Coconut (Cocos nucifera L.)

  • Chapter
  • First Online:
Soil Health Management for Plantation Crops

Abstract

Coconut (Cocos nucifera L.), the perennial tree crop, has a productive lifespan of six to seven decades. During its life cycle, soil plays a crucial role in sustaining its productivity, by providing the necessary physico-chemical and biological soil quality attributes for its sustenance. Soil health is the foundation for sustainable coconut production. The various soil health attributes need to be assessed and understood for designing the suitable location-specific management practices for sustainable production. In this regard, the constraints for production are to be assessed and monitored. Soil pollution as well as climate change also aggravate the already existing soil fertility constraints hindering the palm productivity. Technological options to improve the productivity while maintaining soil health, viz. efficient organic recycling techniques, integrated nutrient management, conservation agriculture, crop** system, cover crop**, and production of location-specific beneficial microbial consortia and nutrient application based on soil test, were reported. The fertility management strategies encompassing both the integrated nutrient management and organic management depending on the socioeconomic as well the ecological scenario need to be utilized for realizing the optimum production potential. Being ‘Kalpa Vriksha’ for human kind, residue recycling through composting techniques is of utmost importance. Approaches such as DRIS, digitization of soil fertility map at micro level, leaf analysis-based nutrition, and conservation agricultural practices are to be given focus in this regard. Microbial solubilizers for particular nutrients such as phosphorus, potassium, zinc, and silicon are to be identified for formulating location-specific soil health management strategies in coconut-based crop** system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

$:

US dollar

%:

Percentage

@:

At the rate

<:

Less than

>:

More than

μg:

Microgram

ACC-1:

Aminocyclopropane-1-carboxylate

ADP:

Adenosine diphosphate

AICRP:

All India Co-ordinated Research Project

Al:

Aluminium

AMP:

Adenosine monophosphate

APM:

Adult palm mixture

ATP:

Adenosine triphosphate

B:

Boron

Ba:

Barium

Bi:

Bismuth

C:

Carbon

C:N:

Carbon/nitrogen ratio

Ca:

Calcium

CaO:

Calcium oxide

Cd:

Cadmium

CD:

Critical difference

CEC:

Cation exchange capacity

CFE:

Chloroform fumigation-extraction

CFI:

Chloroform fumigation-incubation

CFU:

Colony-forming unit

CH4:

Methane

CILY:

Côte d’Ivoire Lethal Yellowing

cm:

Centimetre

cm2:

Square centimetre

cm3:

Cubic centimetre

cmol:

Centimol

CO2 :

Carbon dioxide

COD:

Chowghat Orange Dwarf

Cr:

Chromium

Cu:

Copper

CUE:

Carbon use efficiency

DHA:

Docosahexaenoic acid

DRIS:

Diagnosis and Recommendation Integrated System

EAN:

Enzyme activity number

Ec:

Electrical conductivity

Etc.:

So on

Fe:

Iron

FYM:

Farm yard manure

g:

Gram

h:

Hour

H2O2:

Hydrogen peroxide

ha:

Hectare

IAA:

Indole acetic acid

INM:

Integrated nutrient management

K :

Potassium

K2O:

Potassium oxide

KCl:

Potassium chloride

kg:

Kilogram

L:

Litre

Mg:

Magnesium

mg:

Milligram

MGD:

Malayan Green Dwarf

MgO:

Magnesium oxide

mm:

Millimetre

MNF:

Multi-nutrient fertilizer

Mo:

Molybdenum

N:

Nitrogen

Na:

Sodium

NaCl:

Common salt

NGS:

Next-generation sequencing

NMR:

Nitrogen mineralization rate

NO3:

Nitrate

OM:

Organic matter

P:

Phosphorus

P2O5:

Phosphorus pentoxide

Pb:

Lead

PCR:

Polymerase chain reaction

PGPR:

Plant growth-promoting rhizobacteria

pH:

Power of hydrogen

PLFA:

Phospholipid fatty acid

ppm:

Parts per million

qCO2:

Microbial metabolic quotient

rDNA:

Recombinant deoxyribonucleic acid

RNA:

Ribonucleic acid

S:

Sulphur

Si:

Silicon

SMB:

Soil microbial biomass

SMBC:

Soil microbial biomass carbon

SOC:

Soil organic carbon

SOM:

Soil organic matter

SQI:

Soil quality index

t:

Tonne

TPF:

Thiamine phyrophosphate

VAM:

Vesicular-arbuscular mycorrhiza

WCT:

West Coast Tall

WHO:

World Health Organization

yr:

Year

Zn:

Zinc

References

  • Ambili K, Thomas GV, Indu P, Gopal M, Gupta A (2012) Distribution of arbuscular mycorrhizae associated with coconut and arecanut based crop** systems. Agric Res 1:338–345. https://doi.org/10.1007/s40003-012-0036-4

    Article  Google Scholar 

  • Anderson GD (1967) Increasing coconut yields and income on the sandy soils of the Tanganyika Coast. East Afr Agric Forest J 32(3):310–314

    Article  Google Scholar 

  • Anil Kumar KS, Wahid PA (1988) Root activity pattern of coconut palm. Oleagineux 43:337–342

    Google Scholar 

  • Anithakumari P (2008) Clustering coconut farmers—a successful extension approach for enhancing adoption and income from marginal and small holdings. CORD 24(2):29–39

    Google Scholar 

  • Arachchi LPV (2009) Effect of deep ploughing on the water status of highly and less compacted soils for coconut (Cocos nucifera L.) production in Sri Lanka. Soil Tillage Res 103(2):350–355

    Article  Google Scholar 

  • Arachchi LPV, Liyanage MS (1997) Soil physical conditions and root growth in coconut plantations interplanted with nitrogen fixing trees in Sri Lanka. Agrofor Syst 39:305–318

    Article  Google Scholar 

  • Arachchi LPV, Somasiri LLW (1997) Assessment of oxygen availability in soils of different drainage classes and its effect on coconut root growth. Proc Sri Lanka Assoc Adv Sci 53(2):159–160

    Google Scholar 

  • Arachchi LPV, Yaspa PAJ, Mapa RB, Somapala H (2000) Soil physical constraints and their effect on morphological characters of coconut (Cocos nucifera L.) roots. CORD 16(1):14–33. https://doi.org/10.37833/cord.v16i01.337

    Article  Google Scholar 

  • Arya S (2020) Effect of salinity on growth physiological and biochemical processes of coconut seedlings (Cocos nucifera L.). Doctoral dissertation. Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara, Thrissur, 140 p

    Google Scholar 

  • Ashraf MN, Waqas MA, Rahman S (2022) Microbial metabolic quotient is a dynamic indicator of soil health: trends, implications and perspectives (review). Eurasian Soil Sci 55:1794–1803. https://doi.org/10.1134/S1064229322700119

    Article  Google Scholar 

  • Atapattu AJ, Raveendra SAST, Liyanagedara DS, Piyaratna MGNCK, Herath HMSK (2017a) The role of soil organisms and functions in different coconut based multiple crop** systems. Int J Environ Agric Res 3(2):67–84

    Google Scholar 

  • Atapattu AJ, Senarathne SH, Raveendra SA, Egodawatte WC, Mensah S (2017b) Effect of short term agroforestry systems on soil quality in marginal coconut lands in Sri Lanka. Agric Res J 54(3):324–328

    Google Scholar 

  • Avinash RK, Anil Kumar KS, Karthika KS, Kalaiselvi B, Sujatha K (2019) Coconut-growing soils in southern Karnataka: characterization and classification. J Plantn Crops 47(2):96–106

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay A, Ghosh DK, Biswas B, Parameswarappa MH, Timsina J (2019) Fertigation effects on productivity, and soil and plant nutrition of coconut (Cocos nucifera L.) in the eastern indo-gangetic plains of South Asia. Int J Fruit Sci 19(1):57–74

    Article  Google Scholar 

  • Basavaraju TB, Bhagya HP, Prashanth M, Arulraj S, Maheswarappa HP (2014) Effect of fertigation on the productivity of coconut. J Plantn Crops 42(2):198–204

    Google Scholar 

  • Beaufils ER (1973) Diagnosis and recommendation integrated system (DRIS). University of Natal, Pietermartizburg, South Africa. Soil Sci Bull 1:1–132

    Google Scholar 

  • Bhaduri D, Sihi D, Bhowmik A, Verma BC, Munda S, Dari B (2022) A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front Microbiol 13:938481. https://doi.org/10.3389/fmicb.2022.938481

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhalerao PP, Maheswarappa HP, Sumitha S (2021) Effect of integrated nutrient management on coconut (Cocos nucifera) based crop** systems in South Gujarat. Cur Hort 9(2):52–55

    Article  Google Scholar 

  • Biddappa CC, Khan HH, Joshi OP, Manikandan P (1987) Effect of root feeding of heavy metals on the leaf concentration of P, K, Ca and Mg in coconut (Cocos nucifera L.). Plant Soil 101:295–297

    Article  CAS  Google Scholar 

  • Biddappa CC, Upadhyay AK, Hegde MR, Palaniswami C (1996) Organic matter recycling in plantation crops. J Plantn Crops 24:71–85

    Google Scholar 

  • Binitha NK, Ashique TK, George BS, Suresh PR (2017) Soil fertility evaluation of coconut based crop** systems of Kasaragod. Int J Appl Pure Sci Agric 3(7):91–94. https://doi.org/10.22623/IJAPSA.2017.3075.ADVUQ

    Article  Google Scholar 

  • Boomiraj K, Jagadeeswaran R, Karthik S, Poornima R, Jothimani S, Sudhagar RJ (2020) Assessing the carbon sequestration potential of coconut plantation in Vellore district of Tamil Nadu, India. Int J Environ Clim Chang 10(12):618–624

    Article  Google Scholar 

  • Boone FR, Veen BW (1994) Mechanism of crop response to soil compaction. In: Soane BD, Van Ouwerker C (eds) Soil compaction in crop production. Elsevier Science Publishers, New York, pp 237–264

    Chapter  Google Scholar 

  • Bopaiah BM (1988a) Microbiological studies in relation to high density multispecies crop** systems in coconut. Ph.D. thesis. University of Mysore, Mysore, 168 p

    Google Scholar 

  • Bopaiah BM (1988b) Microbiological and biochemical studies in relation to high density multispecies crop** system. CPCRI, Annual report for 1987, pp 30–31

    Google Scholar 

  • Bopaiah BM, Shetty HS (1991) Soil microflora and biological activities in the rhizospheres and root regions of coconut-based multistoreyed crop** and coconut monocrop** systems. Soil Biol Biochem 23(1):89–94

    Article  CAS  Google Scholar 

  • Bopaiah BM, Shetty HS, Nagaraja KV (1987) Biochemical characterization of the root exudates of coconut palm. Curr Sci 56(16):832–833

    CAS  Google Scholar 

  • Bouremani N, Cherif-Silini H, Silini A, Bouket AC, Luptakova L, Alenezi FN, Belbahri L (2023) Plant growth-promoting rhizobacteria (PGPR): a rampart against the adverse effects of drought stress. Water 15(3):418. https://doi.org/10.3390/w15030418

    Article  CAS  Google Scholar 

  • Bruce RC (1956) The relationship among physical properties of soil, distribution of coconut roots and productivity of coconut in the town of Magdalene Laguna. BSA thesis. University of Philippines, College of Agriculture

    Google Scholar 

  • Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia (Jena) 49(6):637–644

    Article  CAS  Google Scholar 

  • Cardoso AF, Alves EC, da Costa SDA, de Moraes AJG, da Silva Júnior DD, Lins PMP, da Silva GB (2021) Bacillus cereus improves performance of Brazilian green dwarf coconut palms seedlings with reduced chemical fertilization. Front Plant Sci 12:649487

    Article  PubMed  PubMed Central  Google Scholar 

  • CDB (2023) Coconut statistics. https://coconutboard.gov.in/, 17 Jun 2023

  • Chew PS (1978) Nutrition of coconuts—a review for formulating guidelines on fertilizer recommendations in Malaysia. Planter 54:115–141

    CAS  Google Scholar 

  • Child R (1974) Coconuts, 2nd edn. Longman Group Ltd., London, 335 p. https://books.google.lk/books?id=2ccfAQAAIAAJ

    Google Scholar 

  • Cooke FC (1936) The coconut industry of the Philippine Islands. Dept. Agric. S.S. and F.M.S. Bull. (Gen. Series) No. 23

    Google Scholar 

  • Corley RHV (1983) Potential productivity of tropical perennial crops. Exp Agric 19:217–237

    Article  Google Scholar 

  • Cosico WC, Fernandez NC (1983) Effect of some land qualities and soil properties on productivity of coconut in the Philippines. Philipp J Crop Sci 8(3):153–158

    Google Scholar 

  • CPCRI (1988) Microbiological and biochemical studies in relation to high density multispecies crop** system. CPCRI annual report, pp 30–31

    Google Scholar 

  • CPCRI (2022) Annual report. ICAR—Central Plantation Crops Research Institute, Kasaragod, 104 p

    Google Scholar 

  • Crisostomo SD, Cruz CDD, Quilloy RB, Reaño CE (2023) Narrowing the yield gap of coconut (Cocos Nucifera L.) through integrated nutrient management in the Philippines: an on-farm experiment approach. IOP Conf Series Earth Environ Sci 1235(1):012008

    Article  Google Scholar 

  • Danoesastro H (1977) Kemungkinanpengembangantanamanpekarangan di daerah pasang surut Kalimantan Selatan dan Kalimantan Tengah. Bulletin test farm P4S UGM no. 1, Yogyakarta, pp 42–69

    Google Scholar 

  • Davis TA (1968) A study on the respiratory organs of Cocos nucifera Linn. Ceylon Coconut Quart 3:116–136

    Google Scholar 

  • De Carvalho Junior JIT, Gonzaga MIS, de Almeida AQ, Araújo J, Santos LCO (2019) Type and quantity of biochar influenced soil microbial activity and carbon priming effect. Semina Ciências Agrárias 40(4):1405–1416. https://doi.org/10.5433/1679-0359.2019v40n4p1405

    Article  CAS  Google Scholar 

  • De Paiva AB, Taniguchi CAK, Romero RE, Garruti DS, Pagan MC, Weber OB (2022) Chemical and microbiological attributes of sandy soil fertilized with crushed green coconut shell. Rev Cienc Agron 53:e20207778

    Article  Google Scholar 

  • De Silva MAT, Anthonypillai GM, Mathes DT (1985) The sulphur nutrition of coconut. Cocos 3:22–28

    Article  Google Scholar 

  • Dexter AR (2004) Soil physical quality: part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120(3–4):201–214

    Article  Google Scholar 

  • Dexter AR, Richard G, Arrouays D, Czyż EA, Jolivet C, Duval O (2008) Complexed organic matter controls soil physical properties. Geoderma 144(3–4):620–627

    Article  CAS  Google Scholar 

  • Dinesh R, Chaudhuri SG (2013) Soil biochemical/microbial indices as ecological indicators of land use change in mangrove forests. Ecol Indic 32:253–258. https://doi.org/10.1016/j.ecolind.2013.03.035

    Article  CAS  Google Scholar 

  • Dinesh R, Chaudhuri SG, Sheeja TE (2004) Soil biochemical and microbial indices in wet tropical forests: effects of deforestation and cultivation. J Plant Nutr Soil Sci 167(1):24–32

    Article  CAS  Google Scholar 

  • Dinesh R, Suryanarayana MA, Chaudhuri SG, Sheeja TE, Shiva KN (2006) Long-term effects of leguminous cover crops on biochemical and biological properties in the organic and mineral layers of soils of a coconut plantation. Eur J Soil Biol 42(3):147–157

    Article  CAS  Google Scholar 

  • Dinesh R, Chaudhuri SG, Sheeja TE, Shiva KN (2009) Soil microbial activity and biomass is stimulated by leguminous cover crops. J Plant Nutr Soil Sci 172:288–296. https://doi.org/10.1002/jpln.200700300

    Article  CAS  Google Scholar 

  • Dissanayaka DMNS, Nuwarapaksha TD, Udumann SS, Dissanayake DKRPL, Atapattu AJ (2022) A sustainable way of increasing productivity of coconut cultivation using cover crops: a review. Circ Agric Sys 2:7. https://doi.org/10.48130/CAS-2022-0007

    Article  Google Scholar 

  • Dissanayaka DMNS, Dissanayake DKRPL, Udumann SS, Nuwarapaksha TD, Atapattu AJ (2023) Agroforestry—a key tool in the climate-smart agriculture context: a review on coconut cultivation in Sri Lanka. Front Agron 5:1162750. https://doi.org/10.3389/fagro.2023.1162750

    Article  Google Scholar 

  • FAO (2015) The impact of natural hazards and disasters on agriculture and food security and nutrition. FAO guidelines. Food and Agriculture Organization of the United Nations, Rome, 15 p

    Google Scholar 

  • FAO and ITPS (2015) Status of the world’s soil resources (SWSR)—main report. Food and Agricultural Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome

    Google Scholar 

  • FAOSTAT (2014). http://faostat3.fao.org. Food Agricultural Organization, Rome

  • Fazeli SM, Sathyanarayan S, Satish PN, Muthanna L (1991) Effect of paper mill effluents on accumulation of heavy metals in coconut trees near Nanjangud, Mysore district, Karnataka, India. Environ Geol Water Sci 17:47–50. https://doi.org/10.1007/BF01716073

    Article  CAS  Google Scholar 

  • Felizardo BC (1972) Response of coconut trees to different cultural management practices. In: Proceedings of the second ASEAN soil conference, Jakarta, Indonesia, pp 263–268

    Google Scholar 

  • Ferreira NM, Gheyi HR, Fernandes PD, Holanda JSD, Blanco FF (2007) Leaf emission, ionic relations and production of coconut irrigated with saline water. Ciência Rural 37:1675–1681

    Google Scholar 

  • Fremond Y (1964) The contribution of IRHO to the study of mineral nutrition of the coconut palm. In: Proceedings of second session. FAQ tech. wkg. pty. cocon. prod. prot. and process, Colombo, Sri Lanka

    Google Scholar 

  • Fuller K (1999) Bolstering the soil environment-site preparation. Paper presented at the 42nd annual IDFTA conference, Dec 20–24, Hamilton, Ontario, Canada, pp 26–28

    Google Scholar 

  • George P, Gupta A, Gopal M, Thomas L, Thomas GV (2012) Screening and in vitro evaluation of phosphate solubilizing bacteria from rhizosphere and roots of coconut palms (Cocos nucifera L.) growing in different states of India. J Plantn Crops 40(1):61–64

    Google Scholar 

  • George P, Gupta A, Gopal M, Thomas L, Thomas GV (2013) Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.). World J Microbiol Biotechnol 29:109–117

    Article  CAS  PubMed  Google Scholar 

  • George P, Gupta A, Gopal M, Thomas L, Thomas GV (2018) Systematic screening strategies for identifying elite plant growth promoting rhizobacteria for coconut (Cocos nucifera L.). Int J Curr Microbiol Appl Sci 7(5):1051–1074

    Article  Google Scholar 

  • George P, Gupta A, Gopal M, Thomas L, Thomas GV (2022) Indigenous rhizobacteria possessing abiotic stress tolerant traits promote vigorous growth of coconut seedlings via increased nutrient uptake and positive plant–microbe feedback. Proc Indian Natl Sci Acad 88(1):64–79. https://doi.org/10.1007/s43538-022-00067-4

    Article  Google Scholar 

  • Ghai SK, Thomas GV (1989) Occurrence of Azospirillum spp. in coconut-based farming systems. Plant Soil 114:235–241

    Article  Google Scholar 

  • Ghavale SL, Shinde VV, Wankhede SM, Maheswarappa HP, Haldankar PM (2020) Carbon sequestration and productivity potential of coconut (Cocos nucifera L.) hybrids and varieties under coastal eco-system of Maharashtra. Curr J Appl Sci Technol 39(22):30–37

    Article  Google Scholar 

  • Ghosh PK, Sarma US, Ravindranath AD, Radhakrishnan S, Ghosh P (2007) A novel method for accelerating composting of coir pith. Energy Fuel 21:822–827

    Article  CAS  Google Scholar 

  • Ghosh DK, Bandyopadhyay A, Maheswarappa HP, Sahu PK, Chakrabarthi K, Biswas B (2017) Flowering crops in coconut based crop** system increases the productivity under Indo Gangetic plains of South Asia. Bioscan 12(3):1653–1659

    Google Scholar 

  • Gome-Falcon N, Saenz-Carbonell LA, Andrade-Torres A, Lara-Perez LA, Narvaez M, Oropeza C (2023) Arbuscular mycorrhizal fungi increase the survival and growth of micropropagated coconut (Cocos nucifera L.) plantlets. In Vitro Cell Dev Biol Plant 17:1–2

    Google Scholar 

  • Gopal M, Gupta A (2005) Microflora of bulk soil from coconut garden and that of rhizosphere of pepper and nutmeg possibly modulate the allelopathic interactions in coconut based crop** system. In: Harper JDI, An M, Wu H, Kent JH (eds) Proceedings of fourth world congress on allelopathy. International Allelopathy Society, pp 287–229

    Google Scholar 

  • Gopal M, Gupta A, Nair RV (2005) Variations in hosting beneficial plant-associated microorganisms by root (wilt)-diseased and field-tolerant coconut palms of West Coast Tall variety. Curr Sci 89(11):1922–1927

    Google Scholar 

  • Gopal M, Gupta A, Sunil E, Thomas GV (2009) Amplification of plant beneficial microbial communities during the conversion of coconut leaf substrate to vermicompost by Eudrilus sp. Curr Microbiol 59:15–20

    Article  CAS  PubMed  Google Scholar 

  • Gopal M, Gupta A, Thomas GV (2010a) Opportunity to sustain coconut ecosystem services through recycling of the palm leaf litter as vermicompost: Indian scenario (a technology/research note). CORD 26(2):42–55

    Google Scholar 

  • Gopal M, Gupta A, Palaniswami C, Dhanapal R, Thomas GV (2010b) Coconut leaf vermiwash: a bio-liquid from coconut leaf vermicompost for improving the crop production capacities of soil. Curr Sci 98:1202–1210

    Google Scholar 

  • Gopal M, Gupta A, Sunil E, Sunoj J, Thomas GV (2010c) Ecological interaction of soil microorganisms and plant allelochemicals in coconut based crop** ecosystem. In: Thomas GV, Krishanakumar V, Maheswarappa HP, Palaniswami C (eds) Coconut based crop**/farming systems. ICAR-Central Plantation Crops Research Institute, Kasaragod, 231 p

    Google Scholar 

  • Gopal M, Gupta A, Thomas GV (2012) Vermicompost and vermiwash add beneficial micro flora that enhance soil quality and sustain crop growth. Int J Innov Hort 1(2):93–100

    Google Scholar 

  • Gopal M, Gupta A, Thomas GV (2016) Production of coir pith compost without adding urea. Indian Coconut J 59(4):29–31

    Google Scholar 

  • Gopal M, Bhute SS, Gupta A, Prabhu SR, Thomas GV, Whitman WB, Jangid K (2017) Changes in structure and function of bacterial communities during coconut leaf vermicomposting. Antonie Van Leeuwenhoek 110:1339–1355. https://doi.org/10.1007/s10482-017-0894-7

    Article  CAS  PubMed  Google Scholar 

  • Gopal M, Gupta A, Hameed KS, Chandramohanan R, Thomas GV (2019) A simple, quick and contamination-free method for mass-multiplication of plant-beneficial microbes by small and marginal farmers using coconut water and rice gruel medium. Indian J Agric Sci 89(2):339–343

    CAS  Google Scholar 

  • Gopal M, Gupta A, Shahul Hameed K, Sathyaseelan N, Khadeejath Rajeela TH, Thomas GV (2020) Biochars produced from coconut palm biomass residues can aid regenerative agriculture by improving soil properties and plant yield in humid tropics. Biochar 2:211–226. https://doi.org/10.1007/s42773-020-00043-5

    Article  Google Scholar 

  • Gopal M, Gupta A, Arunachalam V, Maheswarappa HP, Thomas GV, Jacob PM (2022) Autochthonous nutrient recycling driven by soil microbiota could be sustaining high coconut productivity in Lakshadweep Islands sans external fertilizer application. World J Microbiol Biotechnol 38(11):213. https://doi.org/10.1007/s11274-022-03373-7

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes DV, Gonzaga MIS, da Silva TO, da Silva TL, da Silva DN, Matias MIS (2013) Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res 126:177–182. https://doi.org/10.1016/j.still.2012.07.010

    Article  Google Scholar 

  • Gupta A, Gopal M, Subramanian P, Thomas GV (2010) Bio inputs in coconut based crop** system. In: Thomas GV, Krishnakumar V, Maheswarappa HP, Palaniswami C (eds) Coconut based crop**/farming systems. ICAR-Central Plantation Crops Research Institute, Kasaragod, pp 80–96

    Google Scholar 

  • Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas GV (2014) Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One 9(8):e104259. https://doi.org/10.1371/journal.pone.0104259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Murali G, Thomas GV (2016a) Edible mushroom production technology using coconut residues. Indian Coconut J 59(6):21–23

    Google Scholar 

  • Gupta A, Gopal M, Ravindran D, Thomas GV (2016b) Prevalence of potassium solubilizing bacteria in the rhizosphere of coconut palms (Cocos nucifera L.) growing in different soil types. In: Abstracts of third international symposium on coconut research and development. ICAR-CPCRI, Kasaragod

    Google Scholar 

  • Gupta A, Indhuja S, Vrinda KB, Gopal M (2018) Diversity of macrofungi in coconut ecosystem. In: Patil S, Kumar AR, Reddy PK et al (eds) Book of abstract, 23rd plantation crops symposium. PLACROSYM XXIII, 6–8 Mar 2019, Chikkamagaluru, Karnataka, p 126

    Google Scholar 

  • Hamza MA, Anderson WK (2005) Soil compaction in crop** systems: a review of the nature, causes and possible solutions. Soil Tillage Res 82(2):121–145

    Article  Google Scholar 

  • Herath HMIK, Saumyakumara APA, Tennakoon NA (2007) Soil fertility status of common coconut growing soil series in Sri Lanka. J Soil Sci Soc Sri Lanka 18:35–40

    Google Scholar 

  • Herath HMIK, Silva HM, Synthya PG, Arachchi LPV (2016) Impact of cover crops on soil quality parameters of coconut (Cocos nucifera L.)-grown red yellow podzolic soil. J Food Agric 9(1–2):14–23. https://doi.org/10.4038/jfa.v9i1-2.5203

    Article  Google Scholar 

  • Huang D, Liu X, Huan H, Liu G, Hu A (2023) Intercrop** of Stylosanthes green manure could improve the organic nitrogen fractions in a coconut plantation with acid soil. PLoS One 18(3):e0277944. https://doi.org/10.1371/journal.pone.0277944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ighalo JO, Conradie J, Ohoro CR, Amaku JF, Oyedotun KO, Maxakato NW, Akpomie KG, Okeke ES, Olisah C, Malloum A, Adegoke KA (2023) Biochar from coconut residues: an overview of production, properties, and applications. Ind Crops Prod 5(204):17300

    Google Scholar 

  • Ilangamudali IMPS, Senarathne SHS (2016) Effectiveness of arbuscular mycorrhizal fungi based biofertilizer on early growth of coconut seedlings. Cocos 22:1–12

    Article  Google Scholar 

  • Indhuja S, Babu M, Gupta A, Gopal M, Mathew J, Thomas RJ, Krishnakumar V (2021) Screening and characterization of nutrient solubilizing phytobeneficial rhizobacteria from healthy coconut palms in root (wilt) diseased tract of Kerala, India. J Environ Biol 42(3):625–635

    Article  CAS  Google Scholar 

  • Indian Trade Portal (2023). https://www.indiantradeportal.in/, 17 Jun 2023

  • Irawan S, Antriyandarti E, Laia DH (2022) A study the relationship of soil quality with land suitability for coconut (Cocos nucifera L.) development in Kebonagung sub-district, Pacitan District. IOP Conf Series Earth Environ Sci 1111(1):12–13. https://doi.org/10.1088/1755-1315/1111/1/012013

    Article  Google Scholar 

  • Islam M, Rahaman A, Afrose A (2018) Assessment of heavy metal concentration in coconut water. Recent Res Sci Technol 10:7–10

    CAS  Google Scholar 

  • Issaka RN, Senayah JK, Andoh-Mensah E, Ennin SA (2012) Assessment of fertility status of soils supporting coconut (Cocos nucifera) cultivation in western and central regions of Ghana. West Afr J Appl Ecol 20(1):47–56

    Google Scholar 

  • Iyer R, Gunasekharan M, Hegde V (2018) Coconut: maladies and remedies. In: The coconut palm (Cocos nucifera L.)—research and development perspectives (eds) Nampoothiri KUK, Krishnakumar V, Thampan PK, Nair MA Springer Nature Singapore Pvt. Ltd., 489–518 https://doi.org/10.1007/978-981-13-2754-4_10

    Chapter  Google Scholar 

  • Jayakumar M, Janapriya S, Surendran U (2017) Effect of drip fertigation and polythene mulching on growth and productivity of coconut (Cocos nucifera L.), water, nutrient use efficiency and economic benefits. Agric Water Manag 182:87–93. https://doi.org/10.1016/j.agwat.2016.12.012

    Article  Google Scholar 

  • Jayakumar M, Emana AN, Subbaiya R, Ponraj M, Kumar KK, Muthusamy G, Kim W, Karmegam N (2022) Detoxification of coir pith through refined vermicomposting engaging Eudriluseugeniae. Chemosphere 291:132675

    Article  CAS  PubMed  Google Scholar 

  • Jayasekara KS, Loganathan P (1988) Boron deficiency in young coconut (Cocos nucifera L.) in Sri Lanka: symptoms and corrective measures. Cocos 6:31–37

    Article  Google Scholar 

  • Jemziya MBF (2018) Assessment on physical and chemical properties of surface soil and subsoil of coconut cultivated lands located in region of Batticaloa, Sri Lanka. Int J Res 7(1):1–6

    Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil. I. Fumigation with chloroform. Soil Biol Biochem 8:167–177

    Article  CAS  Google Scholar 

  • Johnson I, Ramjegathesh R, Sheela J, Shoba N, Maheshwarappa HP (2017) Development of microbial consortia for the management of leaf blight disease of coconut. Acta Phytopathol Entomol Hung 52(1):1–14

    Article  CAS  Google Scholar 

  • Joshi OP, Verghese PT, Nelliat EV, Hameed Khan H (1986) Influence of long-term cultural operations on physical and water retention characters of a red sandy loam soil. Int J Trop Agric 4(2):108–115

    Google Scholar 

  • Jothimani S (1994) Organic farming in coconut. Indian Coconut J 25:48–49

    Google Scholar 

  • Kalpana M, Gautam B, Srinivasulu B, Rao DVR, Arulraj S, Jayabose C (2008) Impact of integrated nutrient management on nut yield and quality of coconut under coastal ecosystem. J Plantn Crops 36(3):249–253

    Google Scholar 

  • Katyal JC, Chaudhari SK, Dwivedi BS, Biswas DR, Rattan RK, Majumdar K (2016) Soil health: concept, status and monitoring. Bull Ind Soc Soil Sci 30:1–98

    Google Scholar 

  • Khan HH, Krishnakumar V (2018) Soil productivity and nutrition. In: Nampoothiri KUK, Krishnakumar V, Thampan PK, Nair MA (eds) The coconut palm (Cocos nucifera)—research and development perspectives. Springer, Singapore, pp 323–441. https://doi.org/10.1007/978-981-13-2754-4_10

    Chapter  Google Scholar 

  • Khan HH, Upadhyay AK (2002) Integrated nutrient management in coconut based crop** farming system for sustained productivity. In: Strategic agenda to make coconut industry globally competitive. Proceedings of the XXXIX COCOTECH meeting, 1–5 Jul 2002, Pattaya, Thailand

    Google Scholar 

  • Khan HH, Sankaranarayanan MP, George MV, Narayana KB (1983) Effect of phosphorus skip** on the yield and nutrition of coconut palm (Cocos nucifera L.). J Plantn Crops 11(2):129–134

    CAS  Google Scholar 

  • Kim N, Zabaloy MC, Guan K, Villamil MB (2020) Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol Biochem 142:107701. https://doi.org/10.1016/j.soilbio.2019.107701

    Article  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Biol 46(1):237–260

    Article  CAS  Google Scholar 

  • Kumar BM, Jose S (2018) Phenotypic plasticity of roots in mixed tree species agroforestry systems: review with examples from peninsular India. Agrofor Syst 92:59–69

    Article  Google Scholar 

  • Kumar BM, Kunhamu TK (2022) Nature-based solutions in agriculture: a review of the coconut (Cocos nucifera L.)-based farming systems in Kerala, “the Land of Coconut Trees”. Nat Based Solutions 2:100012. https://doi.org/10.1016/j.nbsj.2022.100012

    Article  Google Scholar 

  • Kumar D, Rakshit R, Rani R, Bharti P, Das A, Kundu M (2022) Integrated nutrient management in coconut (Cocos nucifera L.): an assessment of soil chemical and biological parameters under subtropical humid climate. J Soil Sci Plant Nutr 22(2):2695–2706

    Article  CAS  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220(1–3):242–258

    Article  Google Scholar 

  • Lamanda N, Malézieux E, Roupsard O, Joffre R, Martin P (2004) Soil organic matter in coconut-based agroforestry systems in Vanuatu: a key to sustainability? In: Book of abstracts, first world congress of agroforestry: working together for sustainable land-use systems, 27 Jun–2 Jul 2004, Orlando, USA. IFAS, Gainesville, p 314

    Google Scholar 

  • Lange M, Habekost M, Eisenhauer N, Roscher C, Bessler H, Engels C, Gleixner G (2014) Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLoS One 9(5):e96182

    Article  PubMed  PubMed Central  Google Scholar 

  • Lara-Pérez LA, Oros-Ortega I, Córdova-Lara I et al (2020) Seasonal shifts of arbuscular mycorrhizal fungi in Cocos nucifera roots in Yucatan, Mexico. Mycorrhiza 30:269–283. https://doi.org/10.1007/s00572-020-00944-0

    Article  CAS  PubMed  Google Scholar 

  • Lindao-Pérez JD, Cedeño AL, Villamar-Torres RO, Santillán AD, Mera-Pérez HA, Jazayeri SM (2022) Production and bromatological analysis of the oyster mushroom (Pleurotus ostreatus (jacq. ex fr.) p. kumm.) grown with cocoa, banana, coconut and African palm husk substrates. Acta Agric Sloven 118(1):1–8

    Google Scholar 

  • Lins PMP, Viegas IDJM, Ferreira EVDO (2021) Nutrition and production of coconut palm cultivated with mineral fertilization in the state of Pará. Rev Bras Frutic 43:e-113. https://doi.org/10.1590/0100-29452021113

    Article  Google Scholar 

  • Liyanage MS, Dassanayake KB (1993) Experiences in coconut-based farming systems in Sri Lanka. In: Advances in coconut research and development. Oxford and IBH Publishing Co., New Delhi, pp 357–368

    Google Scholar 

  • Magat SS (1992) Coconut. In: IFA world fertilizer use manual. International Fertilizer Industry Association, Paris, pp 234–244

    Google Scholar 

  • Magat SS (2009) Integrated soil fertility management (ISFM) on coconut + lanzones (Lansium domesticum Corr) agro-ecosystem in Southern Mindanao, Philippines (1993–2007): with emphasis on the multi-nutrient coconut-specific mineral fertilizer. Part II. Influence on Le. CORD 25(2):21–21

    Article  Google Scholar 

  • Magat SS, Margate RZ, Prudente RL (1977) Utilization of common salt (sodium chloride) as a fertilizer and for the control of leaf spot disease of coconut seedlings. Philippines J Coconut Stud 2(3):39–45

    CAS  Google Scholar 

  • Maheswarappa HP, Subramanian P, Dhanapal R (2000) Root distribution pattern of coconut (Cocos nucifera L.) in littoral sandy soil. J Plantn Crops 28(2):164–166

    Google Scholar 

  • Maheswarappa HP, Kumari PA, Kamalakshiamma PG, Shanavas M (2005) Influence of integrated nutrient management and high density multi-species crop** system on soil properties, plant nutrition and yield in root (wilt) affected coconut palms. CORD 21(2):34. https://doi.org/10.37833/cord.v21i02.406

    Article  Google Scholar 

  • Maheswarappa HP, Thomas GV, Bhat R, Palaniswami C, Jayasekhar S (2011) Impact of inorganic fertilizer substitutions by vermicomposted coconut leaves on productivity and economics of coconut. J Plantn Crops 39(1):30–34

    Google Scholar 

  • Maheswarappa HP, Dhanapal R, Subramanian P, Palaniswami C (2013) Evaluation of coconut based high density multi species crop** system under organic and integrated nutrient management. J Plantn Crops 41(2):130–135

    Google Scholar 

  • Maheswarappa HP, Krishnakumar V, Gupta A, Geetha Kumari A (2016) Influence of organic sources of nutrients on vanilla (Vanilla planifolia) as an intercrop in coconut garden. J Plantn Crops 44(2):85–89

    Google Scholar 

  • Maheswarappa HP, Subramanian P, Kumari AG (2017) Influence of organic nutrient management practices for noni (Morinda citrifolia) when grown as an intercrop in coconut garden. Indian J Agric Sci 87(9):1155–1157. https://doi.org/10.56093/ijas.v87i9.74160

    Article  CAS  Google Scholar 

  • Malhotra SK, Maheswarappa HP, Selvamani V, Chowdappa P (2017) Diagnosis and management of soil fertility constraints in coconut (Cocos nucifera): a review. Indian J Agric Sci 87:711–726

    CAS  Google Scholar 

  • Manna MC, Singh M, Wanjari RH, Mandal A, Patra AK, Lal R (2016) Soil nutrient management for carbon sequestration. In: Encyclopedia of soil science, 3rd edn. CRC Press, Boca Raton, FL, pp 288–293. https://doi.org/10.1081/E-ESS3-120052914

    Chapter  Google Scholar 

  • Margate RZ, Magat SS, Alforja LM, Habana JA (1979) A long-term KCI fertilization study of bearing coconuts in an inland-upland area of Davao. Oleaginueux 34(5):235–240

    Google Scholar 

  • Margate RZ, Padrones GD, Maravilla JN, Magat SS, Mantiquilla JA, Silva EC, Rivera V (1997) Integrated soil fertility management of hybrid coconut grown in different agro climatic conditions of the Philippines. CORD 13(01):34–34

    Article  Google Scholar 

  • Marinho HJL, Gheyi HR, Fernandez PD, Holanda JSD, Ferreira Neto M (2006) Cultivation of coconut irrigated with saline waters. Brazil Agric Res 41(8):1277–1284

    Google Scholar 

  • Marohn C, Distel A, Dercon G, Wahyunto Tomlinson R, Noordwijk MV, Cadisch G (2012) Impacts of soil and groundwater salinization on tree crop performance in post-tsunami Aceh Barat, Indonesia. Natl Hazards Earth Syst Sci 12(9):2879–2891

    Article  Google Scholar 

  • Mathew AC, Thamban C, Samuel MP (2018a) Efficacy of water conservation measures in coconut plantations to enhance ground water resource and coconut yield in West Coast region. J Plantn Crops 46(1):12–20

    Google Scholar 

  • Mathew J, Krishnakumar V, Srinivasan V, Bhat R, Namboothiri CG, Haris AA (2018b) Standardization of critical boron level in soil and leaves of coconut palms grown in a tropical Entisol. J Soil Sci Plant Nutr 18(2):376–387

    CAS  Google Scholar 

  • Mathew J, Haris AA, Bhat R, Krishnakumar V, Muralidharan K, John KS, Surendran U (2021a) A comparative assessment of nutrient partitioning in healthy and root (wilt) disease affected coconut palms grown in an Entisol of humid tropical Kerala. Trees 35:621–635. https://doi.org/10.1007/s00468-020-02064-w

    Article  CAS  Google Scholar 

  • Mathew J, Haris AA, Anithakumari P, Bhat R (2021b) Nutrient mixtures—‘Kalpa Poshak’ and ‘Kalpa Vardhini’ for enhancing the productivity of coconut palms. In: Proceedings of the international virtual conference on challenges, opportunities and innovations in agriculture, plantations and allied (APA) domains posed by the pandemic, 21 Oct 2021. Indian Institute of Plantation Management, Bengaluru, pp 7–8

    Google Scholar 

  • Mathew J, Haris AA, Indhuja S, Krishnakumar V, Nair KM, Bhat R, Kumar KA (2022) Effectiveness of site-specific management practices on the amelioration of soil acidity in the coconut growing Entisol and Ultisol of humid tropics. J Soil Sci Plant Nutr 22:1060–1073. https://doi.org/10.1007/s42729-021-00715-6

    Article  CAS  Google Scholar 

  • Mengel K (1996) Turnover of organic nitrogen in soils and its availability to crops. Plant Soil 181:83–93

    Article  CAS  Google Scholar 

  • Merilyn VJ, Thomas GV (1992) Distribution of nitrogen fixing Beijerinckia in the rhizosphere of coconut. J Plantn Crops 20(1):149–155

    CAS  Google Scholar 

  • Mini V, Usha M (2018) Spatial variability of soil fertility in a coconut based agro ecological unit in the sandy plains of Kerala, India. Asian J Soil Sci 13(1):58–62

    Article  Google Scholar 

  • Mitchell, J, Gaskell, M, Smith, R (2000) Soil management and soil quality for organic crops. UC ANR Publication 7249, 5 p. https://doi.org/10.3733/ucanr.7248

  • Mitra A, Biswas S, Pal N, Pramanick P, Datta U, Biswas P, Mitra A (2018) Biomass and stored carbon in the above ground structures of coconut tree. Int J Basic Appl Res 8(2):60–65

    Google Scholar 

  • Mohandas S (2012) Effect of NPK fertilizer levels on mineral nutrition and yield of hybrid (tall × dwarf) coconut. Madras Agric J 99(1/3):87–91

    Google Scholar 

  • Montenegro AAA, Almeida TAB, Lima CAD, Abrantes JRCB, de Lima JLMP (2020) Evaluating mulch cover with coir dust and cover crop with Palma cactus as soil and water conservation techniques for semiarid environments: laboratory soil flume study under simulated rainfall. Hydrol 7(3):61. https://doi.org/10.3390/hydrology7030061

    Article  Google Scholar 

  • Morales-Lizcano NP, Hasan AM, To HS, Lekadou TT, Copeland J, Wang PW, Diallo HA, Konan JL, Yoshioka K, Moeder W, Scott JA, Rosete YA (2017) Microbial diversity in leaves, trunk and rhizosphere of coconut palms (Cocos nucifera L.) associated with the coconut lethal yellowing phytoplasma in Grand-Lahou, CtedIvoire. Afr J Biotechnol 16(27):1534–1550

    Article  CAS  Google Scholar 

  • Nagarajan R, Manickam TS, Kothandaraman GV, Ramaswamy K, Palaniswamy G (1985) Manurial value of coir pith. Madras Agric J 72:533–535

    Google Scholar 

  • Nair SK, Subba Rao NS (1977) Microbiology of the root region of coconut and cacao under mixed crop**. Plant Soil 46:511–519. https://doi.org/10.1007/BF00015910

    Article  Google Scholar 

  • Nair PKR, Varma R, Nelliat EV, Bavappa KVA (1975) Beneficial effects of crop combination of coconut and cacao. Indian J Agric Sci 45:165–171

    Google Scholar 

  • Nair KM, Haris A, Mathew J, Srinivasan V, Dinesh R, Hamza H, Subramanian P, Thamban C, Chandran KP, Krishnakumar V, Bhat R, Hegde R, Singh SK (2018) Coconut-growing soils of Kerala: 2. Assessment of fertility and soil related constraints to coconut production. J Plantn Crops 46(2):84–91. https://doi.org/10.25081/jpc.2018.v46.i2.3719

    Article  Google Scholar 

  • Naresh Kumar S (2011) Climate change and Indian agriculture: current understanding on impacts, adaptation, vulnerability and mitigation. J Plant Biol 37(2):1–16

    Google Scholar 

  • Naresh Kumar S, Rajagopal V, Thomas TS, Cherian VK, Narayanan MKR, Ananda KS, Nagawekar DD, Hanumanthappa M, Vincent S, Srinivasulu B (2007) Variations in nut yield of coconut and dry spell in different agro-climatic zones of India. Indian J Hort 64(3):309–313

    Google Scholar 

  • Naresh Kumar S, Kasturi Bai KV, Rajagopal V, Aggarwal PK (2008) Simulating coconut growth, development and yield using InfoCrop-coconut model. Tree Physiol 28:1049–1058

    Article  PubMed  Google Scholar 

  • Nath JC, Arulraj S, Maheswarappa HP (2012) Integrated nutrient management in COD × WCT hybrid coconut under alluvial clay-loam soil of Assam. J Plantn Crops 40(2):105–110

    Google Scholar 

  • Navarro MNV, Jourdan C, Sileye T, Braconnier S, Mialet-Serra I, Saint-André L, Roupsard O (2008) Fruit development, not GPP, drives seasonal variation in NPP in a tropical palm plantation. Tree Phys 28(11):1661–1674

    Article  CAS  Google Scholar 

  • Newton K (1967) In: Pomier M (ed) Coconut research at Rangiroa. South Pacific Commission Tech. Paper No. 153, iv, 15 p

    Google Scholar 

  • Nirukshan GS, Herath HMIK, Wijebandara DMDI, Dissanayake DMPD (2016) Soil microbial population and activity affected by fertilizer and manure addition in a coconut growing Sandy Regosol. In: Proceedings of the sixth symposium on plantation crop research, plantation agriculture towards national prosperity, pp 2–4

    Google Scholar 

  • Nirukshan GS, Ranasinghe S, Sleutel S (2022) The effect of biochar on mycorrhizal fungi mediated nutrient uptake by coconut (Cocos nucifera L.) seedlings grown on a sandy regosol. Biochar 4:68. https://doi.org/10.1007/s42773-022-00192-9

    Article  CAS  Google Scholar 

  • Nuwarapaksha TD, Udumann SS, Dissanayaka DMNS, Dissanayake DKRPL, Atapattu AJ (2022) Coconut based multiple crop** systems: An analytical review in Sri Lankan coconut cultivations. Circ Agric Syst 2(1):1–7

    Google Scholar 

  • Nyren P, Pettersson B, Uhlen M (1993) Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Anal Biochem 208(1):171–175

    Article  CAS  PubMed  Google Scholar 

  • Okeri HA, Alonge PO, Udoh JJ (2007) Assessment of nutritional status of soil supporting coconut (Cocos nucifera) cultivation in some localities of Edo State of Nigeria. Afr J Biotechnol 6(3):258–262

    CAS  Google Scholar 

  • Ollagnier M, Ochs R (1972) Sulphur deficiencies in the oil palm and coconut. Oleagineux 27(4):193–198

    CAS  Google Scholar 

  • Osei-Bonsu K, Opoku-Ameyaw K, Amoah FM, Oppong FK (2002) Cacao-coconut intercrop** in Ghana: agronomic and economic perspectives. Agrofor Syst 55:1–8

    Article  Google Scholar 

  • Palaniswami C, Thomas GV, Subramanian P, Dhanapal R, Selvamani V (2008) Comparative evaluation of soil health and fertility under organic, inorganic and integrated nutrient management in coconut based mixed farming system. In: Singh HP, Thomas GV (eds) Organic horticulture: principles, practices and technologies. Westeville Publishing House, New Delhi, 231 p

    Google Scholar 

  • Palaniswami C, Thomas GV, Dhanapal R, Subramanian P, Maheswarappa HP (2010) Nutrient management in coconut based high density multispecies crop** system. In: Thomas GV, Krishanakumar V, Maheswarappa HP, Palaniswami C (eds) Coconut based crop**/farming systems. CPCRI (ICAR), Kasaragod, pp 80–96

    Google Scholar 

  • Pandey CB, Begum M (2010) The effect of a perennial cover crop on net soil N mineralization and microbial biomass carbon in coconut plantations in the humid tropics. Soil Use Manag 26(2):158–166

    Article  Google Scholar 

  • Pandey S, Gupta S (2020) Diversity analysis of ACC deaminase producing bacteria associated with rhizosphere of coconut tree (Cocos nucifera L.) grown in Lakshadweep islands of India and their ability to promote plant growth under saline conditions. J Biotechnol 324:183–197

    Article  CAS  PubMed  Google Scholar 

  • Pandey CB, Rai RB, Singh L (2007) Seasonal dynamics of mineral N pools and N-mineralization in soils under home garden trees in South Andaman, India. Agrofor Syst 71:57–66. https://doi.org/10.1007/s10457-007-9073-6

    Article  Google Scholar 

  • Pandiselvam R, Shaji A, Ramesh SV, Sathyan N, Manikantan MR, Mathew AC (2023) Development, evaluation, and optimization of portable pyrolysis system for the production of biochar from tender coconut husk. Biomass Convers Biorefin 11:1–10

    Google Scholar 

  • Pantipkayee, Krongkwanpooniem, Nawapornkeatkawinwong (2018) Heavy metal residues in coconut and soil from coconut orchard in Ratchaburi, Thailand. In: Proceedings of research for a 15th international conference, 22–23 Feb 2018, Hamburg, Germany, pp 52–55

    Google Scholar 

  • Parkin TB, Doran JW, Franco-Vizcaíno E (1996) Field and laboratory tests of soil respiration. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Madison, WI, pp 231–245

    Google Scholar 

  • Pillai NG, Davis TA (1963) Exhaust of macronutrients by the coconut palm: a preliminary study. Indian Coconut J 16(2):81–87

    Google Scholar 

  • Potty VP (1977) Rhizosphere microflora of coconut palm with special reference to root (wilt) disease. Doctoral dissertation. University of Kerala, Thiruvananthapuram

    Google Scholar 

  • Potty VP, Jayasankar NP (1976) Influence of crop mixing of hybrid Napier on the root zone microflora of the coconut palm. In: Nayar NM (ed) Coconut research and development. Wiley Eastern Ltd., New Delhi, pp 300–303

    Google Scholar 

  • Prabhu SR, Thomas GV (1998) Occurrence of Azospirillum amazonense in the root environment of coconut palm. In: 30th annual conf. assn. microbiologists. College of Fisheries, Mangalore

    Google Scholar 

  • Prabhu SR, Subramanian P, Biddappa CC, Bopaiah BM (1998) Prospects and improving coconut productivity through vermiculture technology. Indian Coconut J 29:79–84

    Google Scholar 

  • Purseglove JW (1975) Tropical crops—monocotyledons, vol 1 & 2. Longman Ltd., London, 607 p

    Google Scholar 

  • Rajagopal V, Jacob M, Mathew J, Shivashankar S (1996) Impact of dry spells on the ontogeny of coconut fruits and its relation to yield. Plant Res Dev 3(4):251–255

    Google Scholar 

  • Rajeela TK, Gopal M, Gupta A, Bhat R, Thomas GV (2017) Cross-compatibility evaluation of plant growth promoting rhizobacteria of coconut and cocoa on yield and rhizosphere properties of vegetable crops. Biocatal Agric Biotechnol 9:67–73

    Article  Google Scholar 

  • Rajeshkumar PP, Thomas GV, Gupta A, Gopal M (2015) Diversity, richness and degree of colonization of arbuscular mycorrhizal fungi in coconut cultivated along with intercrops in high productive zone of Kerala, India. Symbiosis 65:125–141. https://doi.org/10.1007/s13199-015-0326-2

    Article  Google Scholar 

  • Ramadasan A, Lal SB (1966) Exhaust of nutrients from coconut garden—factors affecting production. Coconut Bull 20:173–175

    Google Scholar 

  • Ramanandan PL, Pillai NG (1974) Effect of continuous cultivation and manuring on the leaf nutrient composition and soil nutrient status of coconut palms. J Plantn Crops 2(2):1–3

    Google Scholar 

  • Ramesh CR (1982) Root infection and population density of VA mycorrhizal fungi in a coconut based multistoreyed crop** system. In: Proc. PLACROSYM-V. ISPC, CPCRI, Kasaragod, pp 548–554

    Google Scholar 

  • Ramirez-Silva JH, Cortazar-Ríos M, Ramírez-Jaramillo G, Oropeza-Salín CM, Rondón-Rivera DD (2021) Soil organic matter and nitrogen content as related to coconut nutrition in Guerrero, Mexico. OALib J 8(8):1–16. https://doi.org/10.4236/oalib.1107727

    Article  Google Scholar 

  • Ranasinghe CS, Silva LRS (2007) Photosynthetic assimilation, carbohydrates in vegetative organs and carbon removal in nut producing and sap producing coconut palms. Cocos 18:45–57

    Google Scholar 

  • Raveendra SAST, Nissanka SP, Somasundaram D, Atapattu AJ, Mensah S (2021) Coconut-glyricidia mixed crop** systems improve soil nutrients in dry and wet regions of Sri Lanka. Agrofor Syst 95:307–319. https://doi.org/10.1007/s10457-020-00587-2

    Article  Google Scholar 

  • Rawitz E, Morin J, Hoogmoed WB, Margolin M, Etkin H (1983) Tillage practices for soil and water conservation in the semi-arid zone. I. Management of fallow during the rainy season preceding cotton. Soil Tillage Res 3(3):211–231

    Article  Google Scholar 

  • Reddy PP (2016) Cover/green manure crops. In: Sustainable intensification of crop production. Springer, Singapore, pp 55–67. https://doi.org/10.1007/978-981-10-2702-4_4

    Chapter  Google Scholar 

  • Reddy PP (2017) Cover/green manure crop**. In: Agro-ecological approaches to pest management for sustainable agriculture. Springer, Singapore, pp 91–107. https://doi.org/10.1007/978-981-10-4325-3_7

    Chapter  Google Scholar 

  • Reddy DVS, Upadhyay AK (2002) Impact of integrated nutrient management on the mineral nutrition and yield of WCT coconut in littoral sandy soil at Kasaragod. In: Proceedings of the 15th plantation crops symposium placrosym XV, Mysore, India. Central Coffee Research Institute, Coffee Research Station, pp 274–281

    Google Scholar 

  • Reddy DVS, Subramanian P, Gopalasundaram P (2002) Coconut based high density multi-species crop** system under different levels of fertilizers in red sandy loam soils. In: Rethinam P, Khan HH, Reddy VM, Mandai PK, Suresh K (eds) Plantation crops research and development in the new millennium (PLACROSYM XIV). Coconut Development Board, Kochi, pp 106–111

    Google Scholar 

  • Reddy DS, Kumar SN, Prabhu SR (2007) Evaluation of alternative media to potting mixture for raising coconut seedlings in polybags. J Plantn Crops 29(1):62–65

    Google Scholar 

  • Reichert JM, Suzuki LEAS, Reinert DJ, Horn R, Håkansson I (2009) Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res 102(2):242–254

    Article  Google Scholar 

  • Remison SU, Iremiren GO (1990) Effect of salinity on the performance of coconut seedlings on two contrasting soils. Cocos 8:33–39

    Article  Google Scholar 

  • Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365

    Article  CAS  PubMed  Google Scholar 

  • Roupsard O (2008) Coconut carbon sequestration, part 2: strategies for the carbon market & simulating potential incomes for coconut CDM projects. CORD 24(1):16–34

    Google Scholar 

  • Roupsard O, Dauzat J, Nouvellon Y, Deveau A, Feintrenie L, Saint-André L, Bouillet JP (2008a) Cross-validating sun-shade and 3D models of light absorption by a tree-crop canopy. Agric For Meteorol 148(4):549–564

    Article  Google Scholar 

  • Roupsard O, Lamanda N, Jourdan C, Navarro M, Mialet-Serra I, Dauzat J, Sileye T (2008b) Coconut carbon sequestration, part 1: highlights on carbon cycle in coconut plantations. CORD 24(1):1–14

    Google Scholar 

  • Saha SK, Nair PKR, Nair VD, Kumar BM (2010) Carbon storage in relation to soil size fractions under some tropical tree-based land use systems. Plant Soil 328:433–446

    Article  CAS  Google Scholar 

  • Sahasranaman KN, Pillai NG, Jayasankar NP, Potty VP, Varkey T, Amma PGK, Radha K (1983) Mixed farming in coconut gardens: economics and its effect on root (wilt) disease. In: Nayar NM (ed) Coconut research and development. Wiley Eastern Ltd., New Delhi, pp 160–165

    Google Scholar 

  • Saldanha ECM, Silva MLD, Lins P, Pontes M, Farias SCC, Wadt PGS (2017) Nutritional diagnosis in hybrid coconut cultivated in northeastern Brazil through diagnosis and recommendation integrated system (DRIS). Rev Bras Frutic 39(1):1–9

    Article  Google Scholar 

  • Sankaranarayanan MP, Verghese EJ, Menon KPV (1958) A note on the tolerance of salinity by coconut palm. Indian Coconut J 11:133–139

    CAS  Google Scholar 

  • Savithri P, Hameed KH (1994) Characteristics of coconut coir peat and its utilization in agriculture. J Plantn Crops 22:1–18

    Google Scholar 

  • Scheewe W (2022) Feeding the soil for climate resilient coconut farms. Manila Bulletin Agriculture, Philippines. https://snrd-asia.org/climate-resilient-coconut-farm-management

  • Secretaria MI, Margate RZ (2001) Integrated soil fertility management on local coconut hybrid in a farmer-managed coconut-based crop** system. CORD 17(1):34–34

    Article  Google Scholar 

  • Selvamani V, Duraisami VP (2014a) Identifying and map** soil fertility related constraints for coconut in Coimbatore and Tiruppur districts of Tamil Nadu state, India. J Plantn Crops 42(3):348–357

    Google Scholar 

  • Selvamani V, Duraisami VP (2014b) Identifying and map** leaf nutrient based constraints for coconut productivity in Coimbatore and Tiruppur districts of Tamil Nadu state, India. J Plantn Crops 42(2):163–169

    Google Scholar 

  • Selvamani V, Duraisami VP (2018a) Map** soil constraints for coconut using GIS for a major coconut growing region of Tamil Nadu. J Plantn Crops 46(3):190–195

    Google Scholar 

  • Selvamani V, Duraisami VP (2018b) Evaluating the primary yield limiting nutrient deficiency of coconut (Cocos nucifera L.) in a major coconut growing zone of Tamil Nadu. J Plantn Crops 46(2):112–117

    Google Scholar 

  • Semarnat (2002) NOM-021-RECNAT-2000. Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Secretaría de Medio Ambiente y Recursos Naturales, México D.F., 75 p

    Google Scholar 

  • Senarathne SHS (2017) Influence of long term application of green manure on the productivity of coconut cultivated in reddish brown latosolic soils in Sri Lanka. CORD 33(2):25–34

    Google Scholar 

  • Senarathne SHS (2018) Effect of arbuscular mycorrhizal fungi based biofertilizer on coconut seedlings growth in nursery. CORD 34(2):30–41

    Google Scholar 

  • Senarathne SH, Udumann SS (2019) Evaluation of coconut based Anacardium occidentale agroforestry system to improve the soil properties of coconut growing lands in wet, intermediate and dry zone of Sri Lanka. CORD 35(1):1–10

    Google Scholar 

  • Senarathne SHS, Sangakkara UR, Raveendra SAST (2015) Weed biomass and seedling emergence patterns as affected by different ground cover management systems in coconut plantations of Asian humid tropics Sri Lanka. Int J Res Agric Sci 2:245–252

    Google Scholar 

  • Silva RAD, Cavalcante LF, Holanda JSD, Pereira WE, Moura MFD, Ferreira Neto M (2006) Fruits quality of green dwarf coconut fertirrigation with nitrogen and potassium. Rev Bras Frutic 28(2):310–313

    Article  Google Scholar 

  • Silva ED, Ribeiro RV, Ferreira-Silva SL, Viégas RA, Silveira JAG (2010) Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. J Arid Environ 74(10):1130–1137

    Article  Google Scholar 

  • Singh RK, Lama TD, Saikia US, Satapathy KK (2006) Economics of rainwater harvesting and recycling for winter vegetable production in mid hills of Meghalaya. J Agric Eng 43(2):33–36

    Google Scholar 

  • Sobral LF (1998) Coconut nutrition and fertilization. In: Ferreira JMS, Warwick DRN, Siqueira LA (eds) The coconut culture in Brazil. Aracaju, Embrapa, pp 129–157

    Google Scholar 

  • Solangi AH, Mal B, Kazmi AR, Iqbal MZ (2010) Preliminary studies on the major characteristic, agronomic feature and nutrient value of Gliricidia sepium in coconut plantations of Pakistan. Pak J Bot 42(2):825–832

    Google Scholar 

  • Somashekar RK (1984) Trace metal status of coconut plants of a polluted are in Mysore. Proc Indian Natl Sci Acad B 50(5):535–538

    CAS  Google Scholar 

  • Somasiri LLW, Nadaraja N, Amarasinghe L, Gunathilake HAJ (1994) Land suitability assessment of coconut growing areas in the coconut triangle. Coconut Research Institute, Lunuwila

    Google Scholar 

  • Somasiri LLW, Wijebandara DMDI, Panditharatna BDP, Sabaratnam S, Kurundukumbura CPA (2003) Loss of nutrients in a high yielding coconut plantation through removal of plant materials from the field. Cocos 15:12–22

    Article  Google Scholar 

  • Southern PJ (1969) Sulphur deficiency in coconut. Oleagineux 24:211

    CAS  Google Scholar 

  • Sreelatha AK (1993) Potassium dynamics in Neyyattinkara soil series under coconut cultivation. Doctoral dissertation. Department of Soil Science and Agricultural Chemistry, College of Agriculture, Vellayani, p 145

    Google Scholar 

  • Srinivasan R, Maddileti N, Kasthuri Thilagam V, Hegde R (2020) Coconut production in red gravelly soils of southern Karnataka state of India. Popular Kheti 8(4):11–12

    Google Scholar 

  • Stamatiadis S, Doran JW, Kettler T (1999) Field and laboratory evaluation of soil quality changes resulting from injection of liquid sewage sludge. Appl Soil Ecol 12(3):263–272

    Article  Google Scholar 

  • Subramanian P, Dhanapal R, Sanil P, Palaniswami C, Sairam CV, Maheswarappa HP (2005a) Glyricidia (Gliricidia sepium) as green manure in improving soil fertility and productivity of coconut. J Plantn Crops 33(3):179–183

    Google Scholar 

  • Subramanian P, Reddy DS, Palaniswami C, Gopalasundaram P, Upadhyay AK (2005b) Studies on nutrient export and extent of nutrient recycling in coconut based high density multispecies crop** system. CORD 21(1):34–40

    Article  Google Scholar 

  • Subramanian P, Dhanapal R, Mathew AC, Palaniswami C, Upadhyaya AK, Naresh Kumar S, Reddy DVS (2012) Effect of fertilizer application through micro-irrigation technique on nutrient availability and coconut productivity. J Plantn Crops 40(3):168–173

    Google Scholar 

  • Subramanian P, Dhanapal R, Thomas GV, Maheswarappa HP, Thamban C (2014) Coconut based integrated farming system. Technical bulletin. ICAR-CPCRI, Kasaragod, 32 p

    Google Scholar 

  • Subramanian P, Krishnakumar V, Alka Gupta MG, Surekha R, Selvamani V (2016) Impact of long term organic cultivation practices on soil health and productivity of coconut. In: Abstracts of third international symposium on coconut research and development. ICAR-CPCRI, Kasaragod, p 54

    Google Scholar 

  • Subramanian P, Thamban C, Hegde V, Hebbar KB, Bhat R, Krishnakumar V, Niral V, Josephrajkumar A (2018) Coconut, technical bulletin no. 133. ICAR-CPCRI, Kasaragod, 56 p

    Google Scholar 

  • Subramanian P, Alka G, Murali G, Selvamani V, Joseph R, Surekha R, Krishnakumar V, Bhat R, Vinayaka H, Thomas GV (2022) Organic cultivation practices in coconut. In: Vanaja T, Balakrishnan PC, Satheesan KN (eds) Compendium on coconut. RARS, Pilicode, KAU, pp 140–155

    Google Scholar 

  • Sudha B, George A (2011) Tillage and residue management for organic carbon sequestration in coconut (Cocos nucifera)-based crop** systems. Indian J Agron 56(3):223–227

    Article  Google Scholar 

  • Suman S, Gautam S (2017) Pyrolysis of coconut husk biomass: analysis of its biochar properties. Energy Sources A Recov Util Environ Effect 39(8):761–767. https://doi.org/10.1080/15567036.2016.1263252

    Article  CAS  Google Scholar 

  • Sunoj VS, Kumar SN, Muralikrishna KS, Padmanabhan S (2015) Enzyme activities and nutrient status in coconut (Cocos nucifera L.) seedling rhizosphere soil after exposure to elevated CO2 and temperature. J Indian Soc Soil Sci 63(2):191–199

    Article  Google Scholar 

  • Surulirajan M, Rajappan K, Satheesh Kumar N, Annadurai K, Jeevan Kumar K, Asokhan M (2014) Management of basal stem rot disease in coconut through bio-inoculants and chemicals. Int J Trop Agric 32(3/4):407–414

    Google Scholar 

  • Sys C, Van Ranst E, Debaveye J, Beernaert F (1993) Land evaluation. Part III: crop requirements. Agricultural publications no. 7. GADC, Brussels, 191 p

    Google Scholar 

  • Tahir TA, Hamid FS (2012) Vermicomposting of two types of coconut wastes employing Eudriluseugeniae: a comparative study. Int J Recycl Org Waste Agric 1:7

    Article  Google Scholar 

  • Teixeira LAJ, Bataglia OC, Buzetti S, Furlani Junior E, Isepon JDS (2005) NPK fertilization on dwarf green coconut (Cocos nucifera L.)-yield and fruit quality. Rev Bras Frutic 27:120–123

    Article  Google Scholar 

  • Tennakoon S (2004) Rural livelihood strategies and the five capitals: a comparative study in selected villages of Sri Lanka. In: Proceedings of the 18th European conference on modern South Asian studies, Lund, Sweden, Jul, pp 6–9

    Google Scholar 

  • Thamban C, Subramanian P, Jayasekhar S, Jaganathan D, Muralidharan K (2016) Group approach for enhancing profitability of small holders through technology integration—reflections from coconut farming. J Plantn Crops 44(3):158–164

    Article  Google Scholar 

  • Thampan PK (1981) Hand book on coconut palm. Oxford and lBH Publishing Co., Kolkata, pp 81–157

    Google Scholar 

  • Thankamani CK, Prakash KM, Srinivasan V, Kandiannan K, Jayarajan K (2022) Coconut leaf mulching—a boon for ginger farming. Indian Coconut J LXIV(9):16–18

    Google Scholar 

  • Thomas GV (1987) Microbial population, enzyme activity and VA-mycorrhiza in the root region of coconut in relation to in situ green manuring. In: Proc PLACROSYM-VI, pp 267–274

    Google Scholar 

  • Thomas GV, Shantaram MV (1984) In situ cultivation and incorporation of green manure legumes in coconut basins: an approach to improve soil fertility and microbial activity. Plant Soil 80:373–380

    Article  Google Scholar 

  • Thomas GV, Shantaram MV (1986) Solubilization of inorganic phosphates by bacteria from coconut plantation soils. J Plantn Crops 14(1):42–48

    CAS  Google Scholar 

  • Thomas GV, Shantaram MV (1993) Biomass production and nodulation of green manure legumes in coconut basins in laterite soil and their influence on soil fertility. CORD 9(1):34–34

    Article  Google Scholar 

  • Thomas GV, Prabhu SR, Reeny MZ, Bopaiah BM (1998) Evaluation of lignocellulosic biomass from coconut palm as substrate for cultivation of Pleurotus sajor-caju (Fr.) Singer. World J Microbiol Biotechnol 14:879–882

    Article  Google Scholar 

  • Thomas GV, Prabhu SR, Subramanian P, Iyer R (2001a) Organic farming technologies in coconut. ATIC series publication No. 4. CPCRI, Kasaragod, p 14

    Google Scholar 

  • Thomas GV, Biddappa CC, Prabhu SR (2001b) Evaluation of N2-fixing cover legumes as green manures for N substitution in coconut (Cocos nucifera Linn.) palm. Trop Agric Lond Then Trinidad 78(1):13–18

    Google Scholar 

  • Thomas GV, Gopal M, Gupta A (2010) Microbial interactions in coconut based crop**/arming systems. In: Coconut based crop**/farming systems, Central Plantation Crops Research Institute (Indian Council of Agricultural Research), Kasaragod, 231 p

    Google Scholar 

  • Thomas GV, Palaniswami C, Gopal M, Gupta A (2012) Recycling coconut leaf-agro wastes mixture using Eudrilus sp. and growth promotion properties of coconut leaf vermicompost. Int J Innov Hort 1(2):113–118

    Google Scholar 

  • Thomas GV, Palaniswami C, Prabhu SR, Gopal M, Gupta A (2013) Co-composting of coconut coir pith with solid poultry manure. Curr Sci 104(2):245–250

    Google Scholar 

  • Thomas GV, Gopal M, Gupta A, Subramanian P, Prabhu SR (2016) Bio-resources based biological soil fertility management for sustainable coconut production. In: Chowdappa P et al (eds) Abstracts of third international symposium on coconut research and development. ICAR—Central Plantation Crops Research Institute, Kasaragod

    Google Scholar 

  • Thomas GV, Krishnakumar V, Dhanapal R, Reddy DVS (2018) Agro-management practices for sustainable coconut production. In: Nampoothiri KUK, Krishnakumar V, Thampan PK, Nair MA (eds) The coconut palm (Cocos nucifera L.)—research and development perspectives. Springer Nature Singapore Pvt. Ltd., pp 227–322. https://doi.org/10.1007/978-981-13-2754-4_16

    Chapter  Google Scholar 

  • Thuvasan KT, Selvi D, Kannan B (2019) Impact of soil available nutrients on yield of coconut under Dindigul and Erode districts of Tamil Nadu. J Pharmacogn Phytochem 8(6):304–305

    CAS  Google Scholar 

  • Usharani KV, Aparna B (2019) Enzyme activities and biological fertility index of the soils of coconut based crop** systems in mid laterite soils of Kerala (AEU 9). Int J Agric Food Sci 1(4):7–11. https://doi.org/10.33545/2664844X.2019.v1.i4a.18

    Article  Google Scholar 

  • Utomo B, Prawoto AA, Bonnet S, Bangviwat A, Gheewala SH (2016) Environmental performance of cocoa production from monoculture and agroforestry systems in Indonesia. J Clean Prod 134:583–591

    Article  CAS  Google Scholar 

  • Van Noordwijk M, Cadisch G (2002) Access and excess problems in plant nutrition. In: Progress in plant nutrition: plenary lectures of the XIV international plant nutrition colloquium: food security and sustainability of agro-ecosystems through basic and applied research. Springer, Dordrecht, pp 25–40

    Chapter  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Varghese PT, Nelliat EV, Balakrishnan TK (1978) Beneficial interactions of coconut–cocoa crop combination. In: Nelliat EV, Ranganathan V, Vishveswara S, Potti SN, Zachariah PK (eds) Proceedings of the first symposium on plantation crops. Indian Society for Plantation Crops, pp 383–392

    Google Scholar 

  • Vega EV (2011) Cleaner production opportunities for improvement of carbon saving in the production of coconut biodiesel. Int J Chem Environ Eng 2(5):356–361

    Google Scholar 

  • Venkatasamy R (2003) Integrated nutrient management in coconut with composted coir pith. Madras Agric J 90(1–3):54–56

    Google Scholar 

  • Vijayaraghavan H, Ramachandran TK (1989) Effect of in situ cultivation and incorporation of green manure crops on the yield of coconut. Cocos 7:26–29

    Article  Google Scholar 

  • Vizcayno C, Garcia-Gonzalez MT, Fernandez-Marcote Y, Santano J (2001) Extractable forms of aluminum as affected by gypsum and lime amendments to an acid soil. Commun Soil Sci Plant Anal 32(13–14):2279–2292

    Article  CAS  Google Scholar 

  • Vukicevich E, Lowery T, Bowen P, Úrbez-Torres JR, Hart M (2016) Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture: a review. Agron Sustain Dev 36:1–14

    Article  CAS  Google Scholar 

  • Wahid PA, Kamala Devi CB, Pillai NG (1974) Inter-relationships among root CEC, yield and mono-and divalent cations in coconut (Cocos nucifera L.). Plant Soil 40:607–617

    Article  CAS  Google Scholar 

  • Wijebandara DMDI, Kurudukubura CPA, Panditharathna DP (2015) Nutrient removal through plant components of low yielding coconut plantation. Cocos 21:1–13

    Article  Google Scholar 

  • Young HS, Miller-terKuile A, McCauley DJ, Dirzo R (2017) Cascading community and ecosystem consequences of introduced coconut palms (Cocos nucifera) in tropical islands. Can J Zool 95(3):139–148

    Article  Google Scholar 

  • Yu X, Luo N, Yan J, Tang J, Liu S, Jiang Y (2012) Differential growth response and carbohydrate metabolism of global collection of perennial ryegrass accessions to submergence and recovery following de-submergence. J Plant Phys 169(11):1040–1049

    Article  CAS  Google Scholar 

  • Zella AY, Lawi Y (2019) Contribution of coconut trees (Cocos nucifera) in biomass and carbon store and its’ role in improving livelihood of small scale farmers of coastal areas of Tanzania. Clim Chang 5(20):253–260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Subramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subramanian, P. et al. (2024). Coconut (Cocos nucifera L.). In: Thomas, G.V., Krishnakumar, V. (eds) Soil Health Management for Plantation Crops. Springer, Singapore. https://doi.org/10.1007/978-981-97-0092-9_2

Download citation

Publish with us

Policies and ethics

Navigation