Fungal Keratinases: Enzymes with Immense Biotechnological Potential

  • Chapter
  • First Online:
Fungal Resources for Sustainable Economy

Abstract

Fungal enzymes are vital for various biotechnological processes and their impact is going to be felt much more in coming years. Fungal enzymes such as proteases, amylases, lipases, pectinases and tannases are used in meat, sugar and other food industries. Fungal keratinases are the proteases, which hydrolyse hard-to-degrade keratin, with a lot of potentials whose demand is gradually increasing due to their broad specificity towards variety of insoluble keratin substrates. Biotechnological methods employing microbial keratinases play a key role in processing keratin waste. Amongst microbial diversiform, fungal sources have become more perpetual choice for keratinase production, due to their low cost, easy recovery and high enzyme activity. These are inducible enzymes, which are produced extracellularly or intracellularly primarily from dermatophytic and broad saprotrophic non-specialized ascomycetous fungi in the presence of keratinous substrates. Fungal keratinases are a great resource pool for industrial sector and sustainable environmental management, and a source of value-added products. These enzymes can cause solubilization of keratinous waste through proteolysis and sulfitolysis as well as fascinate researchers for applications in skin/hide dehairing, textile processing, detergent formulation, pharmaceutical and cosmetic industries and bioactive peptide production. Microbial degradation of keratinous waste is preferred over chemical methods since it is more specific, saves energy and produces value-added hydrolysate that can find application in food, feed and agriculture. Fungal keratinases can easily penetrate into keratinous substrate due to filamentous growth of the producer that produces high enzyme titres. This chapter focuses on the potential applications of fungal keratinases in different industries. The biotechnological conversion of keratinous waste into soluble products and subsequent application in food, feed and agroindustry would be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah AM, El-Gamal MS, Ismail SA et al (2018) Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1. J Genet Eng Biotechnol 16:311–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Abirami S, Ragavi R, Antony VS (2020) Utilization of keratinolytic Lichtheimia corymbifera AS1 for degradation of cattle hoove: a slaughter house waste to use in plant growth. Biointerface Res Appl Chem 10:6417–6426

    Article  CAS  Google Scholar 

  • Adetunji CO, Makanjuola OR, Arowora KA et al (2012) Production and application of keratin-based organic fertilizer from microbially hydrolyzed feathers to cowpea (Vigna unguiculata). Int J Sci Eng Res 3:22–29

    Google Scholar 

  • Aina A, Ezeamagu CO, Akindele ST (2021) Purification of Wickerhamomyces anomalus keratinase and its prospective application in poultry feed industries. Fountain J Nat Appl Sci 1:1–16

    Google Scholar 

  • Ali TH, Ali NH, Mohamed LA (2011) Production, purification and some properties of extracellular keratinase from feathers-degradation by Aspergillus oryzae NRRL-447. J Appl Sci Environ Sanitat 6:123–136

    CAS  Google Scholar 

  • Al-Musallam A, Al-Gharabally D, Vadakkancheril N (2013) Biodegradation of keratin in mineral-based feather medium by thermophilic strains of new Coprinopsis sp. Int Biodeterior Biodegrad 79:42–48

    Article  CAS  Google Scholar 

  • Alwakeel SS, Ameen F, Al-Gwaiz H et al (2021) Keratinase produced by Aspergillus stelliformis, Aspergillus sydowii, and Fusarium brachygibbosum isolated from human hair: yield and activity. J Fungi 7:1–13

    Article  Google Scholar 

  • Amara AA, Serour EA (2008) Wool quality improvement using thermophilic crude proteolytic microbial enzymes. Am-Eurasian J Agric Environ Sci 3:554–560

    Google Scholar 

  • Anbesaw MS (2022) Bioconversion of keratin wastes using keratinolytic microorganisms to generate value-added products. Int J Biomater 2022:2048031; 24 pages.

    Article  Google Scholar 

  • Anbu P, Gopinath SCB, Hilda A et al (2005) Purification of keratinase from poultry farm isolate-Scopulariopsis brevicaulis and statistical optimization of enzyme activity. Enzyme Microbial Technol 36:639–647

    Article  CAS  Google Scholar 

  • Anbu P, Gopinath SC, Hilda A et al (2006) Secretion of keratinolytic enzymes and keratinolysis by Scopulariopsis brevicaulis and Trichophyton mentagrophytes: regression analysis. J Microbiol 52:1060–1069

    CAS  Google Scholar 

  • Anbu P, Gopinath SCB, Hilda A et al (2007) Optimization of extracellular keratinase production by poultry farm isolate Scopulariopsis brevicaulis. Bioresour Technol 98:1298–1303

    Article  CAS  PubMed  Google Scholar 

  • Anbu P, Hilda A, Sur H et al (2008) Extracellular keratinase from Trichophyton sp. HA-2 isolated from feather dum** soil. Int Biodeterior Biodegrad 62:287–292

    Article  CAS  Google Scholar 

  • Andrioli E, Petry L, Gutterres M (2015) Environmentally friendly hide unhairing: enzymatic-oxidative unhairing as an alternative to use of lime and sodium sulfide. Process Safety Environ Protect 93:9–17

    Article  CAS  Google Scholar 

  • Anitha TS, Palanivelu P (2013) Production and characterization of keratinolytic protease(s) from the fungus Aspergillus parasiticus. Protein Expr Purif 88:214–220

    Article  CAS  PubMed  Google Scholar 

  • Awasthi P, Kushwaha RKS (2011) Keratinase activity of some hyphomycetous fungi from dropped off chicken feathers. Int J Pharma Biol Arch 2:1745–1750

    Google Scholar 

  • Bach E, Anna VS, Daroit DJ et al (2012) Production, one-step purification, and characterization of keratinolytic protease from Serratia marcescens P3. Process Biochem 47:2455–2462

    Article  CAS  Google Scholar 

  • Bagewadi ZK, Mulla SI, Ninnekar HZ (2018) Response surface methodology based optimization of keratinase production from Trichoderma harzianum isolate HZN12 using chicken feather waste and its application in dehairing of hide. Waste Manag J Environ Chem Eng 6:4828–4839

    Article  CAS  Google Scholar 

  • Balint B, Bagi Z, Toth A et al (2005) Utilization of keratin containing biowaste to produce biohydrogen. Appl Microbiol Biotechnol 69:404–410

    Article  CAS  PubMed  Google Scholar 

  • Betzel C, Gourinath S, Kumar P et al (2001) Structure of a serine protease proteinase K from Tritirachium album limber at 0.98 A resolution. Biochemistry 40:3080–3088

    Article  CAS  PubMed  Google Scholar 

  • Bhange K, Chaturvedi V, Bhatt R (2016) Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agroindustrial waste. Biotechnol Rep 10:94–104

    Article  Google Scholar 

  • Bhari R, Kaur M, Singh RS (2019) Thermostable and halotolerant keratinase from Bacillus aerius NSMk2 with remarkable dehairing and laundary applications. J Basic Microbiol 59:555–568

    Article  CAS  PubMed  Google Scholar 

  • Bhari R, Kaur M, Singh RS (2020) Nutritional enhancement of chicken feather waste hydrolysate by Bacillus aerius NSMk2. Indian J Microbiol 60:518–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhuyar P, Zagade S, Revankar R et al (2018) Isolation, characterization and partial purification of keratinase from keratinolytic bacteria. Scholar J Appl Sci Res 1:40–45

    Google Scholar 

  • Bohacz J (2017) Biodegradation of feather waste keratin by a keratinolytic soil fungus and statistical optimization of feather mass loss. World J Microbiol Biotechnol 33:13–25

    Article  PubMed  Google Scholar 

  • Bohacz J, Kornillowicz-Kowalska T, Kitowski I (2020) Degradation of chicken feathers by Aphanoascus keratinophillus and Chyrsosporium tropicum strains from pellets of predatory birds and its practical aspect. Int Biodeterior Biodegrad 151:104968

    Article  CAS  Google Scholar 

  • Borgi I, Gargour A (2014) Investigations on a hyper-proteolytic mutant of Beauveria bassiana: Broad substrate specificity and high biotechnological potential of a serine protease. FEMS Microbiol Lett 351:23–31

    Article  CAS  PubMed  Google Scholar 

  • Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1:105–116

    Article  Google Scholar 

  • Brandelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinase and their production and applications. Appl Microbiol Biotechnol 85:1735–1750

    Article  CAS  PubMed  Google Scholar 

  • Brandelli A, Sala L, Kalil SJ (2015) Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res Int 73:3–12

    Article  CAS  Google Scholar 

  • Cagle GD, Owen GR, Ridruejo NJ et al (2001) Compositions for removing human cerumen. European Patent: EP1337228

    Google Scholar 

  • Cai CG, Lou BG, Zheng XD (2008) Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis. J Zhejiang Univ Sci B 9:60–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin M, Constantinescu-Aruxandei D, Alexandrescu E et al (2017) Degradation of keratin substrate by keratinolytic fungi. Electronic J Biotechnol 28:101–112

    Article  CAS  Google Scholar 

  • Cao L, Tan H, Liu Y et al (2008) Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett Appl Microbiol 46:389–394

    Article  CAS  PubMed  Google Scholar 

  • Cavello IA, Hours RA, Cavalitto SF (2012) Bioprocessing of “hair waste” by Paecilomyces lilacinus as a source of a bleach-stable, alkaline, and thermostable keratinase with potential application as a laundry detergent additive: Characterization and wash performance analysis. Biotechnol Res Int 3:1–12

    Article  Google Scholar 

  • Cavello IA, Hours RA, Rojas NL et al (2013) Purification and characterization of a keratinolytic serine protease from Purpureocillium lilacinum. Process Biochem 48:972–978

    Article  CAS  Google Scholar 

  • Cavello IA, Crespo JM, Garcia SS et al (2015) Plant growth promotion activity of keratinolytic fungi growing on a recalcitrant waste known as hair waste. Biotechnol Res Int 2015:1–10

    Article  Google Scholar 

  • Chaudhari V (2012) Compatibility with commercial detergents and stain removal capability of Aspergillus versicolor protease. J Acad Ind Res 16:301–305

    Google Scholar 

  • Chitte RR, Nalawade VK, Dey S (1999) Keratinolytic activity from the broth of a feather-degrading thermophilic Streptomyces thermoviolaceus strain SD8. Lett Appl Microbiol 28:131–136

    Article  CAS  Google Scholar 

  • Choi JM, Nelson PV (1996) Develo** a slow-release nitrogen fertilizer from organic sources: using poultry feathers. J Amer Soc Hortic Sci 121:634–638

    Article  Google Scholar 

  • Chopra S, Garg S, Gulrajani ML (1994) Degumming of silk fabric with an enzyme degummase. J Seric Entomol Sci 36:44–52

    Google Scholar 

  • Daroit DJ, Correa APF, Brandelli A (2011) Production of keratinolytic proteases through bioconversion of feather meal by the Amazonian bacterium Bacillus sp. P45. Int J Biodeterior Biodegrad 65:45–51

    Article  CAS  Google Scholar 

  • Dayanandan A, Kanagaraj J, Sounderraj L et al (2003) Application of an alkaline protease in leather processing: an ecofriendly approach. J Clean Prod 11:533–536

    Article  Google Scholar 

  • de Medeiros IP, Rozental S, Costa AS et al (2016) Biodegradation of keratin by Trichosporum loubieri RC-S6 isolated from tannery/leather waste. Int Biodeterior Biodegrad 115:199–204

    Article  Google Scholar 

  • de Oliveira CC, de Souza AKS, de Castro RJS (2019) Bioconversion of chicken feather meal by Aspergillus niger: simultaneous enzyme production using a cost-effective feedstock under solid state fermentation. Indian J Microbiol 59:209–216

    Article  PubMed  PubMed Central  Google Scholar 

  • de Souja FR, Gutterres M (2012) Application of enzymes in leather processing: a comparison between chemical and co-enzymatic processes. Braz J Chem Eng 29:1–9

    Google Scholar 

  • Devi DA, Lakshmi VV (2015) Increased efficiency of feather degradation by immobilising cells on composite cellulose acetate fibres. Int J Sci Eng Res 6:11–14

    Google Scholar 

  • Dozie I, Okeye C, Unaeze N (1994) A thermostable alkaline-active keratinolytic proteinase from Chrysosporium keratinophilum. World J Microbiol Biotechnol 10:563–567

    Article  CAS  PubMed  Google Scholar 

  • Duarte TR, Oliveira SS, Macrae A et al (2011) Increased expression of keratinase and other peptidases by Candida parapsilosis mutants. Braz J Med Biol Res 44:212–216

    Article  CAS  PubMed  Google Scholar 

  • Duffeck CE, de Menezes CLA, Boscolo M et al (2020) Keratinases from Coriolopsis byrsina as an alternative for feather degradation: applications for cloth cleaning based on commercial detergent compatibility and for the production of collagen hydrolysate. Biotechnol Lett 42:2403–2412

    Article  CAS  PubMed  Google Scholar 

  • El-Ayouty YM, El-Said A, Salama AM (2012) Purification and characterization of a keratinase from the feather-degrading cultures of Aspergillus flavipes. Afr J Biotechnol 11:2313–2319

    CAS  Google Scholar 

  • El-Gendy MMA (2010) Keratinase production by endophytic Penicillium spp. Morsy1 under solid-state fermentation using rice straw. Appl Biochem Biotechnol 162:780–794

    Article  CAS  PubMed  Google Scholar 

  • El-Ghonemy DH, Ali TH (2017) Optimization of physico-chemical properties for hyper keratinase production from a newly isolated Aspergillus sp. DHE 7 using chicken feather as substrate-management of biowaste. J Appl Pharm Sci 7:171–178

    CAS  Google Scholar 

  • Elhoul MB, Jaouadi NZ, Bouacem K et al (2021) Heterologous expression and purification of keratinase from Actinomadura viridilutea DZ50: feather biodegradation and animal hide dehairing bioprocesses. Environ Sci Pollut Res 28:9921–9934

    Article  Google Scholar 

  • El-Naghy MA, El-Ktatny MS, Fadl-Allah EM, Nazeer WW (1998) Degradation of chicken feathers by Chrysosporium georgiae. Mycopathologia 143:77–84

    Article  CAS  PubMed  Google Scholar 

  • English MP (1968) The development morphology of perforating organs and eroding mycelium of dermatophytes. Sabouraudia 6:218–227

    Article  CAS  PubMed  Google Scholar 

  • Fakhfakh NZ, Ktari N, Siala R et al (2013) Wool-waste valorization: production of protein hydrolysate with high antioxidative potential by fermentation with a new keratinolytic bacterium, Bacillus pumilus A1. J Appl Microbiol 115:424–433

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Zhang J, Liu B, Du G et al (2013) Biodegradation of wool waste and keratinase production in scale-up fermenter with different strategies by Stenotrophomonas maltophilia BBE11-1. Bioresour Technol 140:286–291

    Article  CAS  PubMed  Google Scholar 

  • Farag AM, Hassan MA (2004) Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme Microbial Technol 34:85–93

    Article  CAS  Google Scholar 

  • Forgacs G, Lundin M, Taherzadeh MJ et al (2013) Pretreatment of chicken feather waste for improved biogas production. Appl Biochem Biotechnol 169:2016–2028

    Article  CAS  PubMed  Google Scholar 

  • Freddi G, Mossotti R, Innocenti R (2003) Degumming fabric with several protease. J Biotechnol 106:101–112

    Article  CAS  PubMed  Google Scholar 

  • Friedrich AB, Antranikian G (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl Environ Microbiol 62:2875–2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich J, Gradisar H, Mandin D, Chaumont JP (1999) Screening fungi for keratinolytic enzymes. Lett Appl Microbiol 28:127–130

    Article  CAS  Google Scholar 

  • Gopinath SCB, Anbu P, Lakshmipriya T et al (2015) Biotechnological aspects and perspective of microbial keratinase production. Int J Biomed Res 2015:1–10

    Article  Google Scholar 

  • Gradisar H, Kern S, Friedrich J (2000) Keratinase of Doratomyces microsporus. Appl Microbiol Biotechnol 53:196–200

    Article  CAS  PubMed  Google Scholar 

  • Gradisar H, Friedrich J, Krizaj I et al (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl Environ Microbiol 71:3420–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guleria S, Walia A, Chauhan A et al (2018) Production and eco-friendly application of Bacillus amyloliquefaciens sp1. Indian J Biotechnol 17:448–458

    CAS  Google Scholar 

  • Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Sharma R, Beg QK (2013) Revisiting microbial keratinases: Next generation proteases for sustainable biotechnology. Crit Rev Biotechnol 30:1–13

    Google Scholar 

  • Gushterova A, Vasileva-Tonkova E, Dimova E et al (2005) Keratinase production by newly isolated Antarctic actinomycete strains. World J Microbiol Biotechnol 21:831–834

    Article  CAS  Google Scholar 

  • Han M, Luo W, Gu Q et al (2012) Isolation and characterization of keratinolytic protease from a feather degrading bacterium Pseudomonas aeruginosa C11. Afr J Microbiol Res 6:2211–2221

    CAS  Google Scholar 

  • Hassan MA, Abol-Fotouh D, Omer AM et al (2020) Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: a review. Int J Biol Macromol 154:567–583

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Busk PK, Lange L (2015) Production and characterization of keratinolytic proteases produced by Onygena corvina. Fungal Genom Biol 5:1–7

    Google Scholar 

  • Iglesias MS, Sequeiros C, Garcia S et al (2017) Newly isolated Bacillus sp. G51 from Patagonian wool produces an enzyme combination suitable for felt-resist treatments of organic wool. Bioprocess Biosyst Eng 40:833–842

    Article  CAS  PubMed  Google Scholar 

  • Ismail AMS, Housseiny MM, Abo-Elmagd HI et al (2012) Novel keratinase from Trichoderma harzianum MH-20 exhibiting remarkable dehairing capabilities. Int Biodeterior Biodegrad 70:14–19

    Article  CAS  Google Scholar 

  • Ismail AMS, El-Abd MM, El-Sayed NH (2016) Production of keratinolytic enzymes from industrial wastes for employing in leather industry. J Innov Pharm Biol Sci 3:86–94

    CAS  Google Scholar 

  • Issac GS, Abu-Tahon M (2016) Dehairing capabilities of alkaline keratinase produced by new isolated Cochliobolus hawaiiensis AUMC 8606 grown on chicken feather. Romanian Biotechnol Lett 22:12147–12154

    Google Scholar 

  • Jani SA, Parekh YM, Parmar TN et al (2016) Screening and characterization of alkaline protease producing Bacillus strain B-4 Bacillus flexus and study of its potential for alkaline protease production. Int J Curr Microbiol Appl Sci 5:767–787

    Article  CAS  Google Scholar 

  • Javed F, Shahid MG, Javed A (2020) Effect of different operational parameters on bio-degradation of chicken feathers by Aspergillus niger: Investigation under submerged fermentation process. Pak J Sci Ind Res Ser B Biol Sci 63:71–76

    Google Scholar 

  • Kalaikumari SS, Vennila T, Monika V et al (2019) Bioutilization of poultry feather for keratinase production and its application in leather industry. J Clean Prod 18:33090–33097

    Google Scholar 

  • Kanchana R, Mesta D (2013) Native feather degradation by keratinophilic fungus. Int J ChemTech Res 5:2947–2954

    CAS  Google Scholar 

  • Kannahi M, Ancy RJ (2012) Keratin degradation and enzyme producing ability of Aspergillus flavus and Fusarium solani from soil. J Chem Pharm Res 4:3245–3248

    CAS  Google Scholar 

  • Kaul S, Sumbali G (1997) Keratinophilic fungi from feathers of Indian poultry birds. Mycologist 14:148–150

    Article  Google Scholar 

  • Kaur M, Bhari R, Singh RS (2021) Chicken feather waste-derived hydrolysate as a potential biostimulant for the cultivation of mung beans. Biologia 76:1807–1815

    Article  CAS  Google Scholar 

  • Kerouaz B, Jaouadi B, Brans A et al (2021) Purification and biochemical characterization of two novel extracellular keratinases with feather-degradation and hide-dehairing potential. Process Biochem 106:137–148

    Article  CAS  Google Scholar 

  • Kim JD (2003) Keratinolytic activity of five Aspergillus species isolated from poultry farming soil in Korea. Mycobiology 31:157–167

    Article  Google Scholar 

  • Kim J (2007) Purification and characterization of a keratinase from a feather-degrading fungus, Aspergillus flavus strain K-03. Mycobiol 35:219–225

    Article  CAS  Google Scholar 

  • Kim JS, Kluskens LD, de Vos WM et al (2004) Crystal structure of fervidolysin from Fervidobacterium pennivorans, a keratinolytic enzyme related to subtilisin. Acta Sci Pol Biotechnol 335:787–797

    CAS  Google Scholar 

  • Kornillowicz-Kowalska T (1999) Studies on decomposition of keratin wastes by saprotrophic microfungi. III. Activity and properties of keratinolytic enzymes. Acta Mycol 34:65–78

    Article  Google Scholar 

  • Korniłłowicz-Kowalska T, Bohacz J (2011) Biodegradation of keratin waste: theory and practical aspects. Waste Manag 31:1689–1701

    Article  PubMed  Google Scholar 

  • Koutb M, Morsy FM, Bagy MMK et al (2012) Optimization of extracellular keratinase production by Aspergillus terreus isolated from chicken’s litter. J Adv Lab Res Biol 3:210–216

    Google Scholar 

  • Kumar J, Kushwaha RKS (2014) Screening of fungi efficient in feather degradation and keratinase production. Arch Appl Sci Res 6:73–78

    Google Scholar 

  • Kumar J, Kushwaha RKS (2012) Optimization of media composition for keratinase production on feather by Acremonium strictum RKS1. Adv Appl Sci Res 3:3233–3242

    CAS  Google Scholar 

  • Kumar R, Balaji S, Uma TS et al (2010) Optimization of influential parameters for extracellular keratinase production by Bacillus subtilis (MTCC9102) in solid state fermentation using horn meal-a biowaste management. Appl Biochem Biotechnol 160:30–39

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Singh C, Saini P (2014) Biodegradation of feathers by Microsporum fulvum singly or in combination with other fungi. J Bioremed Biodegrad 5:1–4

    CAS  Google Scholar 

  • Kumar J, Kumar P, Kumar R, Kushwaha S (2015) Feather waste degradation by keratinophilic fungi: an alternative source for protein and amino acids. Adv Appl Sci Res 6:160–164

    CAS  Google Scholar 

  • Kumar R, Singh K, Kumar J, Sharma A, Kumar P (2017) Enhancement of soil nutrition using fermented feather and their efficacy on seed germination. Int J Pure App Biosci 5:92–98

    Article  CAS  Google Scholar 

  • Kumari M, Kumar J (2020) Chicken feather waste degradation by Alternaria tenuissima and its application on plant growth. J App Nat Sci 12:411–414

    CAS  Google Scholar 

  • Kumawat TK, Sharma V, Seth R, Sharma A (2013) Diversity of keratin degrading fungal flora in industrial area of Jaipur and keratinolytic potential of Trichophyton mentagrophytes and Microsporum canis. Int J Biotechnol Bioeng Res 4:359–364

    Google Scholar 

  • Kumawat TK, Sharma A, Bhadauria S (2016) Biodegradation of keratinous waste substrates by Arthroderma multifidum. Asian J Appl Sci 9:106–112

    Article  CAS  Google Scholar 

  • Kumawat TK, Sharma A, Bhadauria S (2017) Chrysosporium queenslandicum: a potent keratinophilic fungus for keratinous waste degradation. Int J Recycl Org Waste Agric 6:143–148

    Article  Google Scholar 

  • Lakshmi SS, Shankar GG, Prabhakar T, Satish T (2015) Statistical optimization of keratinase production from marine fungus. Int J Eng Res Appl 5:52–58

    Google Scholar 

  • Lange L, Busk PK, Huang Y (2014) Use of a microbial composition for the degradation of keratinaceous materials. Denmark Patent WO 169920, A2

    Google Scholar 

  • Lange L, Huang Y, Kamp Busk P (2016) Microbial decomposition of keratin in nature-A new hypothesis of industrial relevance. Appl Microbiol Biotechnol 100:2083–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langveld JPM, Wang JJ, Van de Wiel DFM et al (2003) Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J Infect Dis 188:1782–1789

    Article  Google Scholar 

  • Lee KH, Park KK, Park SH, Lee JB (1987) Isolation, purification and characterization of keratinolytic proteinase from Microsporum canis. Yonsei Med J 28:131–138

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Dhana SI, Ahn JS et al (2015) Biochemical and structural characterization of a keratin-degrading M32 carboxypeptidase from Fervidobacterium islandicum AW-1. Biochem Biophys Res Commun 468:927–933

    Article  CAS  PubMed  Google Scholar 

  • Lene L, Yuhong H, Peter KB (2016) Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance. Appl Microbiol Biotechnol 100:2083–2096

    Article  Google Scholar 

  • Li Q (2019) Progress in microbial degradation of feather waste. Front Microbiol 10:1–15

    Article  Google Scholar 

  • Liang JD, Han YF, Zhang JW (2011) Optimal culture conditions for keratinase production by a novel thermophilic, Myceliophthora thermophila strain GZUIFR-H49-1. J Appl Microbiol 110:871–880

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Lee CG, Casale ES et al (1992) Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Appl Environ Microbiol 58:3271–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Tang J, Koelsch G et al (1993) Recombinant canditropsin, an extracellular aspartic protease from yeast Candida tropicalis. J Biol Chem 268:20143–20147

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhang J, Li B et al (2013) Expression and characterization of extreme alkaline, oxidation-resistant keratinase from Bacillus licheniformis in recombinant Bacillus subtilis WB600 expression system and its application in wool fiber processing. World J Microbiol Biotechnol 29:825–832

    Article  PubMed  Google Scholar 

  • Mahmoodi NM, Arami M, Mazaheri F et al (2010) Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J Clean Prod 18:146–151

    Article  CAS  Google Scholar 

  • Malviya HK, Rajak RC, Hasija SK (1992) Purification and partial characterization of two extracellular keratinases of Scopulariopsis brevicaulis. Mycopathologia 119:161–165

    Article  CAS  PubMed  Google Scholar 

  • Marcondes NR, Taira CL, Vandresen DC et al (2008) New feather degrading filamentous fungi. Microbial Ecol 56:13–17

    Article  Google Scholar 

  • Marcone MF (2005) Characterization of the edible bird’s nest the “Caviar of the East”. Food Res Int 38:1125–1134

    Article  CAS  Google Scholar 

  • Martinez JPDO, Cai G, Nachtschatt M et al (2020) Challenges and opportunities in identifying and characterising keratinases for value-added peptide production. Catalysts 10:1–23

    Google Scholar 

  • Matikeviciene V, Masiliuniene D, Grigiskis S (2009) Degradation of keratin containing wastes by bacteria with keratinolytic activity. In: Proceedings of 7th international scientific and practical conference, environment technology resource, Rezekne, Latvia, pp 284–289

    Google Scholar 

  • Mazotto A, Couri S, Damaso M, Vermelho A (2013) Degradation of feather waste by Aspergillus niger keratinases: Comparison of submerged and solid-state fermentation. Int Biodeterior Biodegrad 85:189–195

    Article  CAS  Google Scholar 

  • Mercer DK, Stewart CS (2019) Keratin hydrolysis by dermatophytes. Med Mycol 57:13–22

    Article  CAS  PubMed  Google Scholar 

  • Mezes L, Tamas J (2015) Feather waste recycling for biogas production. Waste Biomass Valori 6:899–911

    Article  CAS  Google Scholar 

  • Mignon B, Nikkels A, Pierard G et al (1998) The in vitro and in vivo production of a 31.5 kDa keratinolytic subtilase from Microsporum canis and the clinical status in naturally infected cats. Dermatol 196:438–441

    Article  CAS  Google Scholar 

  • Mini KD, George SM, Mathew J (2015) Screening and selection of fungus for keratinase production by solid state fermentation and optimization of conditions of SSF and formulation of low cost medium for the production of keratinase by Aspergillus flavus S125. Int J Curr Microbiol App Sci 4:535–548

    Google Scholar 

  • Ministry of Food Processing Industries (2022) Opportunities in meat and poultry sector in India. https://www.mofpi.gov.in/sites/default/files/OpportunityinMeat%26PoultrysectorinIndia.pdf

  • Moallaei H, Zaini F, Larcher G et al (2006) Partial purification and characterization of a 37 kDa extracellular proteinase from Trichophyton vanbreuseghemii. Mycopathologia 161:369–375

    Article  CAS  PubMed  Google Scholar 

  • Mohorcic M, Torkar A, Friedrich J, Kristl J, Murdan S (2007) An investigation into keratinolytic enzymes to enhance ungula drug delivery. Int J Pharm 332:196–201

    Article  CAS  PubMed  Google Scholar 

  • More SS, Sridhar DL, Prakash SN et al (2013) Purification and properties of a novel fungal alkaline keratinase from Cunninghamella echinulata. Turkish J Biochem 38:68–74

    Article  CAS  Google Scholar 

  • Moreira-Gasparin F, de Souza C, Costa A et al (2009) Purification and characterization of an efficient poultry feather degrading-protease from Myrothecium verrucaria. Biodegradation 20:727–736

    Article  CAS  PubMed  Google Scholar 

  • Muhsin T, Aubaid AH (2000) Partial purification and some biochemical characteristics of exocellular keratinase from Trichophyton mentagrophytes var. erinacei. Mycopathologia 150:121–125

    Article  Google Scholar 

  • Nam GW, Lee DW, Lee HS et al (2002) Native feather degrading by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch Microbiol 178:538–547

    Article  CAS  PubMed  Google Scholar 

  • Nashy EHA, Ahmady AM (2012) Keratinolytic activity of Aspergillus nidulans on dehairing of ovine hide. J Biomed Sci 23:03–06

    Google Scholar 

  • Negi M, Tsuboi R, Matsui T, Ogawa H (1984) Isolation and characterization of proteinase from Candida albicans: substrate specificity. J Invest Dermatol 83:32–36

    Article  CAS  PubMed  Google Scholar 

  • Nnolim NE, Nwodo UU (2020) Bacillus sp. CSK2 produced thermostable alkaline keratinase using agro-wastes: keratinolytic enzyme characterization. BMC Biotechnol 20:1–14

    Article  Google Scholar 

  • Noriyuki K, Shoko Y, Etsuji C et al (2003) Keratinase. Japanese Patent: JP2003070461

    Google Scholar 

  • Ogbonna AI, Ogbonna CIC (2019) Keratin degradation by Aspergillus niger and Penicillium purpurogenum isolated from Nigerian soil. Food Sci Nutr Technol 4:1–5

    Google Scholar 

  • Otcenasek M (1978) Ecology of dermatophytes. Mycopathologia 65:67–72

    Article  CAS  PubMed  Google Scholar 

  • Patience N, Abigail O, Ponchang W, Deborah A (2015) Keratinolytic activity of Cladosporium and Trichoderma species isolated from Barber’s landfill. Int J Biosci 6:104–111

    Article  Google Scholar 

  • Paul T, Das A, Mandal A et al (2013) Production and purification of keratinase using chicken feather bioconversion by a newly isolated Aspergillus fumigatus TKF1: detection of valuable metabolites. Biomass Conv Bioref 4:137–148

    Article  Google Scholar 

  • Paul T, Das A, Mandal A et al (2014) Production and purification of keratinase using chicken feather bioconversion by a newly isolated Aspergillus fumigatus TKF1: detection of valuable metabolites. Biomass Conver Bioref 4:137–148

    Article  CAS  Google Scholar 

  • Paul T, Jana A, Mandal AK et al (2016) Bacterial keratinolytic protease, imminent starter for NextGen leather and detergent industries. Sustain Chem Pharm 3:8–22

    Article  CAS  Google Scholar 

  • Preczeski KP, Dalastra C, Czapela FF et al (2020) Fusarium oxysporum and Aspergillus sp. as keratinase producer using swine hair from agroindustrial residues. Front Bioeng Biotechnol 8:1–8

    Article  Google Scholar 

  • Puhl AA, Selinger LB, McAllister TA (2009) Actinomadura keratinilytica sp. nov., a keratin-degrading actinobacterium isolated from bovine manure compost. Int J Sys Evol Microbiol 59:828–834

    Article  CAS  Google Scholar 

  • Purchase D (2016) Microbial keratinases: characteristics, biotechnological applications and potential. In: Gupta VK, Thangadurai D, Sharma GD, Gaur K (eds) The handbook of microbial bioresources. CAB Int. Publishers, Wallingford, pp 634–674

    Chapter  Google Scholar 

  • Qin LM, Dekio S, Jidoi J (1992) Some biochemical characteristics of a partially purified extracellular keratinase from Trichophyton schoenleinii. Zentralbl Bakteriol 277:236–244

    Article  CAS  PubMed  Google Scholar 

  • Rai SK, Roy JK, Mukherjee AK (2020) Application of poly (vinyl alcohol)-assisted silver nanoparticles immobilized β-keratinase composite as topical antibacterial and dehairing agent. J Proteins Proteom 11:119–134

    Article  CAS  Google Scholar 

  • Raju KC, Neogi U, Saumya R, Goud NR (2007) Studies on extracellular enzyme keratinase from dermatophyte Microsporum gypseum. Int J Biol Chem 1:174–178

    Article  CAS  Google Scholar 

  • Ramnani P, Gupta R (2007) Keratinases vis-a-vis conventional proteases and feather degradation. World J Microbiol Biotechnol 23:1537–1540

    Article  CAS  Google Scholar 

  • Ramnani P, Singh R, Gupta R (2005) Keratinolytic potential of Bacillus licheniformis RG1: Structural and biochemical mechanism of feather degradation. Can J Microbiol 51:191–196

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ (2013) Introduction: serine peptidases and their clans. In: Rawlings ND, Barrett AJ (eds) Handbook of proteolytic enzyme. Elsevier, California, USA, pp 2491–2523

    Chapter  Google Scholar 

  • Saber WIA, EI-Metwally MM, EI-Hersh MS (2010) Keratinase production and bio-degradation of some keratinous wastes by Alternaria tenuissima and Aspergillus nidulans. Res J Microbiol 5:21–35

    Article  CAS  Google Scholar 

  • Safaric R, Zemljic LF, Novak M et al (2020) Preparation and characterization of waste poultry feathers composite fibreboards. Materials 13:1–17

    Article  Google Scholar 

  • Saha S, Dhanasekaran D (2010) Isolation and screening of keratinolytic actinobacteria from keratin waste dumped soil in Tiruchirappalli and Nammakkal, Tamil Nadu, India. Curr Res J Biol Sci 2:124–131

    CAS  Google Scholar 

  • Saha S, Dhanasekaran D, Shanmugapriya S (2013) Nocardiopsis sp. SD5: A potent feather degrading rare antibacterium isolated from feather waste in Tamil Nadu, India. J Basic Microbiol 53:608–616

    Article  CAS  PubMed  Google Scholar 

  • Sahni N, Sahota PP, Phutela UG (2015) Bacterial keratinases and their prospective applications: a review. Int J Curr Microbiol Appl Sci 4:768–783

    CAS  Google Scholar 

  • Samuel P, Maheswari M, Vijayakumar J et al (2018) Bio-prospecting of marine-derived fungi with special reference to production of keratinase enzyme- a need-based optimization study. J Appl Biol Biotechnol 6:35–41

    CAS  Google Scholar 

  • Sanghvi G, Patel H, Vaishnav D et al (2016) A novel alkaline keratinase from Bacillus subtilis DP1 with potential ability in cosmetic formulation. Int J Biol Macromol 87:256–262

    Article  CAS  PubMed  Google Scholar 

  • Santos RMDB, Firmino AAP, de Sá CM, Felix CR (1996) Keratinolytic activity of Aspergillus fumigatus fresenius. Curr Microbiol 33:364–370

    Article  CAS  Google Scholar 

  • Selvam K, Vishnupriya B (2012) Biochemical and molecular characterization of microbial keratinase and its remarkable applications. Int J Pharm Biol Arch 3:267–275

    Google Scholar 

  • Sharaf EF, Khalil NM (2011) Keratinolytic activity of purified alkaline keratinase produced by Scopulariopsis brevicaulis and its amino acid profile. Saudi J Biol Sci 18:117–121

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Devi S (2018) Versatility and commercial status of microbial keratinases: a review. Rev Environ Sci Biotechnol 17:19–45

    Article  CAS  Google Scholar 

  • Sharma M, Sharma M, Rao VM (2011) In vitro biodegradation of keratin by dermatophytes and some soil keratinophiles. Afr J Biochem Res 5:1–6

    Google Scholar 

  • Sharma S, Gupta A, Chik SMST et al (2017a) Characterization of keratin microparticles from feather biomass with potent antioxidant and anticancer activities. Int J Biol Macromol 104:189–196

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Sharma A, Seth R (2017b) Evaluation of keratinolytic activity succeeds by keratinolytic fungi. Am J Appl Sci 4:231–239

    Google Scholar 

  • Shavandi A, Silva TH, Bekhit AA et al (2017) Keratin: dissolution, extraction and biomedical application. Biomater Sci 5:1699–1735

    Article  CAS  PubMed  Google Scholar 

  • Shih JCH, Williams CM (1992) Purified Bacillus licheniformis PWD-1 keratinase. US Patent 5171682

    Google Scholar 

  • Singh CJ (1997) Characterization of an extracellular keratinase of Trichophyton simii and its role in keratin degradation. Mycopathologia 137:13–16

    Article  CAS  PubMed  Google Scholar 

  • Singh I, Kushwaha RKS (2015) Keratinases and microbial degradation of keratin. Adv Appl Sci Res 6:74–82

    CAS  Google Scholar 

  • Sinha P, Rao BKV (2014) Screening of extracellular keratinase producing fungi from feather processing area in Shenbakkam, Vellore District, Tamil Nadu, India. Res J Pharm Biol Chem Sci 5:616–621

    CAS  Google Scholar 

  • Soares FEF, Braga FR, Genier HLA et al (2010) Optimization of medium composition for protease production by Paecilomyces marquandii in solid-state fermentation using response surface methodology. Afr J Microbiol Res 4:2699–2703

    CAS  Google Scholar 

  • Sone T, Haraguchi Y, Kuwahara A (2015) Structural characterization reveals the keratinolytic activity of an Arthrobacter nicotinovorans protease. Protein Pept Lett 22:63–72

    Article  CAS  PubMed  Google Scholar 

  • Sousa AM, Politani AL, Junior GZS et al (2015) Acute transverse myelitis and dengue: a systematic review. Trop Med Surg 3:1–5

    Google Scholar 

  • Srivastava B, Khatri M, Singh G et al (2020) Microbial keratinases: An overview of biochemical characterization and its eco-friendly approach for industrial applications. J Cleaner Prod 252:1–26

    Article  Google Scholar 

  • Sultana N, Saha P (2019) Studies on potential application of crude keratinase enzyme from Stenotrophomonas sp. for dehairing in leather processing industry. J Environ Biol 39:324–330

    Article  Google Scholar 

  • Sutoyo S, Ardyati T, Suharjono (2019) Screening of keratinolytic fungi for biodegradation agent of keratin from chicken feather waste. Annual conference on environmental science, society and its applications. IOP conference series: earth and environmental sciences 391:012027

    Google Scholar 

  • Tapia DMT, Simoes MLG (2008) Production and partial characterization of keratinase produced by a microorganism isolated from poultry processing plant wastewater. Afr J Biotechnol 7:296–300

    CAS  Google Scholar 

  • Tesfaye T, Sithole B, Ramjugernath D, Chunilall V (2017) Valorisation of chicken feathers: characterization of chemical properties. Waste Manag 68:626–635

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi R, Ko IJ, Takamori K et al (1989) Isolation of a keratinolytic proteinase from Trichophyton mentagrophytes with enzymatic activity at acidic pH. J Infect Immun 57:3479–3483

    Article  CAS  Google Scholar 

  • Ugoh SC, Ijigbade B (2013) Production and characterization of keratinase by fungi isolated from soil samples at Gwagwalada, FCT-Abuja, Nigeria. Nat Sci 11:1–7

    Google Scholar 

  • Ulfig K (2003) The occurrence of keratinolytic fungi in waste and waste contaminated habitats. Revista Iberoamereicana de Micologia 17:12–21

    Google Scholar 

  • Vanbreuseghem R (1952) Technique biologique pour l’isolement des dermatophytes du sol. Ann Soc Belg Med Trop (1920) 32:173–178

    CAS  PubMed  Google Scholar 

  • Verma A, Singh H, Anwar S et al (2016) Microbial keratinases: industrial enzymes with waste management potential. Crit Rev Biotechnol 37:476–491

    Article  PubMed  Google Scholar 

  • Vesela M, Friedrich J (2009) Amino acid soluble protein cocktail from waste keratin hydrolysed by a fungal keratinase of Paecilomyces marquandii. Biotechnol Bioprocess Eng 14:84–90

    Article  CAS  Google Scholar 

  • Wang JJ, Swaisgood HE, Shih JCH (2003) Production and characterization of bio-immobilized keratinase in proteolysis and keratinolysis. Enzyme Microbial Technol 32:812–819

    Article  CAS  Google Scholar 

  • Wawrzkiewicz K, Łobarzewski J, Wolski T (1987) Intracellular keratinase of Trichophyton gallinae. J Med Veter Mycol 25:261–268

    Article  CAS  Google Scholar 

  • Worldometer (2022) World population prospects 2022. United Nations, Department of Economic and Social Affairs, Population Division. https://www.worldometers.info/world-population/india-population/. Accessed 23 June 2022

  • Wu WL, Chen MY, Tu IF et al (2017) The discovery of novel heat-stable keratinases from Meiothermus taiwanensis WR-220 and other extremophiles. Sci Rep 7:1–12

    Google Scholar 

  • **e F, Chao Y, Yang X et al (2010) Purification and characterization of four keratinases produced by Streptomyces sp. strain 16 in native human foot skin medium. Bioresour Technol 101:344–350

    Article  PubMed  Google Scholar 

  • Yadav P (2022) Explained: consumption of non-vegetarian food in India. www.indiatimes.com. Accessed 23 May 2022

    Google Scholar 

  • Yamamura S, Morita Y, Hasan Q et al (2002) Keratin degradation: A cooperative action of two enzymes from Stenotrophomonas sp. Biochem Biophys Res Commun 294:1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Yu RJ, Harmon SR, Blank F (1968) Isolation and purification of an extracellular keratinase of Trichophyton mentagrophytes. J Bacteriol 96:1435–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu RJ, Harmon SR, Grappel SF, Blank F (1971) Two cell-bound keratinases of Trichophyton mentagrophytes. J Invest Dermatol 56:27–32

    Article  CAS  PubMed  Google Scholar 

  • Zhang RX, Gong JS, Dou WF et al (2016) Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry. Chem Pap 70:1460–1470

    Article  CAS  Google Scholar 

  • Zhao H, Huang L, **ao CL et al (2010) Influence of culture media and environmental factors on mycelial growth and conidial production of Diplocarpon mali. Lett Appl Microbiol 50:639–644

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjeeta Bhari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhari, R., Kaur, M. (2023). Fungal Keratinases: Enzymes with Immense Biotechnological Potential. In: Singh, I., Rajpal, V.R., Navi, S.S. (eds) Fungal Resources for Sustainable Economy. Springer, Singapore. https://doi.org/10.1007/978-981-19-9103-5_4

Download citation

Publish with us

Policies and ethics

Navigation