (2009) Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater 5:3205–3214

    Article  CAS  PubMed  Google Scholar 

  91. Kim SG, Hahn BD, Park DS et al (2011) Aerosol deposition of hydroxyapatite and 4-hexylresorcinol coatings on titanium alloys for dental implants. J Oral Maxillofac Surg 69:e354–e363

    Article  PubMed  Google Scholar 

  92. Leonard V (1925) The significance of hexylresorcinol and its homologues in relation to the problem of internal antisepsis. Science 62:408–412

    Article  CAS  PubMed  Google Scholar 

  93. Young CC, Damon SR (1927) Laboratory: the use of hexylresorcinol in the treatment of typhoid carriers. Am J Public Health 17:279–280

    Article  CAS  Google Scholar 

  94. Hahn BD, Park DS, Choi JJ, Ryu J, Yoon WH, Lee BK (2009) Effect of the HA/β-TCP ratio on the biological performance of calcium phosphate ceramic coatings fabricated by a room-temperature powder spray in vacuum. J Am Ceram Soc 92:793–799

    Article  CAS  Google Scholar 

  95. Som A, Yang L, Wong GC, Tew GN (2009) Divalent metal ion triggered activity of a synthetic antimicrobial in cardiolipin membranes. J Am Chem Soc 131:15102–15103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kozubek A, Demel RA (1980) Permeability changes of erythrocytes and liposomes by 5-(n-alk(en)yl) resorcinols from rye. Biochim Biophys Acta 603:220–227

    Article  CAS  PubMed  Google Scholar 

  97. Muliukin AL, Sorokin VV, Loĭko NG et al (2002) Comparative study of the elemental composition of vegetative and resting microbial cells. Mikrobiologiia 71:37–48

    CAS  PubMed  Google Scholar 

  98. Zemskov EA, Loukinova E, Mikhailenko I, Coleman RA, Strickland DK, Belkin AM (2009) Regulation of platelet-derived growth factor receptor function by integrin-associated cell surface transglutaminase. J Biol Chem 284:16693–16703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yi W, Liu T, Gao X, **e Y, Liu M (2021) 4-hexylresorcinol inhibits osteoclastogenesis by suppressing the NF-κB signaling pathway and reverses bone loss in ovariectomized mice. Exp Ther Med 21:354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Robinson HM Jr (1967) Effective antifungal drugs and indications for their use. Med Clin North Am 51:1181–1188

    Article  PubMed  Google Scholar 

  101. Moy RL, Waldman B, Hein DW (1992) A review of sutures and suturing techniques. J Dermatol Surg Oncol 18:785–795

    Article  CAS  PubMed  Google Scholar 

  102. Pillai CKS, Sharma CP (2010) Absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performances. J Biomater Appl 25:291–366

    Article  CAS  PubMed  Google Scholar 

  103. Dennis C, Sethu S, Nayak S, Mohan L, Morsi YY, Manivasagam G (2016) Suture materials-current and emerging trends. J Biomed Mater Res A 104:1544–1559

    Article  CAS  PubMed  Google Scholar 

  104. Chen X, Hou D, Tang X, Wang L (2015) Quantitative physical and handling characteristics of novel antibacterial braided silk suture materials. J Mech Behav Biomed Mater 50:160–170

    Article  CAS  PubMed  Google Scholar 

  105. Martínez-Alvarez O, Montero P, Gómez-Guillén C (2008) Evidence of an active laccase-like enzyme in deepwater pink shrimp (Parapenaeus longirostris). Food Chem 108:624–632

    Article  PubMed  Google Scholar 

  106. Kim DW, Jo YY, Garagiola U et al (2020) Increased level of vascular endothelial growth factors by 4-hexylresorcinol is mediated by transforming growth factor-β1 and accelerates capillary regeneration in the burns in diabetic animals. Int J Mol Sci 21(10):3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee SW, Um IC, Kim SG, Cha MS (2015) Evaluation of bone formation and membrane degradation in guided bone regeneration using a 4-hexylresorcinol-incorporated silk fabric membrane. Maxillofac Plast Reconstr Surg 37:32

    Article  PubMed  PubMed Central  Google Scholar 

  108. Amecke B, Bendix D, Entenmann G (1992) Resorbable polyesters: composition, properties, applications. Clin Mater 10:47–50

    Article  CAS  PubMed  Google Scholar 

  109. Okada T, Hayashi T, Ikada Y (1992) Degradation of collagen suture in vitro and in vivo. Biomaterials 13:448

    Article  CAS  PubMed  Google Scholar 

  110. Siasos G, Tousoulis D, Kioufis S et al (2012) Inflammatory mechanisms in atherosclerosis: the impact of matrix metalloproteinases. Curr Top Med Chem 12:1132–1148

    Article  CAS  PubMed  Google Scholar 

  111. Webster NL, Crowe SM (2006) Matrix metalloproteinases, their production by monocytes and macrophages and their potential role in HIV-related diseases. J Leukoc Biol 80:1052–1066

    Article  CAS  PubMed  Google Scholar 

  112. Durairaj RB (2005) Resorcinol: chemistry, technology and applications. Springer, Berlin, p 60

    Google Scholar 

  113. Krupianskiĭ YF, Yulmetov AR, Timofeev KN, Valeeva RA, Belova AV (2011) Effect of chemical chaperones on properties of lysozyme and the reaction center protein from Rhodobacter sphaeroides. Biofizika 56:13–30

    PubMed  Google Scholar 

  114. Kim SG, Lee JH, Song KC et al (2011) 4-hexylresorcinol inhibits transglutaminase-2 activity and has synergistic effects along with cisplatin in KB cells. Oncol Rep 25:1597–1602

    CAS  PubMed  Google Scholar 

  115. Kim SG, Song JY, Kweon H, Jo YY, Lee KG, Lee SW (2011) 4-hexylresorcinol inhibits NF-κB phosphorylation and has a synergistic effect with cisplatin in KB cells. Oncol Rep 26:1527–1532

    CAS  PubMed  Google Scholar 

  116. Wang Y, Tang Z, Xue R et al (2011) TGF-β1 promoted MMP-2 mediated wound healing of anterior cruciate ligament fibroblasts through NF-κB. Connect Tissue Res 52:218–225

    Article  CAS  PubMed  Google Scholar 

  117. Hermann JS, Buser D (1996) Guided bone regeneration for dental implants. Curr Opin Periodontol 3:168–177

    CAS  PubMed  Google Scholar 

  118. Lee SW, Kim SG (2014) Membranes for the guided bone regeneration. J Korean Assoc Maxillofac Plast Reconstr Surg 36:239–246

    Article  CAS  Google Scholar 

  119. Song JY, Kim SG, Lee JW et al (2011) Accelerated healing with the use of a silk fibroin membrane for the guided bone regeneration technique. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:e26–e33

    Article  PubMed  Google Scholar 

  120. Lee SW, Kim SG, Song JY et al (2013) Silk fibroin and 4-hexylresorcinol incorporation membrane for guided bone regeneration. J Craniofac Surg 24:1927–1930

    Article  PubMed  Google Scholar 

  121. McNally D, Shephard A, Field E (2012) Randomised, double-blind, placebo-controlled study of a single dose of an amylmetacresol/2, 4-dichlorobenzyl alcohol plus lidocaine lozenge or a hexylresorcinol lozenge for the treatment of acute sore throat due to upper respiratory tract infection. J Pharm Pharm Sci 15:281–294

    Article  CAS  PubMed  Google Scholar 

  122. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470

    Article  CAS  PubMed  Google Scholar 

  123. Altman GH, Diaz F, Jakuba C et al (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  CAS  PubMed  Google Scholar 

  124. Aramwit P, Kanokpanont S, De-Eknamkul W, Srichana T (2009) Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng 107:556–561

    Article  CAS  PubMed  Google Scholar 

  125. Schwartzmann M (2000) Use of collagen membranes for guided bone regeneration: a review. Implant Dent 9:63–66

    Article  CAS  PubMed  Google Scholar 

  126. Postlethwait R (1970) Long-term comparative study of nonabsorbable sutures. Ann Surg 171:892–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lam K, Nijenhuis A, Bartels H et al (1995) Reinforced poly (L-lactic acid) fibres as suture material. J Appl Biomater 6:191–197

    Article  CAS  PubMed  Google Scholar 

  128. Salthouse TN, Matlaga BF, Wykoff MH (1977) Comparative tissue response to six suture materials in rabbit cornea, sclera, and ocular muscle. Am J Ophthalmol 84:224–233

    Article  CAS  PubMed  Google Scholar 

  129. Deodhar AK, Rana R (1997) Surgical physiology of wound healing: a review. J Postgrad Med 43:52–56

    CAS  PubMed  Google Scholar 

  130. Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(Suppl 2):S3–S15

    Article  PubMed  Google Scholar 

  131. Kim MK, Park YT, Kim SG, Park YW, Lee SK, Choi WS (2012) The effect of a hydroxyapatite and 4-hexylresorcinol combination graft on bone regeneration in the rabbit calvarial defect model. J Kore Assoc Maxillofac Plast Reconstr Surg 34(6):377–383

    Google Scholar 

  132. Sohn HS, Oh JK (2019) Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res 23:9

    Article  PubMed  PubMed Central  Google Scholar 

  133. Cooper GM, Kennedy MJ, Jamal B, Shields DW (2022) Autologous versus synthetic bone grafts for the surgical management of tibial plateau fractures: a systematic review and meta-analysis of randomized controlled trials. Bone Jt Open 3(3):218–228

    Article  PubMed  PubMed Central  Google Scholar 

  134. Song JY, Kim SG, Park NR, Choi JY (2018) Porcine bone incorporated with 4-hexylresorcinol increases new bone formation by suppression of the nuclear factor kappa B signaling pathway. J Craniofac Surg 29:1983–1990

    Article  PubMed  Google Scholar 

  135. Lee JH, Kweon H, Oh JH et al (2022) 4-hexylresorcinol treatment before degumming increases the β-sheet structure of silk sericin and BMP-2 expression in RAW264.7 cells. Int J Mol Sci 24:150

    Article  PubMed  PubMed Central  Google Scholar 

  136. Jo YY, Kweon H, Kim DW et al (2021) Silk sericin application increases bone morphogenic protein-2/4 expression via a toll-like receptor-mediated pathway. Int J Biol Macromol 190:607–617

    Article  CAS  PubMed  Google Scholar 

  137. Al-Halifa S, Zottig X, Babych M, Côté-Cyr M, Bourgault S, Archambault D (2020) Harnessing the activation of toll-like receptor 2/6 by self-assembled cross-β fibrils to design adjuvanted nanovaccines. Nano 10:1981

    CAS  Google Scholar 

  138. Kang YJ, Yang WG, Chae WS, Kim DW, Kim SG, Rotaru H (2022) Administration of 4-hexylresorcinol increases p53-mediated transcriptional activity in oral cancer cells with the p53 mutation. Oncol Rep 48:160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, SG. (2024). The Application of 4-Hexylresorcinol in Tissue Engineering. In: Biomedical Application of 4-Hexylresorcinol. Springer, Singapore. https://doi.org/10.1007/978-981-97-0637-2_7

Download citation

Publish with us

Policies and ethics

Navigation