Label-Free Multimodal Multiphoton Intravital Imaging

  • Chapter
  • First Online:
Optical Imaging in Human Disease and Biological Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 3233))

  • 2201 Accesses

Abstract

Label-free intravital optical imaging is an emergent visualization tool that is not only useful for basic biological research, but also for preclinical research with potential translational clinical applications. The complete absence of exogenous labeling or genetic alterations avoids plausible harmful perturbation to biological processes and the pristine physiological environment, as the endogenous biomolecules enable intrinsic imaging contrasts to interrogate various live multicellular organisms of interest. This tool has evolved from single-modality, single-photon imaging into multimodal multiphoton imaging, in order to gain different contrasts simultaneously during imaging sessions, and permit long-term time-lapse studies that have begun to spawn more diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pittet MJ, Weissleder R (2011) Intravital imaging. Cell 147:983–991

    Article  PubMed  CAS  Google Scholar 

  2. Nobis M, Warren SC, Lucas MC, Murphy KJ, Herrmann D, Timpson P (2018) Molecular mobility and activity in an intravital imaging setting–implications for cancer progression and targeting. J Cell Sci 131:jcs206995

    Article  PubMed  CAS  Google Scholar 

  3. Osswald M, Winkler F (2013) Insights into cell-to-cell and cell-to-blood-vessel communications in the brain: in vivo multiphoton microscopy. Cell Tissue Res 352:149–159

    Article  PubMed  CAS  Google Scholar 

  4. Secklehner J, Lo Celso C, Carlin LM (2017 Jul) Intravital microscopy in historic and contemporary immunology. Immunol Cell Biol 95(6):506–513

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhao Z, Zhu X, Cui K, Mancuso J, Federley R, Fischer K, Teng GJ, Mittal V, Gao D, Zhao H, Wong ST (2016) In vivo visualization and characterization of epithelial–mesenchymal transition in breast tumors. Cancer Res 76(8):2094–2104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hawkins ED, Duarte D, Akinduro O, Khorshed RA, Passaro D, Nowicka M, Straszkowski L, Scott MK, Rothery S, Ruivo N, Foster K (2016) T-cell acute leukemia exhibits dynamic interactions with bone marrow microenvironments. Nature 538(7626):518–522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Orth JD, Kohler RH, Foijer F, Sorger PK, Weissleder R, Mitchison TJ (2011) Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics. Cancer Res 71(13):4608–4616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Conway JR, Carragher NO, Timpson P (2014) Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer 14(5):314–328

    Article  PubMed  CAS  Google Scholar 

  9. Dubach JM, Kim E, Yang K, Cuccarese M, Giedt RJ, Meimetis LG, Vinegoni C, Weissleder R (2017) Quantitating drug-target engagement in single cells in vitro and in vivo. Nat Chem Biol 13(2):168–173

    Article  PubMed  CAS  Google Scholar 

  10. Miller MA, Weissleder R (2017) Imaging of anticancer drug action in single cells. Nat Rev Cancer 17(7):399–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Orringer DA, Camelo-Piragua S (2017) Fast and slide-free imaging. Nat Biomed Eng 1:926–928

    Article  PubMed  Google Scholar 

  12. Rius C, Sanz MJ (2015) Intravital microscopy in the cremaster muscle microcirculation for endothelial dysfunction studies. In: Methods in mouse atherosclerosis. Humana Press, New York, NY, pp 357–366

    Chapter  Google Scholar 

  13. Beaurepaire E, Moreaux L, Amblard F, Mertz J (1999) Combined scanning optical coherence and two-photon-excited fluorescence microscopy. Opt Lett 24:969–971

    Article  PubMed  CAS  Google Scholar 

  14. Tu H, Liu Y, Turchinovich D, Marjanovic M, Lyngsø JK, Lægsgaard J, Chaney EJ, Zhao Y, You S, Wilson WL, Xu B, Dantus M, Boppart SA (2016) Stain-free histopathology by programmable supercontinuum pulses. Nat Photon 10:534–540

    Article  CAS  Google Scholar 

  15. Follain G, Mercier L, Osmani N, Harlepp S, Goetz JG (2017) Seeing is believing–multi-scale spatio-temporal imaging towards in vivo cell biology. J Cell Sci 130:23–38

    PubMed  CAS  Google Scholar 

  16. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    Article  PubMed  CAS  Google Scholar 

  17. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    Article  PubMed  CAS  Google Scholar 

  18. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  19. Tu H, Liu Y, Marjanovic M, Chaney EJ, You S, Zhao Y, Boppart SA (2017) Concurrence of extracellular vesicle enrichment and metabolic switch visualized label-free in the tumor microenvironment. Sci Adv 3(1):e1600675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Maiti S, Shear JB, Williams RM, Zipfel WR, Webb WW (1997) Measuring serotonin distribution in live cells with three-photon excitation. Science 275:530–532

    Article  PubMed  CAS  Google Scholar 

  21. Li J, Bower AJ, Vainstein V, Gluzman-Poltorak Z, Chaney EJ, Marjanovic M, Basile LA, Boppart SA (2015) Effect of recombinant interleukin-12 on murine skin regeneration and cell dynamics using in vivo multimodal microscopy. Biomed Opt Express 6(11):4277–4287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Campagnola PJ, Loew LM (2003) Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21:1356–1360

    Article  PubMed  CAS  Google Scholar 

  23. Schießl IM, Castrop H (2016) Deep insights: intravital imaging with two-photon microscopy. Pflugers Arch 468(9):1505–1516

    Article  PubMed  CAS  Google Scholar 

  24. Barad Y, Eisenberg H, Horowitz M, Silberberg Y (1997) Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70:922–924

    Article  CAS  Google Scholar 

  25. Cheng JX, **e XS (2004) Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J Phys Chem B 108(3):827–840

    Article  CAS  Google Scholar 

  26. Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024

    Article  PubMed  CAS  Google Scholar 

  27. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  PubMed  CAS  Google Scholar 

  28. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  PubMed  CAS  Google Scholar 

  29. Progatzky F, Dallman MJ, Lo Celso C (2013) From seeing to believing labelling strategies for in vivo cell-tracking experiments. Interface Focus 3:20130001

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zitvogel L, Pitt JM, Daillère R, Smyth MJ, Kroemer G (2016) Mouse models in oncoimmunology. Nat Rev Cancer 16:759–773

    Article  PubMed  CAS  Google Scholar 

  31. Kersten K, de Visser KE, van Miltenburg MH, Jonkers J (2017) Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 9:137–153

    Article  PubMed  CAS  Google Scholar 

  32. Hanahan D, Wagner EF, Palmiter RD (2007) The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev 21:2258–2270

    Article  PubMed  CAS  Google Scholar 

  33. Politi K, Pao W (2011) How genetically engineered mouse tumor models provide insights into human cancers. J Clin Oncol 29:2273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5:796–806

    Article  PubMed  CAS  Google Scholar 

  35. Gavins FN, Chatterjee BE (2004) Intravital microscopy for the study of mouse microcirculation in anti-inflammatory drug research: focus on the mesentery and cremaster preparations. J Pharmacol Toxicol Methods 49(1):1–4

    Article  PubMed  CAS  Google Scholar 

  36. Jain RK, Munn LL, Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2:266–276

    Article  PubMed  CAS  Google Scholar 

  37. Alieva M, Ritsma L, Giedt RJ, Weissleder R, van Rheenen J (2014) Imaging windows for long-term intravital imaging: general overview and technical insights. Intravital. 3:e29917

    Article  PubMed  PubMed Central  Google Scholar 

  38. Prunier C, Chen N, Ritsma L, Vrisekoop N (2017) Procedures and applications of long-term intravital microscopy. Methods 128:52–64

    Article  PubMed  CAS  Google Scholar 

  39. Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB, Hübener M, Keck T, Knott G, Lee WC, Mostany R (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Le VH, Lee S, Lee S, Wang T, Jang WH, Yoon Y, Kwon S, Kim H, Lee SW, Kim KH (2017) In vivo longitudinal visualization of bone marrow engraftment process in mouse calvaria using two-photon microscopy. Sci Rep 7:44097

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang G, Pan F, Parkhurst CN, Grutzendler J, Gan WB (2010) Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5:201–208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Drew PJ, Shih AY, Driscoll JD, Knutsen PM, Blinder P, Davalos D, Akassoglou K, Tsai PS, Kleinfeld D (2010) Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7:981–984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kim TH, Zhang Y, Lecoq J, Jung JC, Li J, Zeng H, Niell CM, Schnitzer MJ (2016) Long-term optical access to an estimated one million neurons in the live mouse cortex. Cell Rep 17:3385–3394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Farrar MJ, Bernstein IM, Schlafer DH, Cleland TA, Fetcho JR, Schaffer CB (2012) Chronic in vivo imaging in the mouse spinal cord using an implanted chamber. Nat Methods 9:297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Palmer GM, Fontanella AN, Shan S, Hanna G, Zhang G, Fraser CL, Dewhirst MW (2011) In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters. Nat Protoc 6:1355–1366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kedrin D, Gligorijevic B, Wyckoff J, Verkhusha VV, Condeelis J, Segall JE, Van Rheenen J (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5:1019–1021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ritsma L, Steller EJ, Ellenbroek SI, Kranenburg O, Rinkes IH, Van Rheenen J (2013) Surgical implantation of an abdominal imaging window for intravital microscopy. Nat Protoc 8:583–594

    Article  PubMed  CAS  Google Scholar 

  48. Bochner F, Fellus-Alyagor L, Kalchenko V, Shinar S, Neeman M (2015) A novel intravital imaging window for longitudinal microscopy of the mouse ovary. Sci Rep 5:12446

    Article  PubMed  PubMed Central  Google Scholar 

  49. Entenberg D, Voiculescu S, Guo P, Borriello L, Wang Y, Karagiannis GS, Jones J, Baccay F, Oktay M, Condeelis J (2018) A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat Methods 15:73–80

    Article  PubMed  CAS  Google Scholar 

  50. McCreery MQ, Balmain A (2017) Chemical carcinogenesis models of cancer: back to the future. Annu Rev Cancer Biol 1:295–312

    Article  Google Scholar 

  51. Beerling E, Ritsma L, Vrisekoop N, Derksen PW, van Rheenen J (2011) Intravital microscopy: new insights into metastasis of tumors. J Cell Sci 124:299–310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Alexander S, Weigelin B, Winkler F, Friedl P (2013) Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr Opin Cell Biol 25:659–671

    Article  PubMed  CAS  Google Scholar 

  53. Ellenbroek SI, van Rheenen J (2014) Imaging hallmarks of cancer in living mice. Nat Rev Cancer 14:406–418

    Article  PubMed  CAS  Google Scholar 

  54. Wang CC, Li FC, Lin SJ, Lo W, Dong CY (2007) Utilizing nonlinear optical microscopy to investigate the development of early cancer in nude mice in vivo. In: European Conference on Biomedical Optics. (paper 6630_33)

    Google Scholar 

  55. Obeidy P, Tong PL, Weninger W (2018) Research techniques made simple: two-photon intravital imaging of the skin. J Invest Dermatol 138(4):720–725

    Article  PubMed  CAS  Google Scholar 

  56. Perentes JY, McKee TD, Ley CD, Mathiew H, Dawson M, Padera TP, Munn LL, Jain RK, Boucher Y (2009) In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nat Methods 6:143–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Weigelin B, Bakker GJ, Friedl P (2012) Intravital third harmonic generation microscopy of collective melanoma cell invasion: principles of interface guidance and microvesicle dynamics. IntraVital 1:32–43

    Article  PubMed  Google Scholar 

  58. Szulczewski JM, Inman DR, Entenberg D, Ponik SM, Aguirre-Ghiso J, Castracane J, Condeelis J, Eliceiri KW, Keely PJ (2016) In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging. Sci Rep 6:25086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, Avivar-Valderas A, Nagi C, Girnius N, Davis RJ, Farias EF, Condeelis J, Klein CA, Aguirre-Ghiso JA (2016) Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540:7634

    Article  CAS  Google Scholar 

  60. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122

    Article  PubMed  CAS  Google Scholar 

  61. Ritsma L, Steller EJ, Beerling E, Loomans CJ, Zomer A, Gerlach C, Vrisekoop N, Seinstra D, van Gurp L, Schäfer R, Raats DA, de Graaff A, Schumacher TN, de Koning EJ, Rinkes IH, Kranenburg O, van Rheenen J (2012) Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Sci Transl Med 4:ra145

    Article  CAS  Google Scholar 

  62. You S, Tu H, Chaney EJ, Sun Y, Zhao Y, Bower AJ, Liu Y-Z, Marjanovic M, Sinha S, Pu Y, Boppart SA (2018) Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. Nat Commun 9:2125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  PubMed  CAS  Google Scholar 

  64. Niehörster T, Löschberger A, Gregor I, Krämer B, Rahn HJ, Patting M, Koberling F, Enderlein J, Sauer M (2016) Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat Methods 13:257–262

    Article  PubMed  CAS  Google Scholar 

  65. Wei L, Chen Z, Shi L, Long R, Anzalone AV, Zhang L, Hu F, Yuste R, Cornish VW, Min W (2017) Super-multiplex vibrational imaging. Nature 544:465–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. You S, Sun Y, Chaney EJ, Zhao Y, Chen J, Boppart SA, Tu H (2018) Slide-free virtual histochemistry (Part I): development via nonlinear optics. Biomed Opt Express 9:5240–5252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. You S, Barkalifa R, Chaney EJ, Tu H, Park J, Sorrells JE, Sun Y, Liu YZ, Yang L, Chen DZ, Marjanovic M, Sinha S, Boppart SA (2019) Label-free visualization and characterization of extracellular vesicles in breast cancer. Proc Natl Acad Sci U S A 116(48):24012–24018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. **a F, Wu C, Sinefeld D, Li B, Qin Y, Xu C (2018) In vivo label-free confocal imaging of the deep mouse brain with long-wavelength illumination. Biomed Opt Express 9(12):6545–6555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Witte S, Negrean A, Lodder JC, De Kock CP, Silva GT, Mansvelder HD, Groot ML (2011) Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proc Natl Acad Sci U S A 108(15):5970–5975

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lee JH, Rico-Jimenez JJ, Zhang C, Alex A, Chaney EJ, Barkalifa R, Spillman DR, Marjanovic M, Arp Z, Hood SR, Boppart SA (2019) Simultaneous label-free autofluorescence and multi-harmonic imaging reveals in vivo structural and metabolic changes in murine skin. J Biomed Opt 10(10):5431–5444

    Article  CAS  Google Scholar 

  71. Graf BW, Chaney EJ, Marjanovic M, Adie SG, De Lisio M, Valero MC, Boppart MD, Boppart SA (2013) Long-term time-lapse multimodal intravital imaging of regeneration and bone-marrow-derived cell dynamics in skin. Technology 1(01):8–19

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li J, Pincu Y, Marjanovic M, Bower AJ, Chaney EJ, Jensen T, Boppart MD, Boppart SA (2016) In vivo evaluation of adipose-and muscle-derived stem cells as a treatment for nonhealing diabetic wounds using multimodal microscopy. J Biomed Opt 21(8):086006

    Article  PubMed Central  Google Scholar 

  73. Li J, Bower AJ, Arp Z, Olson EJ, Holland C, Chaney EJ, Marjanovic M, Pande P, Alex A, Boppart SA (2018) Investigating the healing mechanisms of an angiogenesis-promoting topical treatment for diabetic wounds using multimodal microscopy. J Biophotonics 11(3):e201700195

    Article  CAS  Google Scholar 

  74. Bower AJ, Zane ZA, Zhao Y, Li J, Chaney EJ, Marjanovic M, Hughes-Earle AR, Boppart SA (2016) Longitudinal in vivo tracking of adverse effects following topical steroid treatment. Exp Dermatol 25(5):362–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bower AJ, Marjanovic M, Zhao Y, Li J, Chaney EJ, Boppart SA (2017) Label-free in vivo cellular-level detection and imaging of apoptosis. J Biophotonics 10(1):143–150

    Article  PubMed  CAS  Google Scholar 

  76. Tsai TH, Lin SJ, Lee WR, Wang CC, Hsu CT, Chu T, Dong CY (2012) Visualizing radiofrequency–skin interaction using multiphoton microscopy in vivo. J Dermatol Sci 65(2):95–101

    Article  PubMed  Google Scholar 

  77. Masters BR, So PT, Gratton E (1997) Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J 72:2405–2412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Alex A, Frey S, Angelene H, Neitzel CD, Li J, Bower AJ, Spillman DR Jr, Marjanovic M, Chaney EJ, Medler JL, Lee W, Vasist Johnson LS, Boppart SA, Arp Z (2018) In situ biodistribution and residency of a topical anti-inflammatory using fluorescence lifetime imaging microscopy. Br J Dermatol 179(6):1342–1350

    Article  PubMed  CAS  Google Scholar 

  79. Hopt A, Neher E (2001) Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys J 80:2029–2036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Koester HJ, Baur D, Uhl R, Hell SW (1999) Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. Biophys J 77:2226–2236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Vogel A, Noack J, Hüttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 81:1015–1047

    Article  CAS  Google Scholar 

  82. Ji N, Magee J, Betzig E (2008) High-speed, low-photodamage nonlinear imaging using passive pulse splitters. Nat Methods 5:197–202

    Article  PubMed  CAS  Google Scholar 

  83. Masters B, So P, Buehler C, Barry N, Sutin J, Mantulin WW, Gratton E (2004) Mitigating thermal mechanical damage potential during two-photon dermal imaging. J Biomed Opt 9:1265–1270

    Article  PubMed  Google Scholar 

  84. ** P, Andegeko Y, Weisel LR, Lozovoy VV, Dantus M (2008) Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses. Opt Commun 281:1841–1849

    Article  CAS  Google Scholar 

  85. Fu Y, Wang H, Shi R, Cheng JX (2006) Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. Opt Express 14:3942–3951

    Article  PubMed  CAS  Google Scholar 

  86. Rehberg M, Krombach F, Pohl U, Dietzel S (2010) Signal improvement in multiphoton microscopy by reflection with simple mirrors near the sample. J Biomed Opt 15(2):026017

    Article  PubMed  Google Scholar 

  87. Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7:864–868

    Article  PubMed  CAS  Google Scholar 

  88. Lin SJ, Hsu CJ, Wu RJ, Kuo CJ, Chen JS, Chan JY, Lin WC, Jee SH, Dong CY (2007) Quantitative multiphoton imaging for guiding basal-cell carcinoma removal. In: Proceedings from SPIE BiOS. Photonic Therapeutics and Diagnostics III, vol 6424, p 642404

    Chapter  Google Scholar 

  89. Seidenari S, Arginelli F, Dunsby C, French P, König K, Magnoni C, Manfredini M, Talbot C, Ponti G (2012) Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: morphologic features for non-invasive diagnostics. Exp Dermatol 21(11):831–836

    Article  PubMed  Google Scholar 

  90. Graf BW, Boppart SA (2011) Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy. IEEE J Sel Top Quant Electron 18(4):1280–1286

    Article  CAS  Google Scholar 

  91. You S, Sun Y, Chaney EJ, Zhao Y, Chen J, Boppart SA, Tu H (2018) Slide-free virtual histochemistry (Part II): detection of field cancerization. Biomed Opt Express 9:5253–5268

    Article  PubMed  PubMed Central  Google Scholar 

  92. Boppart SA, You S, Li L, Chen J, Tu H (2019) Simultaneous label-free autofluorescence-multiharmonic microscopy and beyond. APL Photonics 4(10):100901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank all of our colleagues for their dedicated efforts to advance the field of IVM and its applications in biology and medicine. While this chapter has focused on the more narrowly defined topic of label-free IVM, we acknowledge that a more comprehensive review and inclusion of more results was not practical due to length limitations. This review was prepared with support in part from the National Institutes of Health (R01CA213149, R01EB023232, R01CA241618). Additional information can be found at: http://biophotonics.illinois.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Boppart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, J., Tu, H., Marjanovic, M., Boppart, S.A. (2021). Label-Free Multimodal Multiphoton Intravital Imaging. In: Wei, X., Gu, B. (eds) Optical Imaging in Human Disease and Biological Research. Advances in Experimental Medicine and Biology, vol 3233. Springer, Singapore. https://doi.org/10.1007/978-981-15-7627-0_7

Download citation

Publish with us

Policies and ethics

Navigation