Introduction

  • Chapter
  • First Online:
Auxetic Materials and Structures

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 3635 Accesses

Abstract

Auxetic materials are solids that possess negative Poisson’s ratio. This chapter introduces the reader to the definition of Poisson’s ratio and its historical development. Thereafter the definition and historical development of auxetic materials are given. Both naturally occurring as well as man-made auxetic materials are introduced—the former in terms of α-cristobalite and the latter in terms of foams and yarns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderson A (1999) A triumph of lateral thought. Chem Ind 10:384–391

    Google Scholar 

  • Alderson A, Alderson KL (2007) Auxetic materials. IMechE J Aerosp Eng 221(4):565–575

    Article  Google Scholar 

  • Alderson KL, Alderson A, Davies PJ, Smart G, Ravirala N, Simkins G (2007b) The effect of processing parameters on the mechanical properties of auxetic polymeric fibers. J Mat Sci 42(19):7991–8000

    Google Scholar 

  • Alderson KL, Alderson A, Ravirala N, Simkins G, Davies P (2012) Manufacture and characterisation of thin flat and curved auxetic foam sheets. Phys Status Solidi B 249(7):1315–1321

    Article  Google Scholar 

  • Alderson KL, Webber RS, Evans KE (2007a) Microstructural evolution in the processing of auxetic microporous polymers. Phys Status Solidi B 244(3):828–841

    Google Scholar 

  • Almgren RF (1985) An isotropic three-dimensional structure with Poisson’s ratio = −1. J Elast 15(4):427–430

    Article  Google Scholar 

  • Bianchi M, Scarpa FL, Smith CW (2008) Stiffness and energy dissipation in polyurethane auxetic foams. J Mat Sci 43(17):5851–5860

    Article  Google Scholar 

  • Bianchi M, Scarpa F, Smith CW, Whittell (2010) Physical and thermal effects on the shape memory behaviour of auxetic open cell foams. J Mat Sci 45(2):347–351

    Article  Google Scholar 

  • Bjeletich JG, Crossman FW, Warren WJ (1979) The influence of stacking sequence on failure modes in quasi-isotropic graphite-epoxy laminates. In: Cornie JA and Crossman FW (eds) Failure modes in composites IV. The metallurgical society of AIME

    Google Scholar 

  • Brandel B, Lakes RS (2001) Negative Poisson’s ratio polyethylene foams. J Mat Sci 36(24):5885–5893

    Article  Google Scholar 

  • Caddock BD, Evans KE (1989) Microporous materials with negative Poisson’s ratios I: microstructure and mechanical properties. J Phys D Appl Phys 22(12):1877–1882

    Article  Google Scholar 

  • Cauchy AL (1828) Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide, élastique ou non élastique. Exercices de Mathématiques 3:160–187

    Google Scholar 

  • Chan N, Evans KE (1997a) Fabrication methods for auxetic foams. J Mat Sci 32(22):5945–5953

    Google Scholar 

  • Chan N, Evans KE (1997b) Microstructural examination of the microstructure and deformation of conventional and auxetic foams. J Mat Sci 32(21):5725–5736

    Google Scholar 

  • Chan N, Evans KE (1999a) The mechanical properties of conventional and auxetic foams. Part I: compression and tension. J Cell Plast 35(2):130–165

    Google Scholar 

  • Chan N, Evans KE (1999b) The mechanical properties of conventional and auxetic foams. Part II: shear. J Cell Plast 35(2):166–183

    Google Scholar 

  • Critchley R, Corni I, Wharton JA, Walsh FC, Wood RJK, Stokes KR (2013a) A review of the manufacture, mechanical properties and potential applications of auxetic foams. Phys Status Solidi B 250(10):1963–1982

    Google Scholar 

  • Critchley R, Corni I, Wharton JA, Walsh FC, Wood RJK, Stokes KR (2013b) The preparation of auxetic foams by three-dimensional printing and their characteristics. Adv Eng Mat 15(10):980–985

    Google Scholar 

  • Darja R, Tatjana R, Alenka PC (2013) Auxetic textiles. Acta Chim Slov 60(4):715–723

    Google Scholar 

  • Evans KE (1991) Auxetic polymers: a new range of materials. Endeavour 15(4):170–174

    Article  Google Scholar 

  • Evans KE, Caddock BD (1989) Microporous materials with negative Poisson’s ratios II: mechanisms and interpretation. J Phys D Appl Phys 22(12):1883–1887

    Article  Google Scholar 

  • Frenkel D, Ladd AJC (1987) Elastic constants of hard-sphere crystals. Phys Rev Lett 59(10):1169

    Article  Google Scholar 

  • Fung YC (1965) Foundations of solid mechanics. Prentice-Hall, New Jersey

    Google Scholar 

  • Ge Z, Hu H (2013) Innovative three-dimensional fabric structure with negative Poisson’s ratio for composite reinforcement. Text Res J 83(5):543–550

    Article  Google Scholar 

  • Ge Z, Hu H, Liu Y (2013) A finite element analysis of a 3D auxetic textile structure for composite reinforcement. Smart Mater Struct 22(8):084005

    Article  Google Scholar 

  • Gibson LJ, Ashby MF, Schajer GS, Roberson CI (1982) The mechanics of two-dimensional cellular materials. Proc R Soc Lond A 382(1782):25–42

    Article  Google Scholar 

  • Glazzard M, Breedon P (2014) Weft-knitted auxetic textile design. Phys Status Solidi B 251(2):267–272

    Article  Google Scholar 

  • Greaves GN (2013) Poisson’s ratio over two centuries: challenging hypotheses. Notes Rec R Soc 67(1):37–58

    Article  MathSciNet  Google Scholar 

  • Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10(11):823–837

    Article  Google Scholar 

  • Grima JN, Caruana-Gauci R, Dudek M, Wojciechowski KW, Gatt R (2013) Smart metamaterials with tunable and other properties. Smart Mater Struct 22(8):084016

    Article  Google Scholar 

  • Hassan MR, Scarpa F, Mohamed NA (2009) In-plane tensile behavior of shape memory alloy honeycombs with positive and negative Poisson’s ratio. J Intell Mater Syst Struct 20(8):897–905

    Article  Google Scholar 

  • He CB, Liu PW, Griffin AC (1998) Toward negative Poisson ratio polymers through molecular design. Macromolecules 31(9):3145–3147

    Article  Google Scholar 

  • He CB, Liu PW, McMullan PJ, Griffin AC (2005) Toward molecular auxetics: main chain liquid crystalline polymers consisting of laterally attached para-quaterphenyls. Phys Status Solidi B 242(3):576–584

    Article  Google Scholar 

  • Hearmon RFS (1946) The elastic constants of anisotropic materials. Rev Mod Phys 18(3):409–440

    Article  Google Scholar 

  • Herakovich CT (1984) Composite laminate with negative through-the-thickness Poisson’s ratios. J Compos Mater 18(5):447–455

    Article  Google Scholar 

  • Jarić MV, Mohanty U (1987a) “Martensitic” instability of an icosahedral quasicrystal. Phys Rev Lett 58(3):230–233

    Google Scholar 

  • Jarić MV, Mohanty U (1987b) Jarić and Mohanty reply. Phys Rev Lett 59(10):1170

    Google Scholar 

  • Keskar NR, Chelikowsky JR (1992) Negative Poisson ratios in crystalline SiO2 from first-principles calculations. Nature 358(6383):222–224

    Article  Google Scholar 

  • Kirchhoff GR (1859) Ueber das Verhältniss der Quercontraction zur Längendilatation bei Stäben von federhartem Stahl. Ann Phys 184(11):369–392

    Article  Google Scholar 

  • Kittinger E, Tichy J, Bertagnolli E (1981) Example of a negative effective Poisson’s ratio. Phys Rev Lett 47(10):712–713

    Article  Google Scholar 

  • Lakes R (1987a) Foam structures with negative Poisson’s ratio. Science 235(4792):1038–1040

    Google Scholar 

  • Lakes R (1987b) Negative Poisson’s ratio materials. Science 238(4826):551

    Google Scholar 

  • Lakes R (1993) Advances in negative Poisson’s ratio materials. Adv Mater 5(4):293–296

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1970) Course of theoretical physics, vol 7. Theory of elasticity. Pergamon Press, Oxford

    Google Scholar 

  • Liu Y, Hu H (2010) A review on auxetic structures and polymeric materials. Sci Res Essays 5(10):1052–1063

    Google Scholar 

  • Love AEH (1927) A treatise on the mathematical theory of elasticity, 4th edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Miller W, Hook PB, Smith CW, Wang X, Evans KE (2009) The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos Sci Technol 69(5):651–655

    Article  Google Scholar 

  • Miller W, Ren Z, Smith CW, Evans KE (2012) A negative Poisson’s ratio carbon fibre composite using a negative Poisson’s ratio yarn reinforcement. Compos Sci Technol 72(7):761–766

    Article  Google Scholar 

  • Milstein F, Huang K (1979) Existence of a negative Poisson ratio in fcc crystals. Phys Rev B 19(4):2030–2033

    Article  Google Scholar 

  • Pickles AP, Webber RS, Alderson KL, Neale PJ, Evans KE (1995) The effect of the processing parameters on the fabrication of auxetic polyethylene. Part I. The effect of compaction conditions. J Mat Sci 30(16):4059–4068

    Article  Google Scholar 

  • Poisson SD (1827) Note sur l’extension des fils et des plaques élastiques. Annales de Chimie et de Physique 36:384–387

    Google Scholar 

  • Popereka MYA, Balagurov VG (1969) Ferromagnetic films having a negative Poisson ratio. Fizika Tverdogo Tela 11(12):3507–3513

    Google Scholar 

  • Prawoto Y (2012) Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput Mater Sci 58:140–153

    Article  Google Scholar 

  • Rossiter J, Takashima K, Scarpa F, Walters P, Mukai T (2014) Shape memory polymer hexachiral auxetic structures with tunable stiffness. Smart Mater Struct 23(4):045007

    Article  Google Scholar 

  • Saint-Venant AJCB (1848) Résumé des leçons sur l’application de la mécanique à l’établissement des constructions et des machines, premiere section, Paris

    Google Scholar 

  • Scarpa F, Smith FC (2004) Passive and MR fluid-coated auxetic PU foam—mechanical, acoustic, and electromagnetic properties. J Intell Mater Syst Struct 15(12):973–979

    Article  Google Scholar 

  • Shin D, Urzhumov Y, Lim D, Kim K, Smith DR (2014) A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials. Sci Rep 4:4084

    Google Scholar 

  • Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook. MIT Press, Massachusetts

    Google Scholar 

  • Sloan MR, Wright JR, Evans KE (2011) The helical auxetic yarn—a novel structure for composites and textiles; geometry, manufacture and mechanical properties. Mech Mater 43(9):476–486

    Article  Google Scholar 

  • Sun CT, Li S (1988) Three-dimensional effective elastic constants for thick laminates. J Compos Mater 22(7):629–639

    Article  Google Scholar 

  • Tsai SW, Hahn HT (1980) Introduction to Composite Materials. Technomic, Lancaster

    Google Scholar 

  • Veronda DR, Westmann RA (1970) Mechanical characterization of skin-finite deformations. J Biomech 3(1):111–124

    Article  Google Scholar 

  • Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, Berlin

    Google Scholar 

  • Wang Z, Hu H (2014a) 3D auxetic warp-knitted spacer fabrics. Phys Status Solidi B 251(2):281–288

    Article  Google Scholar 

  • Wang Z, Hu H (2014b) Auxetic materials and their potential applications in textiles. Text Res J 84(15):1600–1611

    Article  Google Scholar 

  • Wang Z, Hu H, **ao X (2014) Deformation behaviors of three-dimensional auxetic spacer fabrics. Text Res J 84(13):1361–1372

    Article  Google Scholar 

  • Wertheim G (1848) Mémoire sur l’équilibre des corps solides homogènes. Annales de Chimie et de Physique, 3rd series 23:52–95

    Google Scholar 

  • Wojciechowski KW (1987) Constant thermodynamic tension Monte-Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 61(5):1247–1258

    Article  Google Scholar 

  • Wojciechowski KW (1989) Two-dimensional isotropic system with a negative Poisson ratio. Phys Lett A 137(1&2):60–64

    Article  Google Scholar 

  • Wojciechowski KW, Branka AC (1989) Negative Poisson ratio in a two-dimensional ‘‘isotropic’’ solid. Phys Rev A 40(12):7222–7225

    Article  Google Scholar 

  • Wright JR, Burns MK, James E, Sloan MR, Evans KE (2012) On the design and characterisation of low-stiffness auxetic yarns and fabrics. Text Res J 82(7):645–654

    Article  Google Scholar 

  • Yang W, Li ZM, Shi W, **e BH, Yang MB (2004) Review on auxetic materials. J Mat Sci 39(10):3269–3279

    Article  Google Scholar 

  • Yeganeh-Haeri A, Weidner DJ, Parise JB (1992) Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson’s ratio. Science 257(5070):650–652

    Article  Google Scholar 

  • Young T (1807) On passive strength and friction. Course of lectures on natural philosophy and the mechanical arts: lecture, vol 13. Taylor and Walton, London, pp 109–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lim, TC. (2015). Introduction. In: Auxetic Materials and Structures. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-287-275-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-275-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-274-6

  • Online ISBN: 978-981-287-275-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation