Holotomography: Refractive Index as an Intrinsic Imaging Contrast for 3-D Label-Free Live Cell Imaging

  • Chapter
  • First Online:
Advanced Imaging and Bio Techniques for Convergence Science

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1310))

Abstract

Live cell imaging provides essential information in the investigation of cell biology and related pathophysiology. Refractive index (RI) can serve as intrinsic optical imaging contrast for 3-D label-free and quantitative live cell imaging, and provide invaluable information to understand various dynamics of cells and tissues for the study of numerous fields. Recently significant advances have been made in imaging methods and analysis approaches utilizing RI, which are now being transferred to biological and medical research fields, providing novel approaches to investigate the pathophysiology of cells. To provide insight into how RI can be used as an imaging contrast for imaging of biological specimens, here we provide the basic principle of RI-based imaging techniques and summarize recent progress on applications, ranging from microbiology, hematology, infectious diseases, hematology, and histopathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen R, David G, Nomarski G (1969) The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z Wiss Mikrosk 69:193–221

    CAS  PubMed  Google Scholar 

  • Barer R (1952) Interference microscopy and mass determination. Nature 169:366–367

    Article  CAS  PubMed  Google Scholar 

  • Barer R (1953) Determination of dry mass, thickness, solid and water concentration in living cells. Nature 172:1097–1098

    Article  CAS  PubMed  Google Scholar 

  • Barty A, Nugent K, Roberts A, Paganin D (2000) Quantitative phase tomography. Opt Commun 175:329–336

    Article  CAS  Google Scholar 

  • Bennet M, Gur D, Yoon J, Park Y, Faivre D (2016) A bacteria-based remotely tunable photonic device. Advanced Optical Materials

    Google Scholar 

  • Bettenworth D, Lenz P, Krausewitz P, Brückner M, Ketelhut S, Domagk D, Kemper B (2014) Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy. PLoS One 9:e107317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beuthan J, Minet O, Helfmann J, Herrig M, Müller G (1996) The spatial variation of the refractive index in biological cells. Phys Med Biol 41:369

    Article  CAS  PubMed  Google Scholar 

  • Bianco V et al (2017) Endowing a plain fluidic chip with micro-optics: a holographic microscope slide. Light: Science Applications 6:e17055

    Article  CAS  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    Article  CAS  PubMed  Google Scholar 

  • Byun H et al. (2012) Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient Acta Biomaterialia

    Google Scholar 

  • Chalut KJ, Ekpenyong AE, Clegg WL, Melhuish IC, Guck J (2012) Quantifying cellular differentiation by physical phenotype using digital holographic microscopy. Integr Biol 4:280–284

    Article  CAS  Google Scholar 

  • Chandramohanadas R et al (2011) Biophysics of malarial parasite exit from infected erythrocytes. PLoS One 6:e20869. https://doi.org/10.1371/journal.pone.0020869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charrière F et al (2006a) Cell refractive index tomography by digital holographic microscopy. Opt Lett 31:178–180

    Article  PubMed  Google Scholar 

  • Charrière F et al (2006b) Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. Opt Express 14:7005–7013

    Article  PubMed  Google Scholar 

  • Cheong W-F, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185

    Article  Google Scholar 

  • Cho S, Kim S, Kim Y, Park YK (2011) Optical imaging techniques for the study of malaria. Trends Biotech 30:71–79

    Article  CAS  Google Scholar 

  • Choi W, Fang-Yen C, Badizadegan K, Oh S, Lue N, Dasari RR, Feld MS (2007) Tomographic phase microscopy. Nat Methods 4:717–719

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury S, Eldridge WJ, Wax A, Izatt JA (2017) Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy. Biomed Opt Express 8:2496–2518

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper KL, Oh S, Sung Y, Dasari RR, Kirschner MW, Tabin CJ (2013) Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495:375–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotte Y et al (2013) Marker-free phase nanoscopy. Nat Photonics 7:113–117

    Article  CAS  Google Scholar 

  • Debnath SK, Park Y (2011) Real-time quantitative phase imaging with a spatial phase-shifting algorithm. Opt Lett 36:4677–4679

    Article  PubMed  Google Scholar 

  • Diez-Silva M, Dao M, Han J, Lim C-T, Suresh S (2010) Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull 35:382–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diez-Silva M et al (2012) Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells. Sci Rep 2:614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding H, Wang Z, Liang X, Boppart SA, Tangella K, Popescu G (2011) Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices. Opt Lett 36:2281–2283

    Article  PubMed  Google Scholar 

  • Ekpenyong AE, Man SM, Achouri S, Bryant CE, Guck J, Chalut KJ (2013) Bacterial infection of macrophages induces decrease in refractive index. J Biophotonics 6:393–397

    Article  PubMed  Google Scholar 

  • Evans CL, Potma EO, Puoris'haag M, Côté D, Lin CP, **e XS (2005) Chemical imaging of tissue in vivo with video-rate coherent anti-stokes Raman scattering microscopy. Proc Natl Acad Sci U S A 102:16807–16812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei Y et al (2011) Fluorescent labeling agents change binding profiles of glycan-binding proteins. Mol Bio Syst 7:3343–3352

    CAS  Google Scholar 

  • Fercher AF, Bartelt H, Becker H, Wiltschko E (1979) Image-formation by inversion of scattered field data—experiments and computational simulation. Appl Opt 18:2427–2439. https://doi.org/10.1364/Ao.18.002427

    Article  CAS  PubMed  Google Scholar 

  • Ford TN, Chu KK, Mertz J (2012) Phase-gradient microscopy in thick tissue with oblique back-illumination. Nat Methods 9:1195–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukumoto S, Fujimoto T (2002) Deformation of lipid droplets in fixed samples. Histochem Cell Biol 118:423–428. https://doi.org/10.1007/s00418-002-0462-7

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum A, Zhang Y, Feizi A, Chung P-L, Luo W, Kandukuri SR, Ozcan A (2014) Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci Transl Med 6:267ra175–267ra175

    Article  PubMed  Google Scholar 

  • Hejna M, Jorapur A, Song JS, Judson RL (2017) High accuracy label-free classification of single-cell kinetic states from holographic cytometry of human melanoma cells. Sci Rep 7:11943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  • Higgins JM (2015) Red blood cell population dynamics. Clin Lab Med 35:43–57

    Article  PubMed  Google Scholar 

  • Hoebe R, Van Oven C, Gadella TJ, Dhonukshe P, Van Noorden C, Manders E (2007) Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat Biotechnol 25:249–253

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Bates M, Zhuang X (2009) Super resolution fluorescence microscopy. Annu Rev Biochem 78:993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hur J, Kim K, Lee S, Park H, Park Y (2017) Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques. Sci Rep 7:9306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikeda T, Popescu G, Dasari RR, Feld MS (2005) Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt Lett 30:1165–1167

    Article  PubMed  Google Scholar 

  • Jang Y, Jang J, Park Y (2012) Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells. Opt Express 20:9673–9681

    Article  CAS  PubMed  Google Scholar 

  • Jang J et al (2013) Complex wavefront sha** for optimal depth-selective focusing in optical coherence tomography. Opt Express 21:2890–2902

    Article  PubMed  Google Scholar 

  • Ji N, Milkie DE, Betzig E (2010) Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods 7:141–147

    Article  CAS  PubMed  Google Scholar 

  • Jo Y, Cho H, Lee SY, Choi G, Kim G, Min H-S, Park Y (2019) Quantitative phase imaging and artificial intelligence. A Review IEEE Journal of Selected Topics in Quantum Electronics 25:1–14

    Article  Google Scholar 

  • Jo Y, Jung J, Kim MH, Park H, Kang SJ, Park Y (2015) Label-free identification of individual bacteria using Fourier transform light scattering. Opt Express 23:15792–15805. https://doi.org/10.1364/Oe.23.015792

    Article  CAS  PubMed  Google Scholar 

  • Jo Y et al (2014) Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering. Sci Rep 4:5090. https://doi.org/10.1038/srep05090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo Y et al (2017) Holographic deep learning for rapid optical screening of anthrax spores. Sci Adv 3:e1700606

    Article  PubMed  PubMed Central  Google Scholar 

  • Jourdain P et al (2011) Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study. J Neurosci 31:11846–11854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung J, Jang J, Park Y (2013) Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging. Anal Chem

    Google Scholar 

  • Jung J, Kim K, Yoon J, Park Y (2016) Hyperspectral optical diffraction tomography. Opt Express 24:2006–2012. https://doi.org/10.1364/OE.24.002006

    Article  CAS  PubMed  Google Scholar 

  • Jung J et al (2014) Biomedical applications of holographic microspectroscopy [invited]. Appl Opt 53:G111–G122

    Article  PubMed  CAS  Google Scholar 

  • Jung J et al (2018) Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography. Sci Rep:8

    Google Scholar 

  • Kamilov US, Papadopoulos IN, Shoreh MH, Goy A, Vonesch C, Unser M, Psaltis D (2016) Optical tomographic image reconstruction based on beam propagation and sparse regularization. IEEE Transactions on Computational Imaging 2:59–70

    Article  Google Scholar 

  • Kang S et al (2015) Imaging deep within a scattering medium using collective accumulation of single-scattered waves. Nat Photonics 9:253–258

    Article  CAS  Google Scholar 

  • Kaushansky K, Lichtman MA, Prchal JT, Levi M, Press OW, Burns LJ, Caligiuri MA (2016) Williams hematology. McGraw-Hill Education

    Google Scholar 

  • Kemper B, Carl D, Schnekenburger J, Bredebusch I, Schäfer M, Domschke W, von Bally G (2006) Investigation of living pancreas tumor cells by digital holographic microscopy. J Biomed Opt 11:034005–034008

    Article  Google Scholar 

  • Kemper B, Kosmeier S, Langehanenberg P, von Bally G, Bredebusch I, Domschke W, Schnekenburger J (2007) Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy. J Biomed Opt 12:054009–054005

    Article  PubMed  Google Scholar 

  • Kemper B et al (2010) Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. J Biomed Opt 15:036009–036006

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Choe K, Park I, Kim P, Park Y (2016a) Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice Scientific reports 6

    Google Scholar 

  • Kim G, Jo Y, Cho H, Min H-S, Park Y (2019) Learning-based screening of hematologic disorders using quantitative phase imaging of individual red blood cells. Biosens Bioelectron 123:69–76

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Kim KS, Park H, Ye JC, Park Y (2013) Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. Opt Express 21:32269–32278

    Article  PubMed  Google Scholar 

  • Kim G, Lee S, Shin S, Park Y (2018a) Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography. Sci Rep 8:1782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim K, Lee S, Yoon J, Heo J, Choi C, Park Y (2016c) Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Sci Rep 6:36815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Oh N, Kim K, Lee S, Pack C-G, Park J-H, Park Y (2018b) Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography. Methods 136:160–167

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Park Y (2017) Tomographic active optical trap** of arbitrarily shaped objects by exploiting 3D refractive index maps. Nat Commun 8:15340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T, Park J (2018) Analyzing 3D cell data of optical diffraction tomography through volume rendering. In: Advanced Image Technology (IWAIT), International Workshop on, 2018. IEEE, pp 1–4

    Google Scholar 

  • Kim K, Park WS, Na S, Kim S, Kim T, Do Heo W, Park Y (2017a) Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging. Biomed Opt Express 8:5688–5697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Shim H, Kim K, Park H, Jang S, Park Y (2014a) Profiling individual human red blood cells using common-path diffraction optical tomography. Sci Rep:4

    Google Scholar 

  • Kim K, Yoon H-O, Diez-Silva M, Dao M, Dasari R, Park Y-K (2014b) High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography. J Biomed Opt 19:011005–011012

    PubMed  Google Scholar 

  • Kim K, Yoon J, Park Y (2015) Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography. Optica 2:343–346

    Article  CAS  Google Scholar 

  • Kim K, Yoon J, Shin S, Lee S, Yang S-A, Park Y (2016b) Optical diffraction tomography techniques for the study of cell pathophysiology. Journal of Biomedical Photonics & Engineering 2:020201

    Google Scholar 

  • Kim T, Zhou R, Mir M, Babacan SD, Carney PS, Goddard LL, Popescu G (2014c) White-light diffraction tomography of unlabelled live cells. Nat Photon 8:256–263. https://doi.org/10.1038/nphoton.2013.350

    Article  CAS  Google Scholar 

  • Kim Y et al (2014d) Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells. Opt Express 22:10398–10407

    Article  PubMed  Google Scholar 

  • Kim TI et al (2017b) Antibacterial activities of Graphene oxide–molybdenum disulfide Nanocomposite films. ACS Appl Mater Interfaces 9:7908–7917

    Article  CAS  PubMed  Google Scholar 

  • Kim YS et al (2018c) Focus: medical technology: combining three-dimensional quantitative phase imaging and fluorescence microscopy for the study of cell pathophysiology. Yale J Biol Med 91:267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koss LG (1989) The Papanicolaou test for cervical cancer detection: a triumph and a tragedy. JAMA 261:737–743

    Article  CAS  PubMed  Google Scholar 

  • KuÅ› A, Dudek M, Kemper B, KujawiÅ„ska M, Vollmer A (2014) Tomographic phase microscopy of living three-dimensional cell cultures. J Biomed Opt 19:046009

    Article  PubMed  Google Scholar 

  • Kwon S et al (2018) Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity. Eur J Med Chem 148:116–127

    Article  CAS  PubMed  Google Scholar 

  • Laforest T, Carpentras D, Kowalczuk L, Behar-Cohen F, Moser C (2017) Quantitative phase imaging of retinal cells ar**v preprint ar**v:170108854

    Google Scholar 

  • Lauer V (2002) New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope. J Microsc 205:165–176

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Park Y (2014) Quantitative phase imaging unit. Opt Lett 39:3630–3633

    Article  PubMed  Google Scholar 

  • Lee SY, Park HJ, Best-Popescu C, Jang S, Park YK (2015) The effects of ethanol on the morphological and biochemical properties of individual human. Red Blood Cells PloS one 10:e0145327

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Park H, Kim K, Sohn Y, Jang S, Park Y (2017) Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus. Sci Rep 7:1039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee K et al (2013) Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors 13:4170–4191

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee S et al (2014) High-resolution 3-D refractive index tomography and 2-D synthetic aperture imaging of live phytoplankton. Journal of the Optical Society of Korea 18:691–697

    Article  Google Scholar 

  • Lee M et al (2016) Label-free optical quantification of structural alterations in Alzheimer’s disease. Sci Rep:6

    Google Scholar 

  • Lenz P et al (2013) Digital holographic microscopy quantifies the degree of inflammation in experimental colitis. Integr Biol 5:624–630

    Article  Google Scholar 

  • Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2:910–919

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Lee K, ** KH, Shin S, Lee S, Park Y, Ye JC (2015) Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography. Opt Express 23:16933–16948. https://doi.org/10.1364/Oe.23.016933

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Wahab A, Park G, Lee K, Park Y, Ye JC (2017) Beyond born-Rytov limit for super-resolution optical diffraction tomography. Opt Express 25:30445–30458

    Article  PubMed  Google Scholar 

  • Liu P et al (2016) Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16:634–644

    Article  CAS  PubMed  Google Scholar 

  • Ma L et al (2016) Phase correlation imaging of unlabeled cell dynamics. Sci Rep:6

    Google Scholar 

  • Majeed H, Sridharan S, Mir M, Ma L, Min E, Jung W, Popescu G (2016) Quantitative phase imaging for medical diagnosis. J Biophotonics

    Google Scholar 

  • Majeed H et al (2015) Breast cancer diagnosis using spatial light interference microscopy. J Biomed Opt 20:111210

    Article  PubMed  Google Scholar 

  • Mann CJ, Yu L, Lo C-M, Kim MK (2005) High-resolution quantitative phase-contrast microscopy by digital holography. Opt Express 13:8693–8698

    Article  PubMed  Google Scholar 

  • Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG (2005) Regulated localization of Rab18 to lipid droplets EFFECTS OF LIPOLYTIC STIMULATION AND INHIBITION OF LIPID DROPLET CATABOLISM. J Biol Chem 280:42325–42335

    Article  CAS  PubMed  Google Scholar 

  • Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7:373–378

    Article  CAS  PubMed  Google Scholar 

  • Maxmen A (2017) Machine learning predicts the look of stem cells. https://doi.org/10.1038/nature.2017.21769

  • Merola F, Miccio L, Memmolo P, Paturzo M, Grilli S, Ferraro P (2012) Simultaneous optical manipulation, 3-D tracking, and imaging of micro-objects by digital holography in microfluidics. IEEE Photonics Journal 4:451–454

    Article  Google Scholar 

  • Millet LJ, Stewart ME, Sweedler JV, Nuzzo RG, Gillette MU (2007) Microfluidic devices for culturing primary mammalian neurons at low densities. Lab Chip 7:987–994

    Article  CAS  PubMed  Google Scholar 

  • Mills JP et al (2007) Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. P Natl Acad Sci USA 104:9213–9217. https://doi.org/10.1073/pnas.0703433104

    Article  CAS  Google Scholar 

  • Mir M et al (2011) Optical measurement of cycle-dependent cell growth. Proc Natl Acad Sci 108:13124–13129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan X, Cheng J-X, **e XS (2003) Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-stokes Raman scattering microscopy. J Lipid Res 44:2202–2208

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Depeursinge C, Popescu G (2018a) Quantitative phase imaging in biomedicine. Nat Photonics 12:578

    Article  CAS  Google Scholar 

  • Park Y, Diez-Silva M, Popescu G, Lykotrafitis G, Choi W, Feld MS, Suresh S (2008) Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc Natl Acad Sci U S A 105:13730–13735. https://doi.org/10.1073/pnas.0806100105

    Article  PubMed  PubMed Central  Google Scholar 

  • Park G, Han D, Kim G, Shin S, Kim K, Park J-K, Park Y (2017b) Visualization and label-free quantification of microfluidic mixing using quantitative phase imaging. Appl Opt 56:6341–6347

    Article  CAS  PubMed  Google Scholar 

  • Park J-H, Kong L, Zhou Y, Cui M (2017a) Large-field-of-view imaging by multi-pupil adaptive optics. Nat Methods 14:581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park H, Lee S, Ji M, Kim K, Son Y, Jang S, Park Y (2016) Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging. Sci Rep 6:34257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y, Popescu G, Badizadegan K, Dasari RR, Feld MS (2006) Diffraction phase and fluorescence microscopy. Opt Express 14:8263–8268

    Article  PubMed  Google Scholar 

  • Park C, Shin S, Park Y (2018b) Generalized quantification of three-dimensional resolution in optical diffraction tomography using the projection of maximal spatial bandwidths. J Opt Soc Am A 35:1891–1898. https://doi.org/10.1364/JOSAA.35.001891

    Article  CAS  Google Scholar 

  • Park Y, Yamauchi T, Choi W, Dasari R, Feld MS (2009) Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Opt Lett 34:3668–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J-H, Yu Z, Lee K, Lai P, Park Y (2018c) Perspective: Wavefront sha** techniques for controlling multiple light scattering in biological tissues: toward in vivo applications. APL Photonics 3:100901

    Article  CAS  Google Scholar 

  • Park Y et al (2010) Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci 107:1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park H et al (2015) Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy. Sci Rep 5:10827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park C et al (2018d) Three-dimensional refractive-index distributions of individual angiosperm pollen grains. Curr Opt Photon 2:460–467

    Google Scholar 

  • Pavillon N, Kühn J, Moratal C, Jourdain P, Depeursinge C, Magistretti PJ, Marquet P (2012) Early cell death detection with digital holographic microscopy. PLoS One 7:e30912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popescu G (2011) Quantitative phase imaging of cells and tissues. McGraw-Hill Professional,

    Google Scholar 

  • Popescu G, Ikeda T, Dasari RR, Feld MS (2006) Diffraction phase microscopy for quantifying cell structure and dynamics. Opt Lett 31:775–777

    Article  PubMed  Google Scholar 

  • Popescu G, Park Y, Choi W, Dasari RR, Feld MS, Badizadegan K (2008a) Imaging red blood cell dynamics by quantitative phase microscopy blood cells. Molecules, and Diseases 41:10–16

    Article  CAS  Google Scholar 

  • Popescu G et al (2008b) Optical imaging of cell mass and growth dynamics. Am J Phys Cell Phys 295:C538–C544. https://doi.org/10.1152/ajpcell.00121.2008

    Article  CAS  Google Scholar 

  • Rappaz B, Charrière F, Depeursinge C, Magistretti PJ, Marquet P (2008) Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium. Opt Lett 33:744–746

    Article  PubMed  Google Scholar 

  • Rappaz B, Marquet P, Cuche E, Emery Y, Depeursinge C, Magistretti PJ (2005) Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt Express 13:9361–9373

    Article  PubMed  Google Scholar 

  • Rappaz B et al (2009) Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. J Biomed Opt 14:034049. https://doi.org/10.1117/1.3147385

    Article  CAS  PubMed  Google Scholar 

  • Rinehart M, Zhu Y, Wax A (2012) Quantitative phase spectroscopy. Biomed Opt Express 3:958–965

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivenson Y, Göröcs Z, Günaydin H, Zhang Y, Wang H, Ozcan A (2017) Deep learning microscopy. Optica 4:1437–1443

    Article  Google Scholar 

  • Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schürmann M, Scholze J, Müller P, Guck J, Chan CJ (2016) Cell nuclei have lower refractive index and mass density than cytoplasm. J Biophotonics

    Google Scholar 

  • Shaked NT (2012) Quantitative phase microscopy of biological samples using a portable interferometer. Opt Lett 37:2016–2018. https://doi.org/10.1364/OL.37.002016

    Article  PubMed  Google Scholar 

  • Shin S, Kim D, Kim K, Park Y (2018) Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device. Sci Rep 8:9183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin S, Kim K, Yoon J, Park Y (2015) Active illumination using a digital micromirror device for quantitative phase imaging. Opt Lett 40:5407–5410

    Article  PubMed  Google Scholar 

  • Simon B, Debailleul M, Beghin A, Tourneur Y, Haeberlé O (2010) High-resolution tomographic diffractive microscopy of biological samples. J Biophotonics 3:462–467

    Article  PubMed  Google Scholar 

  • Smith F (1955) Microscopic interferometry modern methods of. Microscopy 8:385–395

    Google Scholar 

  • Specht EA, Braselmann E, Palmer AE (2017) A critical and comparative review of fluorescent tools for live-cell imaging. Annu Rev Physiol 79:93–117

    Article  CAS  PubMed  Google Scholar 

  • Sridharan S, Macias V, Tangella K, Kajdacsy-Balla A, Popescu G (2014) Prediction of prostate cancer recurrence using quantitative phase imaging. Sci Rep 5:9976–9976

    Article  CAS  Google Scholar 

  • Su J-W et al (2015) Precancerous esophageal epithelia are associated with significantly increased scattering coefficients. Biomed Opt Express 6:3795–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung Y, Choi W, Lue N, Dasari RR, Yaqoob Z (2012) Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy. PLoS One 7:e49502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung Y et al (2014) Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel. Physical review applied 1:014002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung W et al (2018) Computational modeling and Clonogenic assay for Radioenhancement of gold nanoparticles using 3D live cell images. Radiat Res

    Google Scholar 

  • Suresh S (2006) Mechanical response of human red blood cells in health and disease: some structure-property-function relationships. J Mater Res 21:1872

    Article  Google Scholar 

  • Thompson NL (2002) Fluorescence correlation spectroscopy. In: Topics in fluorescence spectroscopy. Springer, pp 337–378

    Google Scholar 

  • Tougan T et al (2018) Molecular camouflage of Plasmodium falciparum Merozoites by binding of host Vitronectin to P47 fragment of SERA5. Sci Rep 8:5052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turko NA, Peled A, Shaked NT (2013) Wide-field interferometric phase microscopy with molecular specificity using plasmonic nanoparticles. J Biomed Opt 18:111414–111414

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Ding H, Popescu G (2011b) Scattering-phase theorem. Opt Lett 36:1215–1217

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Tangella K, Balla A, Popescu G (2011a) Tissue refractive index as marker of disease. J Biomed Opt 16:116017–1160177

    Article  PubMed  PubMed Central  Google Scholar 

  • Weatherall DJ (2011) Systems biology and red cells. N Engl J Med 364:376–377

    Article  CAS  PubMed  Google Scholar 

  • Welte MA (2009) Fat on the move: intracellular motion of lipid droplets. Biochem Soc T 37:991–996. https://doi.org/10.1042/Bst0370991

    Article  CAS  Google Scholar 

  • Wilfling F, Haas JT, Walther TC, Farese RV Jr (2014) Lipid droplet biogenesis. Curr Opin Cell Biol 29:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  PubMed  Google Scholar 

  • Wolf E (1969) Three-dimensional structure determination of semi-transparent objects from holographic data. Opt Commun 1:153–156

    Article  Google Scholar 

  • Yang S-A, Yoon J, Kim K, Park Y (2016) Measurements of morphological and biochemical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease using optical diffraction tomography bioRxiv. https://doi.org/10.1101/080937

  • Yoon J, Jo Y, Kim M-H, Kim K, Lee S, Kang S-J, Park Y (2017) Label-free identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning. Sci Rep 7:6654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon J, Kim K, Park H, Choi C, Jang S, Park Y (2015) Label-free characterization of white blood cells by measuring 3D refractive index maps biomedical. Opt Express 6:3865–3875

    Article  CAS  Google Scholar 

  • Yu H, Jang J, Lim J, Park J-H, Jang W, Kim J-Y, Park Y (2014) Depth-enhanced 2-D optical coherence tomography using complex wavefront sha**. Opt Express 22:7514–7523

    Article  PubMed  Google Scholar 

  • Yu H, Park J, Lee K, Yoon J, Kim K, Lee S, Park Y (2015) Recent advances in wavefront sha** techniques for biomedical applications. Curr Appl Phys 15:632–641

    Article  Google Scholar 

  • Yu H et al (2016) In vivo deep tissue imaging using wavefront sha** optical coherence tomography. J Biomed Opt 21:101406–101406

    Article  PubMed  Google Scholar 

  • Zangle TA, Teitell MA (2014) Live-cell mass profiling: an emerging approach in quantitative biophysics. Nat Methods 11:1221–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zernike F (1942) Phase contrast, a new method for the microscopic observation of transparent objects. Physica 9:686–698

    Article  Google Scholar 

  • Zernike F (1955) How I discovered phase contrast. Science 121:345–349

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongKeun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, D., Lee, S., Lee, M., Oh, J., Yang, SA., Park, Y. (2021). Holotomography: Refractive Index as an Intrinsic Imaging Contrast for 3-D Label-Free Live Cell Imaging. In: Kim, J.K., Kim, J.K., Pack, CG. (eds) Advanced Imaging and Bio Techniques for Convergence Science. Advances in Experimental Medicine and Biology, vol 1310. Springer, Singapore. https://doi.org/10.1007/978-981-33-6064-8_10

Download citation

Publish with us

Policies and ethics

Navigation