Biomaterial-Based Delivery Systems for Chemotherapeutics

  • Chapter
  • First Online:
Targeted Cancer Therapy in Biomedical Engineering

Abstract

The fields of understanding the molecular basis, cell genetics, biochemical sciences, materials sciences, and technology all have significant contributions to make towards the research and fabrication of biomaterials. These materials have undergone modification in order to have interaction with biological systems in a therapeutic or diagnostic manner. In the environment where they are placed, they have a synergistic effect. Although it is a centuries-old science, it is currently evolving as a cutting-edge research platform with applications in a wide range of medical sectors, with cancer being the most intensively explored. The overview of these biomaterials-related studies, which covers the application of biomaterials as therapeutics such as immunisations and surface modulators to increase the activity of antigen-specific T cells in immunotherapy for malignancies, is included in the study. In cases of recurrent cancers, tumours that are inadequately immunogenic and tumours that are immunologically resistant, the application has been demonstrated to be reliable. Biomaterials have been used to treat skin cancer and triple-negative breast cancer successfully. Patients with malignancies that lack immunogenicity respond poorly to immunotherapy treatments clinically. When taken at high concentrations, several treatments also have a chance of causing systemic toxicity, and the possibility of autoimmunity is practically always present. In order to address the drawbacks of immunotherapies, biomaterials can be used as cancer detection tools, delivery vehicles to change the pharmacokinetic properties, oral bioavailability, and regulate discharge of therapeutic drugs targeting the immune system, vaccines, and targeted nanoparticle drug delivery systems (active/passive targeting). We will examine the applications of natural, synthetic, and latest design biomaterials in cancer research in this chapter of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Adamantane carboxylic acid

ACT:

Adoptive cell therapy

ALT:

Alanine aminotransferase

AMT:

Absorption mediated transcytosis

APC:

Antigen presenting cells

ApoA1:

Apolipoprotein A1

ASGPR:

Asialoglycoprotein receptor

AST:

Aspartate aminotransferase

AuNP:

Gold nanoparticles

BBB:

Blood brain barrier

BC:

Bacterial cellulose

C–Co–NPs:

Cobalt nanoparticles coated with graphitic shells

–CD:

Beta-cyclodextrin

CDPs:

Cyclic dipeptides

CDT:

Chemo dynamic therapy

CNS:

Central nervous system

CpG:

5′-C-phosphate-G-3

CTX:

Cabazitaxel

Cur:

Curcumin

DEB:

Drug eluting beads

DNA:

Deoxyribonucleic acid

DOX:

Doxorubicin

EGFR:

Epidermal growth factor receptor

FF:

Diphenylalanine

FIONs:

Ferrimagnetic iron oxide nanocubes

GBM:

Glioblastoma

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HAV:

His-Ala-Val

HCC:

Hepatocellular cancer

HDL:

High density lipoprotein

HFIP:

Hexafluoroisopropanol

HIV:

Human immunodeficiency virus

IAP:

Inhibitor of apoptosis

ICG:

Indocyanine green

ICMVs:

Inter bilayer-crosslinked multilamellar vesicles

IL:

6 Interleukin 6

IONPs:

Iron oxide nanoparticles

LDDSs:

Local drug delivery systems

Lf:

Lactoferrin

LFC:

Lipid formulation classification

MAbs:

Monoclonal antibodies

MC-38:

Murine colon adenocarcinoma cells

MCTs:

Multicellular tumour spheroids

MDA-MB231:

M.D. Anderson—Metastatic Breast 231

MDR:

Multidrug resistance

MNP:

Magnetic nanoparticles

NapFF:

Naphthalene-diphenylalanine

NC:

Nanocrystal

NCA:

N Carboxyanhydride

NDI:

Naphthalene diimide

NHS:

N hydroxy succinimide

NIR:

Near Infrared

NPs:

Nanoparticles

OLISA:

Organelle co-localization-induced supramolecular self-assembly

OvCa:

Ovarian cancer

PBS:

Phosphate buffered saline

PDI:

Perylene diimide

PDT:

Photodynamic therapy

PEI:

Polyethylene imine

pRNA:

Package RNA

PTT:

Photothermal therapy

PTX:

Paclitaxel

PVA:

Poly vinyl alcohol

QDs:

Quantum dots

RF:

Radiofrequency

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SDT:

Sonodynamic therapy

siRNA:

Small interfering RNA

SLN:

Solid liquid Nanoparticles

SOD:

Superoxide dismutase

SWNTs’:

Single walled nanotubes

TCA:

Tricarboxylic acid

TME:

Tumor microenvironment

TNF:

Tumor necrosis factor

TRAIL:

Tumour necrosis factor-related apoptosis inducing ligand

WC:

Watson-Crick

References

  1. https://www.who.int/health-topics/cancer

  2. W.H. Yoon, H.D. Park, K. Lim, B.D. Hwang, Effect of O-glycosylated mucin on invasion and metastasis of HM7 human colon cancer cells. Biochem. Biophys. Res. Commun. 222(3), 694–699 (1996)

    Article  Google Scholar 

  3. M.D. Burdick, A. Harris, C.J. Reid, T. Iwamura, M.A. Hollingsworth, Oligosaccharides expressed on MUC1 produced by pancreatic and colon tumor cell lines. J. Biol. Chem. 272(39), 24198–24202 (1997)

    Article  Google Scholar 

  4. H.S. Lee, C.B. Park, J.M. Kim, S.A. Jang, I.Y. Park, M.S. Kim, J.H. Cho, S.C. Kim, Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett. 271(1), 47–55 (2008)

    Article  Google Scholar 

  5. J. Kleeff, T. Ishiwata, A. Kumbasar, H. Friess, M.W. Büchler, A.D. Lander, M. Korc, The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J. Clin. Investig. 102(9), 1662–1673 (1998)

    Article  Google Scholar 

  6. D.W. Hoskin, A. Ramamoorthy, Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1778(2), 357–375 (2008)

    Google Scholar 

  7. O. Warburg, On the origin of cancer cells. Science 123(3191), 309–314 (1956)

    Article  Google Scholar 

  8. B. Chen, W. Le, Y. Wang, Z. Li, D. Wang, L. Ren, L. Lin, S. Cui, J.J. Hu, Y. Hu, P. Yang, Targeting negative surface charges of cancer cells by multifunctional nanoprobes. Theranostics 6(11), 1887 (2016)

    Article  Google Scholar 

  9. N. Kumar, S. Fazal, E. Miyako, K. Matsumura, R. Rajan, Avengers against cancer: a new era of nano-biomaterial-based therapeutics. Mater. Today (2021)

    Google Scholar 

  10. A. Goel, S. Kulshrestha, Biomaterials as therapeutic agents for treatment of cancer: a review. IOP Conf. Ser. Mater. Sci. Eng. 1116(1), 012037 (2021)

    Google Scholar 

  11. J. Weiden, J. Tel, C.G. Figdor, Synthetic immune niches for cancer immunotherapy. Nat. Rev. Immunol. 18(3), 212–219 (2018)

    Article  Google Scholar 

  12. A.W. Li, M.C. Sobral, S. Badrinath, Y. Choi, A. Graveline, A.G. Stafford, J.C. Weaver, M.O. Dellacherie, T.Y. Shih, O.A. Ali, J. Kim, A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. 17(6), 528–534 (2018)

    Article  Google Scholar 

  13. H. Wang, D.J. Mooney, Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nat. Mater. 17(9), 761–772 (2018)

    Article  Google Scholar 

  14. C. Yang, N.T. Blum, J. Lin, J. Qu, P. Huang, Biomaterial scaffold-based local drug delivery systems for cancer immunotherapy. Science Bulletin. 65(17), 1489–1504 (2020)

    Article  Google Scholar 

  15. L.P. Datta, S. Manchineella, T. Govindaraju, Biomolecules-derived biomaterials. Biomaterials 1(230), 119633 (2020)

    Article  Google Scholar 

  16. G. Thandapani, P.N. Sudha, Bioactive Metallic Surfaces for Bone Tissue Engineering in Fundamental Biomaterials: Metals (2018)

    Google Scholar 

  17. R. Langer, D.A. Tirrell, Designing materials for biology and medicine. Nature 428(6982), 487–492 (2004)

    Article  Google Scholar 

  18. D.L. Stocum, Stem cells in CNS and cardiac regeneration. Regen. Med. I(1), 135–159 (2005)

    Google Scholar 

  19. A.G. Mikos, S.W. Herring, P. Ochareon, J. Elisseeff, H.H. Lu, R. Kandel, F.J. Schoen, M. Toner, D. Mooney, A. Atala, M.E. Van Dyke, D. Kaplan, G. Vunjak-Novakovic, Engineering complex tissues Tissue Eng. 12, 3307–3309 (2006)

    Google Scholar 

  20. S. Shi, R. Vissapragada, J. Abi Jaoude, C. Huang, A. Mittal, E. Liu, J. Zhong, V. Kumar, Evolving role of biomaterials in diagnostic and therapeutic radiation oncology. Bioactive Mater. 5(2), 233–240 (2020)

    Article  Google Scholar 

  21. L. Gu, D.J. Mooney, Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat. Rev. Cancer 16(1), 56–66 (2016)

    Article  Google Scholar 

  22. R. Langer, N.A. Peppas, Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 49(12), 2990–3006 (2003)

    Article  Google Scholar 

  23. K. Petrak, R. Vissapragada, S. Shi, Z. Siddiqui, K.K. Kim, B. Sarkar, V.A. Kumar, Challenges in translating from bench to bed-side: pro-angiogenic peptides for ischemia treatment. Molecules 24(7), 1219 (2019)

    Article  Google Scholar 

  24. V.A. Kumar, N.L. Taylor, S. Shi, B.K. Wang, A.A. Jalan, M.K. Kang, N.C. Wickremasinghe, J.D. Hartgerink, Highly angiogenic peptide nanofibers. ACS Nano 9(1), 860–868 (2015)

    Article  Google Scholar 

  25. S. Shi, P.K. Nguyen, H.J. Cabral, R. Diez-Barroso, P.J. Derry, S.M. Kanahara, V.A. Kumar, Development of peptide inhibitors of HIV transmission. Bioactive Mater. 1(2), 109–121 (2016)

    Article  Google Scholar 

  26. V.A. Kumar, S. Shi, B.K. Wang, I.C. Li, A.A. Jalan, B. Sarkar, N.C. Wickremasinghe, J.D. Hartgerink, Drug-triggered and cross-linked self-assembling nanofibrous hydrogels. J. Am. Chem. Soc. 137(14), 4823–4830 (2015)

    Article  Google Scholar 

  27. S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29), 7127–7138 (2011)

    Article  Google Scholar 

  28. N. Kamaly, Z. **ao, P.M. Valencia, A.F. Radovic-Moreno, O.C. Farokhzad, Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41(7), 2971–3010 (2012)

    Article  Google Scholar 

  29. S.R. Choi, Y. Yang, K.Y. Huang, H.J. Kong, M.J. Flick, B. Han, Engineering of biomaterials for tumormodeling. Mater. Today Adv. 1(8), 100117 (2020)

    Article  Google Scholar 

  30. D. Williams, The continuing evolution of biomaterials. Biomaterials 32(1), 1–2 (2011)

    Article  Google Scholar 

  31. B.D. Ratner, Biomaterials: been there, done that, and evolving into the future. Annu. Rev. Biomed. Eng. 4(21), 171–191 (2019)

    Article  Google Scholar 

  32. R.S. Langer, N.A. Peppas, Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 2(4), 201–214 (1981)

    Article  Google Scholar 

  33. D.W. Green, G.S. Watson, J.A. Watson, D.J. Lee, J.M. Lee, H.S. Jung, Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution. Acta Biomater. 15(42), 33–45 (2016)

    Article  Google Scholar 

  34. K. Joyce, G.T. Fabra, Y. Bozkurt, A. Pandit, Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct. Target. Ther. 6(1), 1–28 (2021)

    Google Scholar 

  35. N. Huebsch, D.J. Mooney, Inspiration and application in the evolution of biomaterials. Nature 462(7272), 426–432 (2009)

    Article  Google Scholar 

  36. C. Vepari, D.L. Kaplan, Silk as a biomaterial. Prog. Polym. Sci. 32, 991–1007 (2007)

    Article  Google Scholar 

  37. C.W.P. Foo, D.L. Kaplan, Genetic engineering of fibrous proteins: spider dragline silk and collagen. Adv. Drug. Del. Rev. 54, 1131–1143 (2002); T.B. Aigner, E. DeSimone, T. Scheibel, Biomedical applications of recombinant silk-based materials. Adv. Mater. (Weinheim, Ger) 30, 1704636 (2018)

    Google Scholar 

  38. S.H. Nezhadi, P.F. Choong, F. Lotfipour, C.R. Dass, Gelatin-based delivery systems for cancer gene therapy. J. Drug Target. 17(10), 731–738 (2009)

    Article  Google Scholar 

  39. F.G. Omenetto, D.L. Kaplan, New opportunities for an ancient material. Science 329, 528–531 (2010)

    Article  Google Scholar 

  40. K. Jastrzebska, K. Kucharczyk, A. Florczak, E. Dondajewska, A. Mackiewicz, H. Dams-Kozlowska, Silk as an innovative biomaterial for cancer therapy. Rep. Pract. Oncol. Radiother. 20(2), 87–98 (2015)

    Article  Google Scholar 

  41. S. Das, U. Bora, B.B. Borthakur, Applications of silk biomaterials in tissue engineering and regenerative medicine, in Silk Biomaterials for Tissue Engineering and Regenerative Medicine, eds. by S.C. Kundu (Woodhead Publishing, 2014), pp. 41–77

    Google Scholar 

  42. A. Tyagi, A. Tuknait, P. Anand, S. Gupta, M. Sharma, D. Mathur, A. Joshi, S. Singh, A. Gautam, G.P. Raghava, CancerPPD: a database of anticancer peptides and proteins. Nucl. Acids Res. 43(D1), D837–D843 (2015)

    Article  Google Scholar 

  43. M. Delfi, R. Sartorius, M. Ashrafizadeh, E. Sharifi, Y. Zhang, P. De Berardinis, A. Zarrabi, R.S. Varma, F.R. Tay, B.R. Smith, P. Makvandi, Self-assembled peptide and protein nanostructures for anti-cancer therapy: targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today 1(38), 101119 (2021)

    Article  Google Scholar 

  44. H. Schwick, K. Heide, Immunochemistry and Immunology of Collagen and Gelatin. Modified Gelatins as Plasma Substitutes (Karger Publishers, 1969), pp. 111–125

    Google Scholar 

  45. R.J. Mart, R.D. Osborne, M.M. Stevens, R.V. Ulijn, Peptide-based stimuli-responsive biomaterials. Soft Matter 2, 822–835 (2006)

    Article  Google Scholar 

  46. J.H. Collier, J.S. Rudra, J.Z. Gasiorowski, J.P. Jung, Multi-component extracellular matrices based on peptide self-assembly. Chem. Soc. Rev. 39, 3413–3424 (2010)

    Article  Google Scholar 

  47. T.Z. Grove, L. Regan, New materials from proteins and peptides. CurrOpin. Struct. Biol. 22, 451–456 (2012)

    Article  Google Scholar 

  48. M. Reches, E. Gazit, Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003)

    Article  Google Scholar 

  49. X. Yan, P. Zhu, J. Li, Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877–1890 (2010)

    Article  Google Scholar 

  50. A.M. Smith, R.J. Williams, C. Tang, P. Coppo, R.F. Collins, M.L. Turner et al., Fmocdiphenylalanine self assembles to a hydrogel via a novel architecture based on π–π interlocked β-sheets. Adv. Mater. 20, 37–41 (2008)

    Article  Google Scholar 

  51. L. Thorstholm, D.J. Craik, Discovery and applications of naturally occurring cyclic peptides. Drug Discov. Today Technol. 9, e13–e21 (2012)

    Article  Google Scholar 

  52. M. Altstein, O. Ben-Aziz, S. Daniel, I. Schefler, I. Zeltser, C. Gilon, Backbone cyclic peptide antagonists, derived from the insect pheromone biosynthesis activating neuropeptide, inhibit sex pheromone biosynthesis in moths. J. Biol. Chem. 274, 17573–17579 (1999)

    Google Scholar 

  53. M. Katsara, T. Tselios, S. Deraos, G. Deraos, M.-T. Matsoukas, E. Lazoura et al., Round and round we go: cyclic peptides in disease. Curr. Med. Chem. 13, 2221–2232 (2006)

    Article  Google Scholar 

  54. N. Nishino, B. Jose, S. Okamura, S. Ebisusaki, T. Kato, Y. Sumida et al., Cyclic tetrapeptides bearing a sulfhydryl group potently inhibit histone deacetylases. Org. Lett. 5, 5079–5082 (2003)

    Article  Google Scholar 

  55. G. Colombo, F. Curnis, G.M.S. De Mori, A. Gasparri, C. Longoni, A. Sacchi et al., Structure-activity relationships of linear and cyclic peptides containing the NGR tumorhoming motif. J. Biol. Chem. 277, 47891–47897 (2002)

    Article  Google Scholar 

  56. A. Alaofi, N. On, P. Kiptoo, T.D. Williams, D.W. Miller, T.J. Siahaan, Comparison of linear and cyclic His-Ala-Val peptides in modulating the blood-brain barrier permeability: impact on delivery of molecules to the brain. J. Pharm. Sci. 105, 797–807 (2016)

    Article  Google Scholar 

  57. S. Manchineella, T. Govindaraju, Molecular self-assembly of cyclic dipeptide derivatives and their applications. ChemPlusChem 82, 88–106 (2017)

    Google Scholar 

  58. T. Govindaraju, Spontaneous self-assembly of aromatic cyclic dipeptide into fibre bundles with high thermal stability and propensity for gelation. Supramol. Chem. 23, 759–767 (2011)

    Article  Google Scholar 

  59. S. Manchineella, T. Govindaraju, Hydrogen bond directed self-assembly of cyclic dipeptide derivatives: gelation and ordered hierarchical architectures. RSC Adv. 2, 5539–5542 (2012)

    Article  Google Scholar 

  60. T. Govindaraju, M. Pandeeswar, K. Jayaramulu, G. Jaipuria, H.S. Atreya, Spontaneous selfassembly of designed cyclic dipeptide (Phg-Phg) into two-dimensional nano- and mesosheets. Supramol. Chem. 23, 487–492 (2011)

    Article  Google Scholar 

  61. S. Manchineella, V. Prathyusha, U.D. Priyakumar, T. Govindaraju, Solvent-induced helical assembly and reversible chiroptical switching of chiral cyclic-dipeptide-functionalized naphthalenediimides. Chem. Eur. J. 19, 16615–16624 (2013)

    Article  Google Scholar 

  62. H.M. Abdelaziz, M.A. Abdelmoneem, K. Abdelsalam, M.S. Freag, K.A. Elkhodairy, A.O. Elzoghby, Poly(amino-acid) nanoparticles as a promising tool for anticancer therapeutics, in Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics (Academic Press, 2019), pp. 167–204

    Google Scholar 

  63. C.M. Goodman, S. Choi, S. Shandler, W.F. DeGrado, Foldamers as versatile frameworks for the design and evolution of function. Nat. Chem. Biol. 3, 252 (2007)

    Article  Google Scholar 

  64. M. Werder, H. Hauser, S. Abele, D. Seebach, β-peptides as inhibitors of small-intestinal cholesterol and fat absorption. HelvChim Acta 82, 1774–1783 (1999)

    Article  Google Scholar 

  65. M.B. Avinash, T. Govindaraju, Nanoarchitectonics of biomolecular assemblies for functional applications. Nanoscale 6, 13348–13369 (2014)

    Article  Google Scholar 

  66. N.C. Seeman, Nucleic acid junctions and lattices. J. TheorBiol. 99, 237–247 (1982)

    Google Scholar 

  67. J.O. **, G. Kim, J. Hwang, K.H. Han, M. Kwak, P.C. Lee, Nucleic acid nanotechnology for cancer treatment. Biochimica et Biophysica Acta (BBA)-Rev. Cancer. 1874(1), 188377 (2020)

    Google Scholar 

  68. T. Govindaraju, Templated DNA nanotechnology—functional DNA nanoarchitectonics, in Templated DNA Nanotechnology—Functional DNA Nanoarchitectonics, 1st edn., eds. by T. Govindaraju (Pan Stanford, New York, 2019)

    Google Scholar 

  69. M.R. Jones, N.C. Seeman, C.A. Mirkin, Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015)

    Article  Google Scholar 

  70. B. Roy, D. Ghosh, T. Govindaraju, Functional molecule–templated DNA nanoarchitectures, in Templated DNA Nanotechnology: Functional DNA Nanoarchitectonics, eds. by T. Govindaraju (Pan Stanford, New York, 2019), pp. 69–106

    Google Scholar 

  71. N. Narayanaswamy, R.R. Nair, Y.V. Suseela, D.K. Saini, T. Govindaraju, A molecular beacon-based DNA switch for reversible pH sensing in vesicles and live cells. Chem. Commun. 52, 8741–8744 (2016)

    Article  Google Scholar 

  72. K. Ariga, T. Mori, W. Nakanishi, J.P. Hill, Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. Phys. Chem. Chem. Phys. 19, 23658–23676

    Google Scholar 

  73. M. Pandeeswar, S.P. Senanayak, T. Govindaraju, Nanoarchitectonics of small molecule and DNA for ultrasensitive detection of mercury. ACS Appl. Mater. Interf. 8, 30362–30371 (2016)

    Article  Google Scholar 

  74. B. Roy, M. Ramesh, T. Govindaraju, DNA-Based Nanoswitches and Devices. Templated DNA Nanotechnology: Functional DNA Nanoarchitectonics (2019), p. 365

    Google Scholar 

  75. P.W.K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  76. Y. Ke, S. Lindsay, Y. Chang, Y. Liu, H. Yan, Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319, 180–183 (2008)

    Article  Google Scholar 

  77. F. Praetorius, B. Kick, K.L. Behler, M.N. Honemann, D. Weuster-Botz, H. Dietz, Biotechnological mass production of DNA origami. Nature 552, 84 (2017)

    Article  Google Scholar 

  78. E. Spruijt, S.E. Tusk, H. Bayley, DNA scaffolds support stable and uniform peptide nanopores. Nat. Nanotechnol. 1 (2018); J. Fern, R. Schulman, Modular DNA strand-displacement controllers for directing material expansion. Nat. Commun. 9, 3766 (2018)

    Google Scholar 

  79. S. Li, Q. Jiang, S. Liu, Y. Zhang, Y. Tian, C. Song et al., A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258 (2018)

    Article  Google Scholar 

  80. N. Park, S.H. Um, H. Funabashi, J. Xu, D. Luo, A cell-free protein-producing gel. Nat. Mater. 8, 432 (2009)

    Article  Google Scholar 

  81. P. Guo, The emerging field of RNA nanotechnology. Nat. Nanotechnol. 5, 833–842 (2010)

    Article  Google Scholar 

  82. D. Jasinski, F. Haque, D.W. Binzel, P. Guo, Advancement of the emerging field of RNA nanotechnology. ACS Nano 11, 1142–1164 (2017)

    Article  Google Scholar 

  83. W.W. Grabow, L. Jaeger, RNA self-assembly and RNA nanotechnology. Acc. Chem. Res. 47, 1871–1880 (2014)

    Article  Google Scholar 

  84. P. Guo, C. Zhang, C. Chen, K. Garver, M. Trottier, Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol. Cell. 2, 149–155 (1998)

    Article  Google Scholar 

  85. N. Narayanaswamy, M.B. Avinash, T. Govindaraju, Exploring hydrogen bonding and weak aromatic interactions induced assembly of adenine and thymine functionalised naphthalenediimides. New. J. Chem. 37, 1302–1306 (2013)

    Article  Google Scholar 

  86. H. Kashida, Y. Hattori, K. Tazoe, T. Inoue, K. Nishikawa, K. Ishii et al., Bifacial nucleobases for hexaplex formation in aqueous solution. J. Am. Chem. Soc. 140, 8456–8462 (2018)

    Article  Google Scholar 

  87. D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray et al., Nanocelluloses: a new family of nature-based materials. Angew Chem. Int. Ed. 50, 5438–5466 (2011)

    Article  Google Scholar 

  88. P. Gatenholm, D. Klemm, Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35, 208–213 (2010)

    Article  Google Scholar 

  89. M. Ahmed, R. Narain, The effect of polymer architecture, composition, and molecular weight on the properties of glycopolymer-based non-viral gene delivery systems. Biomaterials 32, 5279–5290 (2011)

    Article  Google Scholar 

  90. S. Fukui, T. Feizi, C. Galustian, A.M. Lawson, W. Chai, Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20, 1011 (2002)

    Article  Google Scholar 

  91. M.-P. Mingeot-Leclercq, Y. Glupczynski, P.M. Tulkens, Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43, 727–737 (1999)

    Article  Google Scholar 

  92. D.P. Galonic, D.Y. Gin, Chemical glycosylation in the synthesis of glycoconjugate antitumour vaccines. Nature 446, 1000 (2007)

    Article  Google Scholar 

  93. F.C. Telli, B. Demir, F.B. Barlas, E. Guler, S. Timur, Y. Salman, Novel glyconanoconjugates: synthesis, characterization and bioapplications. RSC Adv. 6, 105806–105813 (2016)

    Article  Google Scholar 

  94. R.D. Kensinger, B.C. Yowler, A.J. Benesi, C.-L. Schengrund, Synthesis of novel, multivalent glycodendrimers as ligands for HIV-1 gp120. Bioconjugate Chem. 15, 349–358 (2004)

    Article  Google Scholar 

  95. J. Li, X.J. Loh, Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv. Drug Del. Rev. 60, 1000–1017 (2008)

    Article  Google Scholar 

  96. G.P. Tang, H.Y. Guo, F. Alexis, X. Wang, S. Zeng, T.M. Lim et al., Low molecular weight polyethylenimines linked by β-cyclodextrin for gene transfer into the nervous system. J. Gene Med. 8, 736–744 (2006)

    Article  Google Scholar 

  97. H. Fan, Q.-D. Hu, F.-J. Xu, W.-Q. Liang, G.-P. Tang, W.-T. Yang, In vivo treatment of tumors using host-guest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL. Biomaterials 33, 1428–1436 (2012)

    Article  Google Scholar 

  98. S.M. Paterson, J. Clark, K.A. Stubbs, T.V. Chirila, M.V. Baker, Carbohydrate-based crosslinking agents: potential use in hydrogels. J. Polym. Sci. Part A Polym. Chem. 49, 4312–4315 (2011)

    Article  Google Scholar 

  99. V.K. Katapadi, M. Nambiar, S.C. Raghavan, Potential G-quadruplex formation at breakpoint regions of chromosomal translocations in cancer may explain their fragility. Genomics 100, 72–80 (2012)

    Article  Google Scholar 

  100. M. Arévalo-Ruiz, F. Doria, E. Belmonte-Reche, A. De Rache, J. Campos-Salinas, R. Lucas et al., Synthesis, Binding properties, and differences in cell uptake of G-quadruplex ligands based on carbohydrate naphthalene diimide conjugates. Chem. Eur. J. 23, 2157–2164 (2017)

    Google Scholar 

  101. T. Nakamura, H. Harashima, Dawn of lipid nanoparticles in lymph node targeting: potential in cancer immunotherapy. Adv. Drug Deliv. Rev. 1(167), 78–88 (2020)

    Article  Google Scholar 

  102. C.W. Pouton, Lipid formulations for oral administration of drugs: non-emulsifying, selfemulsifying and ‘self-microemulsifying’drug delivery systems. Eur. J. Pharm. Sci. 11, S93–S98 (2000)

    Article  Google Scholar 

  103. Y. Fei, E.S. Kostewicz, M.-T. Sheu, J.B. Dressman, Analysis of the enhanced oral bioavailability of fenofibrate lipid formulations in fasted humans using an in vitro–in silico–in vivo approach. Eur. J. Pharm. Biopharm. 85, 1274–1284 (2013)

    Article  Google Scholar 

  104. J. Lemut, P. Blouquin, P. Reginault, Fenofibrate galenic formulations and method for obtaining same—US20030082215A1 (2003)

    Google Scholar 

  105. J.J. Moon, H. Suh, A. Bershteyn, M.T. Stephan, H. Liu, B. Huang et al., Interbilayercrosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 10, 243 (2011)

    Article  Google Scholar 

  106. I. Koltover, T. Salditt, J.O. Rädler, C.R. Safinya, An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281, 78–81 (1998)

    Article  Google Scholar 

  107. H. Svobodova, V. Noponen, E. Kolehmainen, E. Sievänen, Recent advances in steroidal supramolecular gels. RSC Adv. 2, 4985–5007 (2012)

    Article  Google Scholar 

  108. J.E. Gautrot, X.X. Zhu, Macrocyclic bile acids: from molecular recognition to degradable biomaterial building blocks. J. Mater. Chem. 19, 5705–5716 (2009)

    Article  Google Scholar 

  109. R. Kuai, L.J. Ochyl, K.S. Bahjat, A. Schwendeman, J.J. Moon, Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489 (2016)

    Article  Google Scholar 

  110. C. Oliveira, A.C. Carvalho, R.L. Reis, N.N. Neves, A. Martins, T.H. Silva, Marine-derived biomaterials for cancer treatment, in Biomaterials for 3D TumorModeling (2020), pp. 551–576

    Google Scholar 

  111. B. Jang, M.S. Moorthy, P. Manivasagan, L. Xu, K. Song, K.D. Lee, M. Kwak, J. Oh, J.O. **, Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer. Oncotarget 9(16), 12649 (2018)

    Article  Google Scholar 

  112. T. Gomathi, P.N. Sudha, J. Venkatesan, S. Anil, Marine Biopolymers for Anticancer Drugs. InIndustrial Applications of Marine Biopolymers (CRC Press, 2017), pp. 289–304

    Google Scholar 

  113. I. Hamed, F. Özogul, J.M. Regenstein, Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci. Technol. 1(48), 40–50 (2016)

    Article  Google Scholar 

  114. T.H. Silva, A. Alves, E.G. Popa, L.L. Reys, M.E. Gomes, R.A. Sousa, S.S. Silva, J.F. Mano, R.L. Reis, Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter. 2(4), 278–289 (2012)

    Article  Google Scholar 

  115. R.M. Huang, Y.N. Chen, Z. Zeng, C.H. Gao, X. Su, Y. Peng, Marine nucleosides: structure, bioactivity, synthesis and biosynthesis. Mar. Drugs 12(12), 5817–5838 (2014)

    Article  Google Scholar 

  116. C. Jo, F.F. Khan, M.I. Khan, J. Iqbal, Marine bioactive peptides: types, structures, and physiological functions. Food Rev. Intl. 33(1), 44–61 (2017)

    Article  Google Scholar 

  117. U. Lindequist, Marine-derived pharmaceuticals–challenges and opportunities. Biomolecules Therapeut. 24(6), 561 (2016)

    Article  Google Scholar 

  118. V.K. Pawar, Y. Singh, K. Sharma, A. Shrivastav, A. Sharma, A. Singh, J.G. Meher, P. Singh, K. Raval, A. Kumar, H.K. Bora, Improved chemotherapy against breast cancer through immunotherapeutic activity of fucoidan decorated electrostatically assembled nanoparticles bearing doxorubicin. Int. J. Biol. Macromol. 1(122), 1100–1114 (2019)

    Article  Google Scholar 

  119. U. Gupta, S. Sharma, I. Khan, A. Gothwal, A.K. Sharma, Y. Singh, M.K. Chourasia, V. Kumar, Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan. Int. J. Biol. Macromol. 1(98), 810–819 (2017)

    Article  Google Scholar 

  120. M. Sathuvan, R. Thangam, M. Gajendiran, R. Vivek, S. Balasubramanian, S. Nagaraj, P. Gunasekaran, B. Madhan, R. Rengasamy, κ-Carrageenan: an effective drug carrier to deliver curcumin in cancer cells and to induce apoptosis. Carbohyd. Polym. 15(160), 184–193 (2017)

    Article  Google Scholar 

  121. G. Prabha, V. Raj, Sodium alginate–polyvinyl alcohol–Bovin serum albumin coated Fe3O4 nanoparticles as anticancer drug delivery vehicle: doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells. Mater. Sci. Eng. C 1(79), 410–422 (2017)

    Article  Google Scholar 

  122. M.J. Ang, S.Y. Chan, Y.Y. Goh, Z. Luo, J.W. Lau, X. Liu, Emerging strategies in develo** multifunctional nanomaterials for cancer nanotheranostics. Adv. Drug Deliv. Rev. 1(178), 113907 (2021)

    Article  Google Scholar 

  123. L.M. Russell, C.H. Liu, P. Grodzinski, Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials 1(242), 119926 (2020)

    Article  Google Scholar 

  124. D.D. Gadade, P.B. Rathi, J.N. Sangshetti, D.A. Kulkarni, Multifunctional cyclodextrin nanoparticles: a promising theranostic tool for strategic targeting of cancer, in Polysaccharide Nanoparticles (Elsevier, 2022), pp. 485–515

    Google Scholar 

  125. G. Yu, B.C. Yung, Z. Zhou, Z. Mao, X. Chen, Artificial molecular machines in nanotheranostics. ACS Nano 12(1), 7–12 (2018)

    Article  Google Scholar 

  126. M. Karimi, A. Ghasemi, P.S. Zangabad, R. Rahighi, S.M. Basri, H. Mirshekari, M. Amiri, Z.S. Pishabad, A. Aslani, M. Bozorgomid, D. Ghosh, Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 45(5), 1457–1501 (2016)

    Article  Google Scholar 

  127. R.J. DeBerardinis, N.S. Chandel, We need to talk about the Warburg effect. Nat. Metab. 2(2), 127–129 (2020)

    Article  Google Scholar 

  128. J. Wang, S.R. MacEwan, A. Chilkoti, Quantitative map** of the spatial distribution of nanoparticles in endo-lysosomes by local pH. Nano Lett. 17(2), 1226–1232 (2017)

    Article  Google Scholar 

  129. S.L. Gawali, K.C. Barick, N.G. Shetake, V. Rajan, B.N. Pandey, N.N. Kumar, K.I. Priyadarsini, P.A. Hassan, pH-labile magnetic nanocarriers for intracellular drug delivery to tumor cells. ACS Omega 4(7), 11728–11736 (2019)

    Article  Google Scholar 

  130. J. Zhu, G. Wang, C.S. Alves, H. Tomás, Z. **ong, M. Shen, J. Rodrigues, X. Shi, Multifunctional dendrimer-entrapped gold nanoparticles conjugated with doxorubicin for pH-responsive drug delivery and targeted computed tomography imaging. Langmuir 34(41), 12428–12435 (2018)

    Article  Google Scholar 

  131. A.K. Jangid, D. Pooja, P. Jain, S.V. Rompicharla, S. Ramesan, H. Kulhari, A nanoscale, biocompatible and amphiphilic prodrug of cabazitaxel with improved anticancer efficacy against 3D spheroids of prostate cancer cells. Mater. Adv. 1(4), 738–748 (2020)

    Article  Google Scholar 

  132. L.M. Ngema, S.A. Adeyemi, T. Marimuthu, Y.E. Choonara, A review on engineered magnetic nanoparticles in non-small-cell lung carcinoma targeted therapy. Int. J. Pharm. 5(606), 120870 (2021)

    Article  Google Scholar 

  133. M.L. Vidallon, A.M. Douek, A. Quek, H. McLiesh, J. Kaslin, R.F. Tabor, A.I. Bishop, B.M. Teo, Gas-generating, pH-responsive calcium carbonate hybrid particles with biomimetic coating for contrast-enhanced ultrasound imaging. Part. Part. Syst. Charact. 37(2), 1900471 (2020)

    Article  Google Scholar 

  134. Z. Dong, L. Feng, W. Zhu, X. Sun, M. Gao, H. Zhao, Y. Chao, Z. Liu, CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 1(110), 60–70 (2016)

    Article  Google Scholar 

  135. W. Tao, Z. He, ROS-responsive drug delivery systems for biomedical applications. Asian J. Pharm. Sci. 13(2), 101–12

    Google Scholar 

  136. D. Trachootham, J. Alexandre, P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discovery 8(7), 579–591 (2009)

    Article  Google Scholar 

  137. G. Hong, A.L. Antaris, H. Dai, Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1(1), 1–22 (2017)

    Article  Google Scholar 

  138. Z. Zhang, Y. Heng, W. Cheng, Y. Pan, S. Ni, H. Li, Reactive oxygen species (ROS)-response nanomedicine through knocking down a novel therapeutic target NEDD8-conjugating enzyme UBC12 (UBE2M) in the treatment of liver cancer. Mater. Des. 1(204), 109648 (2021)

    Article  Google Scholar 

  139. Z. Wang, Y. Ju, Z. Ali, H. Yin, F. Sheng, J. Lin, B. Wang, Y. Hou, Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumortheranostics. Nat. Commun. 10(1), 1–2 (2019)

    Google Scholar 

  140. H. Zhu, Y. Fang, Q. Miao, X. Qi, D. Ding, P. Chen, K. Pu, Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano 11(9), 8998–9009 (2017)

    Article  Google Scholar 

  141. Z. Zhang, M.K. Jayakumar, X. Zheng, S. Shikha, Y. Zhang, A. Bansal, D.J. Poon, P.L. Chu, E.L. Yeo, M.L. Chua, S.K. Chee, Upconversion superballs for programmable photoactivation of therapeutics. Nat. Commun. 10(1), 1–2 (2019)

    Google Scholar 

  142. H. Yan, W. Shang, X. Sun, L. Zhao, J. Wang, Z. **ong, J. Yuan, R. Zhang, Q. Huang, K. Wang, B. Li, “All-in-one” nanoparticles for trimodality imaging-guided intracellular photo-magnetic hyperthermia therapy under intravenous administration. Adv. Func. Mater. 28(9), 1705710 (2018)

    Article  Google Scholar 

  143. W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, L. Shan, G. Niu, Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy. ACS Nano 12(3), 2610–2622 (2018)

    Article  Google Scholar 

  144. S. Son, H.S. Min, D.G. You, B.S. Kim, I.C. Kwon, Echogenic nanoparticles for ultrasound technologies: Evolution from diagnostic imaging modality to multimodal theranostic agent. Nano Today 9(4), 525–540 (2014)

    Article  Google Scholar 

  145. J. Bergueiro, E.A. Glitscher, M. Calderón, A hybrid thermoresponsive plasmonic nanogel designed for NIR-mediated chemotherapy. Biomater. Adv. 1(137), 212842 (2022)

    Article  Google Scholar 

  146. Z. Zhou, X. Liu, D. Zhu, Y. Wang, Z. Zhang, X. Zhou, N. Qiu, X. Chen, Y. Shen, Nonviral cancer gene therapy: delivery cascade and vector nano property integration. Adv. Drug Deliv. Rev. 1(115), 115–154 (2017)

    Article  Google Scholar 

  147. F. Freitag, E. Wagner, Optimizing synthetic nucleic acid and protein nanocarriers: the chemical evolution approach. Adv. Drug Deliv. Rev. 1(168), 30–54 (2021)

    Article  Google Scholar 

  148. L. Cong, F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, X. Wu, W. Jiang, L.A. Marraffini, F. Zhang, Multiplex genome engineering using CRISPR/cas systems. Science 339(6121), 819–823 (2013)

    Article  Google Scholar 

  149. H. Song, P. Huang, J. Niu, G. Shi, C. Zhang, D. Kong, W. Wang, Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells in vivo and enhance potent cytotoxic T-lymphocyte response against melanoma. Biomaterials 1(159), 119–129 (2018)

    Article  Google Scholar 

  150. B. Jahrsdörfer, G.J. Weiner, CpG oligodeoxynucleotides as immunotherapy in cancer. Update Cancer Therapeut. 3(1), 27–32 (2008)

    Article  Google Scholar 

  151. R. Foulkes, E. Man, J. Thind, S. Yeung, A. Joy, C. Hoskins, The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater. Sci. 8(17), 4653–4664 (2020)

    Article  Google Scholar 

  152. Z. Sun, J. Yang, H. Li, C. Wang, C. Fletcher, J. Li, Y. Zhan, L. Du, F. Wang, Y. Jiang, Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy. Biomaterials 1(274), 120873 (2021)

    Article  Google Scholar 

  153. M. Nurunnabi, Z. Khatun, A.M. Badruddoza, J.R. McCarthy, Y.K. Lee, K.M. Huh, Biomaterials and bioengineering approaches for mitochondria and nuclear targeting drug delivery. ACS Biomater. Sci. Eng. 5(4), 1645–1660 (2019)

    Article  Google Scholar 

  154. L. Jiang, X. Gong, W. Liao, N. Lv, R. Yan, Molecular targeted treatment and drug delivery system for gastric cancer. J. Cancer Res. Clin. 147(4), 973–986 (2021)

    Article  Google Scholar 

  155. M. Du, Z. Chen, Y. Chen, Y. Li, Ultrasound-targeted delivery technology: a novel strategy for tumor-targeted therapy. Curr. Drug Targets 20(2), 220–231 (2019)

    Article  Google Scholar 

  156. N.N. Parayath, M.M. Amiji, Therapeutic targeting strategies using endogenous cells and proteins. J. Control. Release 28(258), 81–94 (2017)

    Article  Google Scholar 

  157. Y. Zhang, Z. Guo, Z. Cao, W. Zhou, Y. Zhang, Q. Chen, Y. Lu, X. Chen, Q. Guo, C. Li, D. Liang, Endogenous albumin-mediated delivery of redox-responsive paclitaxel-loaded micelles for targeted cancer therapy. Biomaterials 1(183), 243–257 (2018)

    Article  Google Scholar 

  158. S.M. Patil, S.S. Sawant, N.K. Kunda, Exosomes as drug delivery systems: a brief overview and progress update. Eur. J. Pharm. Biopharm. 1(154), 259–269 (2020)

    Article  Google Scholar 

  159. S.L. Maude, N. Frey, P.A. Shaw, R. Aplenc, D.M. Barrett, N.J. Bunin, A. Chew, V.E. Gonzalez, Z. Zheng, S.F. Lacey, Y.D. Mahnke, Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371(16), 1507–1517 (2014)

    Article  Google Scholar 

  160. N.P. Restifo, M.E. Dudley, S.A. Rosenberg, Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12(4), 269–281 (2012)

    Article  Google Scholar 

  161. S.N. Thomas, A.J. van der Vlies, C.P. O’Neil, S.T. Reddy, S.Y. Shann, T.D. Giorgio, M.A. Swartz, J.A. Hubbell, Engineering complement activation on polypropylene sulfide vaccine nanoparticles. Biomaterials 32(8), 2194–2203 (2011)

    Article  Google Scholar 

  162. A.L. Lewis, Embolisation devices from biomedical polymers for intra-arterial occlusion and drug delivery in the treatment of cancer, in Biomaterials for Cancer Therapeutics (Woodhead Publishing, 2013), pp. 207–239e

    Google Scholar 

  163. S.A. Chew, S. Danti, Biomaterial‐based implantable devices for cancer therapy. Adv. Healthcare Mater. 6(2), 1600766

    Google Scholar 

  164. D.G. Leach, S. Young, J.D. Hartgerink, Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater. 1(88), 15–31 (2019)

    Article  Google Scholar 

  165. H.T. Duong, T. Thambi, Y. Yin, S.H. Kim, T.L. Nguyen, V.G. Phan, J. Kim, J.H. Jeong, D.S. Lee, Degradation-regulated architecture of injectable smart hydrogels enhances humoral immune response and potentiates antitumor activity in human lung carcinoma. Biomaterials 1(230), 119599 (2020)

    Article  Google Scholar 

  166. C. Wang, J. Wang, X. Zhang, S. Yu, D. Wen, Q. Hu, Y. Ye, H. Bomba, X. Hu, Z. Liu, G. Dotti, In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 10(429), eaan3682

    Google Scholar 

  167. A.P. Raphael, M.L. Crichton, R.J. Falconer, S. Meliga, X. Chen, G.J. Fernando, H. Huang, M.A. Kendall, Formulations for microprojection/microneedle vaccine delivery: structure, strength and release profiles. J. Control. Release 10(225), 40–52 (2016)

    Article  Google Scholar 

  168. A. Goel, S. Kulshrestha, Biomaterials as therapeutic agents for treatment of cancer: a review. IOP Conf. Ser. Mater. Sci. Eng. 1116(1), 012037

    Google Scholar 

  169. A. Wei, M. Thomas, J. Mehtala, J. Wang, Gold nanoparticles (GNPs) as multifunctional materials for cancer treatment, in Biomaterials for Cancer Therapeutics (2013), pp. 349–389e

    Google Scholar 

  170. D. Mendanha, J.V. de Castro, H. Ferreira, N.M. Neves, Biomimetic and cell-based nanocarriers—new strategies for brain tumor targeting. J. Control. Release 10(337), 482–493 (2021)

    Article  Google Scholar 

  171. R. Karim, C. Palazzo, B. Evrard, G. Piel, Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art. J. Control. Release 10(227), 23–37 (2016)

    Article  Google Scholar 

  172. W. Tang, W. Fan, J. Lau, L. Deng, Z. Shen, X. Chen, Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 48(11), 2967–3014 (2019)

    Article  Google Scholar 

  173. M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas, R. Langer, Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discovery 20(2), 101–124 (2021)

    Article  Google Scholar 

  174. A.O. Elzoghby, M.A. Abdelmoneem, I.A. Hassanin, M.M. Abd Elwakil, M.A. Elnaggar, S. Mokhtar, J.Y. Fang, K.A. Elkhodairy, Lactoferrin, a multi-functional glycoprotein: active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 1(263), 120355 (2020)

    Article  Google Scholar 

  175. A. Aboda, W. Taha, I. Attia, A. Gad, M.M. Mostafa, M.A. Abdelwadod, M. Mohsen, R.K. Kanwar, J.R. Kanwar, Iron bond bovine lactoferrin for the treatment of cancers and anemia associated with cancer cachexia, in Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents (Academic Press, 2020), pp. 243–254

    Google Scholar 

  176. S. Kumari, D. Bhattacharya, N. Rangaraj, S. Chakarvarty, A.K. Kondapi, N.M. Rao, Aurora kinase B siRNA-loaded lactoferrin nanoparticles potentiate the efficacy of temozolomide in treating glioblastoma. Nanomedicine 13(20), 2579–2596 (2018)

    Article  Google Scholar 

  177. C.S. Pereira, J.P. Guedes, M. Gonçalves, L. Loureiro, L. Castro, H. Gerós, L.R. Rodrigues, M. Côrte-Real, Lactoferrin selectively triggers apoptosis in highly metastatic breast cancer cells through inhibition of plasmalemmal V-H+-ATPase. Oncotarget 7(38), 62144 (2016)

    Article  Google Scholar 

  178. L. Stransky, K. Cotter, M. Forgac, The function of V-ATPases in cancer. Physiol. Rev. 96(3), 1071–1091 (2016)

    Article  Google Scholar 

  179. J.A. Gibbons, J.R. Kanwar, R.K. Kanwar, Iron-free and iron-saturated bovine lactoferrin inhibit survivin expression and differentially modulate apoptosis in breast cancer. BMC Cancer 15(1), 1–6 (2015)

    Article  Google Scholar 

  180. J.S. Shankaranarayanan, J.R. Kanwar, A.J. Al-Juhaishi, R.K. Kanwar, Doxorubicin conjugated to immunomodulatory anticancer lactoferrin displays improved cytotoxicity overcoming prostate cancer chemo resistance and inhibits tumour development in TRAMP mice. Sci. Rep. 6(1), 1–6 (2016)

    Article  Google Scholar 

  181. Z. Zhang, J. Yang, Q. Min, C. Ling, D. Maiti, J. Xu, L. Qin, K. Yang, Holo-lactoferrin modified liposome for relieving tumor hypoxia and enhancing radiochemotherapy of cancer. Small 15(6), 1803703 (2019)

    Article  Google Scholar 

  182. H. Onishi, Y. Machida, K. Koyama, Preparation and in vitro characteristics of lactoferrin-loaded chitosan microparticles. Drug Dev. Ind. Pharm. 33(6), 641–647 (2007)

    Article  Google Scholar 

  183. K.I. Koyama, H. Onishi, O. Sakata, Y. Machida, Preparation and in vitro evaluation of chitosan-coated alginate/calcium complex microparticles loaded with fluorescein-labeled lactoferrin. YakugakuZasshi 129(12), 1507–1514 (2009)

    Google Scholar 

  184. H. Onishi, K. Koyama, O. Sakata, Y. Machida, Preparation of chitosan/alginate/calcium complex microparticles loaded with lactoferrin and their efficacy on carrageenan-induced edema in rats. Drug Dev. Ind. Pharm. 36(8), 879–884 (2010)

    Article  Google Scholar 

  185. J.R. Kanwar, S.K. Kamalapuram, S. Krishnakumar, R.K. Kanwar, Multimodal iron oxide (Fe3O4)-saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER-/PR-/HER2-). Nanomedicine 11(3), 249–268 (2016)

    Article  Google Scholar 

  186. L.K. Prasad, H. O’Mary, Z. Cui, Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine 10(13), 2063–2074 (2015)

    Article  Google Scholar 

  187. A. Ishikado, H. Imanaka, T. Takeuchi, E. Harada, T. Makino, Liposomalization of lactoferrin enhanced it’s anti-inflammatory effects via oral administration. Biol. Pharm. Bull. 28(9), 1717–1721 (2005)

    Article  Google Scholar 

  188. A. Roseanu, P.E. Florian, M. Moisei, L.E. Sima, R.W. Evans, M. Trif, Liposomalization of lactoferrin enhanced its anti-tumoral effects on melanoma cells. Biometals 23(3), 485–492 (2010)

    Article  Google Scholar 

  189. J. Ma, R. Guan, H. Shen, F. Lu, C. **ao, M. Liu, T. Kang, Comparison of anticancer activity between lactoferrin nanoliposome and lactoferrin in Caco-2 cells in vitro. Food Chem. Toxicol. 1(59), 72–77 (2013)

    Article  Google Scholar 

  190. K. Kato, N. Tamaki, Y. Saito, T. Fujimoto, A. Sato, Amino group PEGylation of bovine lactoferrin by linear polyethylene glycol-p-nitrophenyl active esters. Biol. Pharm. Bull. 33(7), 1253–1255 (2010)

    Article  Google Scholar 

  191. Y. Nojima, Y. Suzuki, K. Iguchi, T. Shiga, A. Iwata, T. Fujimoto, K. Yoshida, H. Shimizu, T. Takeuchi, A. Sato, Development of poly (ethylene glycol) conjugated lactoferrin for oral administration. Bioconjug. Chem. 19(11), 2253–2259 (2008)

    Article  Google Scholar 

  192. Y. Nojima, Y. Suzuki, K. Yoshida, F. Abe, T. Shiga, T. Takeuchi, A. Sugiyama, H. Shimizu, A. Sato, Lactoferrin conjugated with 40-kDa branched poly (ethylene glycol) has an improved circulating half-life. Pharm. Res. 26(9), 2125–2132 (2009)

    Article  Google Scholar 

  193. I. Singh, R. Swami, D. Pooja, M.K. Jeengar, W. Khan, R. Sistla, Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting. J. Drug Target. 24(3), 212–223 (2016)

    Article  Google Scholar 

  194. F.Y. Huang, W.J. Chen, W.Y. Lee, S.T. Lo, T.W. Lee, J.M. Lo, In vitro and in vivo evaluation of lactoferrin-conjugated liposomes as a novel carrier to improve the brain delivery. Int. J. Mol. Sci. 14(2), 2862–2874 (2013)

    Article  Google Scholar 

  195. L.Y. Lim, P.Y. Koh, S. Somani, M. Al Robaian, R. Karim, Y.L. Yean, J. Mitchell, R.J. Tate, R. Edrada-Ebel, D.R. Blatchford, M. Mullin, Tumor regression following intravenous administration of lactoferrin- and lactoferricin-bearing dendriplexes. Nanomed. Nanotechnol. Biol. Med. 11(6), 1445–1454

    Google Scholar 

  196. Z. Pang, L. Feng, R. Hua, J. Chen, H. Gao, S. Pan, X. Jiang, P. Zhang, Lactoferrin-conjugated biodegradable polymersome holding doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol. Pharm. 7(6), 1995–2005 (2010)

    Article  Google Scholar 

  197. P. Martorell, S. Llopis, N. Gonzalez, D. Ramón, G. Serrano, A. Torrens, J.M. Serrano, M. Navarro, S. Genovés, A nutritional supplement containing lactoferrin stimulates the immune system, extends lifespan, and reduces amyloid β peptide toxicity in Caenorhabditis elegans. Food Sci. Nutr. 5(2), 255–265 (2017)

    Article  Google Scholar 

  198. J. Wang, M. Bi, H. Liu, N. Song, J. **e, The protective effect of lactoferrin on ventral mesencephalon neurons against MPP+ is not connected with its iron binding ability. Sci. Rep. 5(1), 1–1 (2015)

    Google Scholar 

  199. M.S. Lepanto, L. Rosa, R. Paesano, P. Valenti, A. Cutone, Lactoferrin in aseptic and septic inflammation. Molecules 24(7), 1323 (2019)

    Article  Google Scholar 

  200. Q. Ye, Y. Zheng, S. Fan, Z. Qin, N. Li, A. Tang, F. Ai, X. Zhang, Y. Bian, W. Dang, J. Huang, Lactoferrin deficiency promotes colitis-associated colorectal dysplasia in mice. PLoS ONE 9(7), e103298 (2014)

    Article  Google Scholar 

  201. M. Wei, X. Guo, L. Tu, Q. Zou, Q. Li, C. Tang, B. Chen, Y. Xu, C. Wu, Lactoferrinmodified PEGylated liposomes loaded with doxorubicin for targeting delivery to hepatocellular carcinoma. Int. J. Nanomed. 10, 5123–5137 (2015)

    Google Scholar 

  202. M. Sharifi, A. Hasan, N.M.Q. Nanakali, A. Salihi, F.A. Qadir, H.A. Muhammad, M.S. Shekha, F.M. Aziz, K.M. Amen, F. Najafi, H. Yousefi-Manesh, M. Falahati, Combined chemo-magnetic field-photothermal breast cancer therapy based on porous magnetite nanospheres. Sci. Rep. 10(1), 5925 (2020)

    Article  Google Scholar 

  203. N.S. Re**old, R. Jayakumar, Y.C. Kim, Radio frequency responsive nano-biomaterials for cancer therapy. J. Control. Release 28(204), 85–97 (2015)

    Article  Google Scholar 

  204. D. Li, Y.S. Jung, S. Tan, H.K. Kim, E. Chory, D.A. Geller, Negligible absorption of radiofrequency radiation by colloidal gold nanoparticles. J. Colloid Interface Sci. 358(1), 47–53 (2011)

    Article  Google Scholar 

  205. C. Schmidt, The Kanzius machine: a new cancer treatment idea from an unexpected source

    Google Scholar 

  206. W. Lu, A.K. Singh, S.A. Khan, D. Senapati, H. Yu, P.C. Ray, Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132(51), 18103–18114 (2010)

    Article  Google Scholar 

  207. S.J. Corr, M. Raoof, Y. Mackeyev, S. Phounsavath, M.A. Cheney, B.T. Cisneros, M. Shur, M. Gozin, P.J. McNally, L.J. Wilson, S.A. Curley, Citrate-capped gold nanoparticle electrophoretic heat production in response to a time-varying radio-frequency electric field. J. Phys. Chem. C 116(45), 24380–24389 (2012)

    Article  Google Scholar 

  208. M. Raoof, C. Zhu, W.D. Kaluarachchi, S.A. Curley, Luciferase-based protein denaturation assay for quantification of radiofrequency field-induced targeted hyperthermia: develo** an intracellular thermometer. Int. J. Hyperth. 28(3), 202–209 (2012)

    Article  Google Scholar 

  209. E.S. Glazer, C. Zhu, K.L. Massey, C.S. Thompson, W.D. Kaluarachchi, A.N. Hamir, S.A. Curley, Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin. Cancer Res. 16(23), 5712–5721 (2010)

    Article  Google Scholar 

  210. Y. Xu, A. Karmakar, W.E. Heberlein, T. Mustafa, A.R. Biris, A.S. Biris, Multifunctional magnetic nanoparticles for synergistic enhancement of cancer treatment by combinatorial radio frequency thermolysis and drug delivery. Adv. Healthcare Mater. 1(4), 493–501 (2012)

    Article  Google Scholar 

  211. C.J. Gannon, C.R. Patra, R. Bhattacharya, P. Mukherjee, S.A. Curley, Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. 6(1), 1–9 (2008)

    Article  Google Scholar 

  212. M. Raoof, S.J. Corr, W.D. Kaluarachchi, K.L. Massey, K. Briggs, C. Zhu, M.A. Cheney, L.J. Wilson, S.A. Curley, Stability of antibody-conjugated gold nanoparticles in the endolysosomalnanoenvironment: implications for noninvasive radiofrequency-based cancer therapy. Nanomed. Nanotechnol. Biol. Med. 8(7), 1096–1105

    Google Scholar 

  213. M. Bañobre-López, A. Teijeiro, J. Rivas, Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep. Pract. Oncol. Radiother. 18(6), 397–400 (2013)

    Article  Google Scholar 

  214. M.C. Fastame, P.K. Hitchcott, M.P. Penna, Do self-referent metacognition and residential context predict depressive symptoms across late-life span? A developmental study in an Italian sample. Aging Ment. Health 19(8), 698–704 (2015)

    Article  Google Scholar 

  215. M. Heiden, E. Walker, E. Nauman, L. Stanciu, Evolution of novel bioresorbable iron–manganese implant surfaces and their degradation behaviors in vitro. J. Biomed. Mater. Res. Part A 103(1), 185–193 (2015)

    Article  Google Scholar 

  216. E. Carenza, V. Barceló, A. Morancho, L. Levander, C. Boada, A. Laromaine, A. Roig, J. Montaner, A. Rosell, In vitro angiogenic performance and in vivo brain targeting of magnetized endothelial progenitor cells for neurorepair therapies. Nanomed. Nanotechnol. Biol. Med. 10(1), 225–234 (2014)

    Google Scholar 

  217. T. Mustafa, Y. Zhang, F. Watanabe, A. Karmakar, M.P. Asar, R. Little, M.K. Hudson, Y. Xu, A.S. Biris, Iron oxide nanoparticle-based radio-frequency thermotherapy for human breast adenocarcinoma cancer cells. Biomater. Sci. 1(8), 870–880 (2013)

    Article  Google Scholar 

  218. K.H. Bae, M. Park, M.J. Do, N. Lee, J.H. Ryu, G.W. Kim, C. Kim, T.G. Park, T. Hyeon, Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6(6), 5266–5273 (2012)

    Article  Google Scholar 

  219. E.S. Glazer, S.A. Curley, Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles. Cancer 116(13), 3285–3293 (2010)

    Article  Google Scholar 

  220. N.S. Re**old, Y.C. Kim, Radiofrequency-sensitive nanocarriers for cancer drug delivery, in Biomimetic Nanoengineered Materials for Advanced Drug Delivery (Elsevier, 2019), pp. 91–106

    Google Scholar 

  221. Y. Xu, M. Mahmood, Z. Li, E. Dervishi, S. Trigwell, V.P. Zharov, N. Ali, V. Saini, A.R. Biris, D. Lupu, D. Boldor, Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therapy. Nanotechnology 19(43), 435102 (2008)

    Article  Google Scholar 

  222. A. Karmakar, Y. Xu, M.W. Mahmood, Y. Zhang, L.M. Saeed, T. Mustafa, S. Ali, A.R. Biris, A.S. Biris, Radio-frequency induced in vitro thermal ablation of cancer cells by EGF functionalized carbon-coated magnetic nanoparticles. J. Mater. Chem. 21(34), 12761–12769 (2011)

    Article  Google Scholar 

  223. A. Sasidharan, A.J. Sivaram, A.P. Retnakumari, P. Chandran, G.L. Malarvizhi, S. Nair, M. Koyakutty, Radiofrequency ablation of drug-resistant cancer cells using molecularly targeted carboxyl-functionalized biodegradable graphene. Adv. Healthcare Mater. 4(5), 679–684 (2015)

    Article  Google Scholar 

  224. A. Ghosh, A. Pareek, S.K. Sopory, S.L. Singla-Pareek, A glutathione responsive rice glyoxalase II, Os GLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. Plant J. 80(1), 93–105 (2014)

    Article  Google Scholar 

  225. I. Lokuge, X. Wang, P.W. Bohn, Temperature-controlled flow switching in nanocapillary array membranes mediated by poly (N-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization. Langmuir 23(1), 305–311 (2007)

    Article  Google Scholar 

  226. M.A. Nash, P. Yager, A.S. Hoffman, P.S. Stayton, Mixed stimuli-responsive magnetic and gold nanoparticle system for rapid purification, enrichment, and detection of biomarkers. Bioconjug. Chem. 21(12), 2197–2204 (2010)

    Article  Google Scholar 

  227. N.S. Re**old, R. Ranjusha, A. Balakrishnan, N. Mohammed, R. Jayakumar, Gold–chitin–manganese dioxide ternary composite nanogels for radio frequency assisted cancer therapy. RSC Adv. 4(11), 5819–5825 (2014)

    Article  Google Scholar 

  228. N.S. Re**old, R.G. Thomas, M. Muthiah, K.P. Chennazhi, I.K. Park, Y.Y. Jeong, K. Manzoor, R. Jayakumar, Retraction: radio frequency triggered curcumin delivery from thermo and pH responsive nanoparticles containing gold nanoparticles and its in vivo localization studies in an orthotopic breast tumor model. RSC Adv. 10(48), 28483

    Google Scholar 

  229. N.S. Re**old, R.G. Thomas, M. Muthiah, H.J. Lee, Y.Y. Jeong, I.K. Park, R. Jayakumar, Breast tumor targetable Fe3O4 embedded thermo-responsive nanoparticles for radiofrequency assisted drug delivery. J. Biomed. Nanotechnol. 12(1), 43–55 (2016)

    Article  Google Scholar 

  230. L.E. Gerweck, K. Seetharaman, Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Can. Res. 56(6), 1194–1198 (1996)

    Google Scholar 

  231. R.A. Gatenby, R.J. Gillies, Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4(11), 891–899 (2004)

    Article  Google Scholar 

  232. D. Ling, W. Park, S.J. Park, Y. Lu, K.S. Kim, M.J. Hackett, B.H. Kim, H. Yim, Y.S. Jeon, K. Na, T. Hyeon, Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc. 136(15), 5647–5655 (2014)

    Article  Google Scholar 

  233. V. Knorr, V. Russ, L. Allmendinger, M. Ogris, E. Wagner, Acetal linked oligoethylenimines for use as pH-sensitive gene carriers. Bioconjug. Chem. 19(8), 1625–1634 (2008)

    Article  Google Scholar 

  234. X. Liu, B. Chen, X. Li, L. Zhang, Y. Xu, Z. Liu, Z. Cheng, X. Zhu, Self-assembly of BODIPY based pH-sensitive near-infrared polymeric micelles for drug controlled delivery and fluorescence imaging applications. Nanoscale 7(39), 16399–16416 (2015)

    Article  Google Scholar 

  235. C.C. Lee, E.R. Gillies, M.E. Fox, S.J. Guillaudeu, J.M. Fréchet, E.E. Dy, F.C. Szoka, A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. 103(45), 16649–16654 (2006)

    Article  Google Scholar 

  236. R. De La Rica, D. Aili, M.M. Stevens, Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 64(11), 967–978 (2012)

    Article  Google Scholar 

  237. C. Bonnans, J. Chou, Z. Werb, Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15(12), 786–801 (2014)

    Article  Google Scholar 

  238. C.J. Van Noorden, T.G. Jonges, L.C. Meade-Tollin, R.E. Smith, A. Köhler, In vivo inhibition of cysteine proteinases delays the onset of growth of human pancreatic cancer explants. Br. J. Cancer 82(4), 931–936 (2000)

    Article  Google Scholar 

  239. R.P. Verma, C. Hansch, Matrix metalloproteinases (MMPs): chemical–biological functions and (Q) SARs. Bioorg. Med. Chem. 15(6), 2223–2268 (2007)

    Article  Google Scholar 

  240. C. Ansari, G.A. Tikhomirov, S.H. Hong, R.A. Falconer, P.M. Loadman, J.H. Gill, R. Castaneda, F.K. Hazard, L. Tong, O.D. Lenkov, D.W. Felsher, Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small 10(3), 566–575 (2014)

    Article  Google Scholar 

  241. R.A. Cairns, I.S. Harris, T.W. Mak, Regulation of cancer cell metabolism. Nat. Rev. Cancer 11(2), 85–95 (2011)

    Article  Google Scholar 

  242. H. Sies, Glutathione and its role in cellular functions. Free Radical Biol. Med. 27(9–10), 916–921 (1999)

    Article  Google Scholar 

  243. G.K. Balendiran, R. Dabur, D. Fraser, The role of glutathione in cancer. Cell Biochem. Function Cell. Biochem. Modul. Active Agents Dis. 22(6), 343–352 (2004)

    Article  Google Scholar 

  244. P. Vaupel, K. Schlenger, C. Knoop, M. Höckel, Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Can. Res. 51(12), 3316–3322 (1991)

    Google Scholar 

  245. P. Verwilst, J. Han, J. Lee, S. Mun, H.G. Kang, J.S. Kim, Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: a theranostic case study. Biomaterials 1(115), 104–114 (2017)

    Article  Google Scholar 

  246. A. Sneider, D. VanDyke, S. Paliwal, P. Rai, Remotely triggered nano-theranostics for cancer applications. Nanotheranostics 1(1), 1 (2017)

    Article  Google Scholar 

  247. R. Weissleder, A clearer vision for in vivo imaging. Nat. Biotechnol. 19(4), 316–317 (2001)

    Article  Google Scholar 

  248. K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10(9), 3318–3323 (2010)

    Article  Google Scholar 

  249. T.J. Dougherty, C.J. Gomer, B.W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, Photodynamic therapy. JNCI J. Nat. Cancer Inst. 90(12), 889–905 (1998)

    Google Scholar 

  250. C.J. Kearney, D.J. Mooney, Macroscale delivery systems for molecular and cellular payloads. Nat. Mater. 12(11), 1004–1017 (2013)

    Article  Google Scholar 

  251. Q. Chai, Y. Jiao, X. Yu, Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels. 3(1), 6 (2017)

    Article  Google Scholar 

  252. P.M. Kharkar, K.L. Kiick, A.M. Kloxin, Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem. Soc. Rev. 42(17), 7335–7372 (2013)

    Article  Google Scholar 

  253. O.A. Ali, N. Huebsch, L. Cao, G. Dranoff, D.J. Mooney, Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8(2), 151–158 (2009)

    Article  Google Scholar 

  254. M.L. De Temmerman, J. Rejman, J. Demeester, D.J. Irvine, B. Gander, S.C. De Smedt, Particulate vaccines: on the quest for optimal delivery and immune response. Drug Disc. Today 16(13–14), 569–582 (2011)

    Article  Google Scholar 

  255. P. Davoodi, W.C. Ng, M.P. Srinivasan, C.H. Wang, Codelivery of anti-cancer agents via double-walled polymeric microparticles/injectable hydrogel: a promising approach for treatment of triple negative breast cancer. Biotechnol. Bioeng. 114(12), 2931–2946 (2017)

    Article  Google Scholar 

  256. O. Hamid, C. Robert, A. Daud, F.S. Hodi, W.J. Hwu, R. Kefford, J.D. Wolchok, P. Hersey, R.W. Joseph, J.S. Weber, R. Dronca, Safety and tumor responses with lambrolizumab (anti–PD-1) in melanoma. N. Engl. J. Med. 369(2), 134–144 (2013)

    Article  Google Scholar 

  257. Y. Zhang, N. Li, H. Suh, D.J. Irvine, Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat. Commun. 9(1), 1–5 (2018)

    Google Scholar 

  258. J.C. Kraft, J.P. Freeling, Z. Wang, R.J. Ho, Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci. 103(1), 29–52 (2014)

    Article  Google Scholar 

  259. P.D. Senter, Potent antibody drug conjugates for cancer therapy. Curr. Opin. Chem. Biol. 13(3), 235–244 (2009); S. Lv, Z. Tang, D. Zhang, W. Song, M. Li, J. Lin, H. Liu, X. Chen, Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. J. Control. Release 28(194), 220–227 (2014)

    Article  Google Scholar 

  260. R. Tian, C. Ke, L. Rao, J. Lau, X. Chen, Multimodal stratified imaging of nanovaccines in lymph nodes for improving cancer immunotherapy. Adv. Drug Deliv. Rev. 1(161), 145–160 (2020)

    Article  Google Scholar 

  261. T.T. Smith, S.B. Stephan, H.F. Moffett, L.E. McKnight, W. Ji, D. Reiman, E. Bonagofski, M.E. Wohlfahrt, S.P. Pillai, M.T. Stephan, In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12(8), 813–820 (2017)

    Article  Google Scholar 

  262. T.N. Schumacher, R.D. Schreiber, Neoantigens in cancer immunotherapy. Science 348(6230), 69–74 (2015)

    Article  Google Scholar 

  263. S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi, A. Shaw, J.S. Pajarinen, H. Nejadnik, S. Goodman, M. Moseley, L.M. Coussens, Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11(11), 986–994 (2016)

    Article  Google Scholar 

  264. C. Wang, L. Xu, C. Liang, J. **ang, R. Peng, Z. Liu, Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 26(48), 8154–8162 (2014)

    Article  Google Scholar 

  265. H. Zhang, D.R. Dunphy, X. Jiang, H. Meng, B. Sun, D. Tarn, M. Xue, X. Wang, S. Lin, Z. Ji, R. Li, Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. J. Am. Chem. Soc. 134(38), 15790–15804 (2012)

    Article  Google Scholar 

  266. M. Luo, H. Wang, Z. Wang, H. Cai, Z. Lu, Y. Li, M. Du, G. Huang, C. Wang, X. Chen, M.R. Porembka, A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 12(7), 648–654 (2017)

    Article  Google Scholar 

  267. R. Tian, Q. Zeng, S. Zhu, J. Lau, S. Chandra, R. Ertsey, K.S. Hettie, T. Teraphongphom, Z. Hu, G. Niu, D.O. Kiesewetter, Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci. Adv. 5(9), eaaw0672 (2019)

    Google Scholar 

  268. H. Liu, K.D. Moynihan, Y. Zheng, G.L. Szeto, A.V. Li, B. Huang, D.S. Van Egeren, C. Park, D.J. Irvine, Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507(7493), 519–522 (2014)

    Article  Google Scholar 

  269. G. Zhu, G.M. Lynn, O. Jacobson, K. Chen, Y. Liu, H. Zhang, Y. Ma, F. Zhang, R. Tian, Q. Ni, S. Cheng, Albumin/Vaccine Nanocomplexes That Assemble

    Google Scholar 

  270. F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, L.A. Kunz-Schughart, Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148(1), 3–15 (2010)

    Article  Google Scholar 

  271. B. Pinto, A.C. Henriques, P.M. Silva, H. Bousbaa, Three-dimensional spheroids as in vitro preclinical models for cancer research. Pharmaceutics 12(12), 1186 (2020)

    Google Scholar 

  272. G. Mehta, A.Y. Hsiao, M. Ingram, G.D. Luker, S. Takayama, Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Control. Release 164(2), 192–204 (2012)

    Article  Google Scholar 

  273. M. Zietarska, C.M. Maugard, A. Filali-Mouhim, M. Alam-Fahmy, P.N. Tonin, D.M. Provencher, A.M. Mes-Masson, Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC). Mole. Carcinogenesis Publish. Cooper. Univ. Texas MD Anderson Cancer Center 46(10), 872–885 (2007)

    Google Scholar 

  274. J. Myung** Lee, P. Mhawech-Fauceglia, N. Lee, L. Cristina Parsanian, Y. Gail Lin, S. Andrew Gayther, K. Lawrenson, A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Lab. Invest. 93(5), 528–542 (2013)

    Article  Google Scholar 

  275. S. Al Habyan, C. Kalos, J. Szymborski, L. McCaffrey, Multicellular detachment generates metastatic spheroids during intra-abdominal dissemination in epithelial ovarian cancer. Oncogene 37(37), 5127–5135 (2018)

    Article  Google Scholar 

  276. G. Gunay, H.A. Kirit, A. Kamatar, O. Baghdasaryan, S. Hamsici, H. Acar, The effects of size and shape of the ovarian cancer spheroids on the drug resistance and migration. Gynecol. Oncol. 159(2), 563–572 (2020)

    Article  Google Scholar 

  277. K.L. Boylan, R.D. Manion, H. Shah, K.M. Skubitz, A.P. Skubitz, Inhibition of ovarian cancer cell spheroid formation by synthetic peptides derived from Nectin-4. Int. J. Mol. Sci. 21(13), 4637 (2020)

    Article  Google Scholar 

  278. H. Xu, X. Lyu, M. Yi, W. Zhao, Y. Song, K. Wu, Organoid technology and applications in cancer research. J. Hematol. Oncol. 11(1), 1–5 (2018)

    Article  Google Scholar 

  279. H.D. Liu, B.R. **a, M.Z. **, G. Lou, Organoid of ovarian cancer: genomic analysis and drug screening. Clin. Transl. Oncol. 22(8), 1240–1251 (2020)

    Article  Google Scholar 

  280. C. Pauli, B.D. Hopkins, D. Prandi, R. Shaw, T. Fedrizzi, A. Sboner, V. Sailer, M. Augello, L. Puca, R. Rosati, T.J. McNary, Personalized in vitro and in vivo cancer models to guide precision medicinepersonalized cancer models to guide precision medicine. Cancer Disc. 7(5), 462–477 (2017)

    Google Scholar 

  281. H. Chen, K. Gotimer, C. De Souza, C.G. Tepper, A.N. Karnezis, G.S. Leiserowitz, J. Chien, L.H. Smith, Short-term organoid culture for drug sensitivity testing of high-grade serous carcinoma. Gynecol. Oncol. 157(3), 783–792 (2020)

    Article  Google Scholar 

  282. S.J. Hill, B. Decker, E.A. Roberts, N.S. Horowitz, M.G. Muto, M.J. Worley, C.M. Feltmate, M.R. Nucci, E.M. Swisher, H. Nguyen, C. Yang, Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer OrganoidsDNA repair profiling of HGSC organoids. Cancer Discov. 8(11), 1404–1421 (2018)

    Article  Google Scholar 

  283. C.J. de Witte, J.E. Valle-Inclan, N. Hami, K. Lõhmussaar, O. Kopper, C.P. Vreuls, G.N. Jonges, P. van Diest, L. Nguyen, H. Clevers, W.P. Kloosterman, Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter-and intrapatient drug responses. Cell Rep. 31(11), 107762 (2020)

    Article  Google Scholar 

  284. L.J. Ong, L.H. Chong, L. **, P.K. Singh, P.S. Lee, H. Yu, A. Ananthanarayanan, H.L. Leo, Y.C. Toh, A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells. Biotechnol. Bioeng. 114(10), 2360–2370 (2017)

    Article  Google Scholar 

  285. J. Sun, A.R. Warden, X. Ding, Recent advances in microfluidics for drug screening. Biomicrofluidics 13(6), 061503 (2019)

    Article  Google Scholar 

  286. H.F. Tsai, A. Trubelja, A.Q. Shen, G. Bao, Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. J. R. Soc. Interface 14(131), 20170137 (2017)

    Article  Google Scholar 

  287. M. Komeya, H. Kimura, H. Nakamura, T. Yokonishi, T. Sato, K. Kojima, K. Hayashi, K. Katagiri, H. Yamanaka, H. Sanjo, M. Yao, Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci. Rep. 6(1), 1 (2016)

    Article  Google Scholar 

  288. S. Onal, M.M. Alkaisi, V. Nock, A flexible microdevice for mechanical cell stimulation and compression in microfluidic settings. Front. Phys. 25(9), 654918 (2021)

    Article  Google Scholar 

  289. C.M. Novak, E.N. Horst, E. Lin, G. Mehta, Compressive stimulation enhances ovarian cancer proliferation, invasion, chemoresistance, and mechanotransduction via CDC42 in a 3D bioreactor. Cancers 12(6), 1521 (2020)

    Article  Google Scholar 

  290. I. Rizvi, U.A. Gurkan, S. Tasoglu, N. Alagic, J.P. Celli, L.B. Mensah, Z. Mai, U. Demirci, T. Hasan, Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc. Natl. Acad. Sci. 110(22), E1974–E1983 (2013)

    Article  Google Scholar 

  291. S.S. Li, C.K. Ip, M.Y. Tang, S.K. Sy, S. Yung, T.M. Chan, M. Yang, H.C. Shum, A.S. Wong, Modeling ovarian cancer multicellular spheroid behavior in a dynamic 3D peritoneal microdevice. JoVE (J. Visualized Experi.) 120, e55337 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dalapathi Gugulothu or Meenakshi Kanwar Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gugulothu, D., Dhawan, D., Sachdeva, A., Deepali, Chauhan, M.K. (2023). Biomaterial-Based Delivery Systems for Chemotherapeutics. In: Malviya, R., Sundram, S. (eds) Targeted Cancer Therapy in Biomedical Engineering. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-9786-0_4

Download citation

Publish with us

Policies and ethics

Navigation