Log in

Newly isolated Bacillus sp. G51 from Patagonian wool produces an enzyme combination suitable for felt-resist treatments of organic wool

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Bacteria from Patagonian Merino wool were isolated to assess their wool-keratinolytic activity and potential for felt-resist treatments. Strains from Bacillus, Exiguobacterium, Deinococcus, and Micrococcus produced wool-degrading enzymes. Bacillus sp. G51 showed the highest wool-keratinolytic activity. LC-MS/MS analysis revealed that G51 secreted two serine proteases belonging to the peptidase family S8 (MEROPS) and a metalloprotease associated with Bacillolysin, along with other enzymes (γ-glutamyltranspeptidase and dihydrolipoyl dehydrogenases) that could be involved in reduction of keratin disulfide bonds. Optimum pH and temperature of G51 proteolytic activity were 9 and 60 °C, respectively. More than 80% of activity was retained in H2O2, Triton X-100, Tween 20, Lipocol OXO650, Teridol B, and β-mercaptoethanol. Treatment of wool top with G51 enzyme extract caused a decrease in wool felting tendency without significant weight loss (<1.5%). Sparse work has so far been performed to investigate suitable keratinases for the organic wool sector. This eco-friendly treatment based on a new enzyme combination produced by a wild bacterium has potential for meeting the demands of organic wool processing which bans the use of hazardous chemicals and genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Plowman JE, Deb-Choudhury S, Clerens S, Thomas A, Cornellison CD, Dyer JM (2012) Unravelling the proteome of wool: towards markers of wool quality traits. J Proteomics 75:4315–4324

    Article  CAS  Google Scholar 

  2. Fu J, Su J, Wang P, Yu Y, Wang Q, Cavaco-Paulo A (2015) Enzymatic processing of protein-based fibers. Appl Microbiol Biotechnol 99:10387–10397

    Article  CAS  Google Scholar 

  3. Shen J (2009) In: Johnson NAG, Russell IM (eds) Advances in wool technology, 1st edn. Woodhead Publishing in Textiles, Cambridge

  4. Holt RRD (1975) Introduction to Superwash wool. JSDC February: 38–44.

  5. Buschle-Diller G (2003) In: Cavaco-Paulo A, Gübitz GM (eds) Textile processing with enzymes, 1st edn. Woodhead Publishing Ltd, Cambridge.

  6. Ladwig H, Stopes C, Arbenz M, Lernoud J (2015) Organic opportunities and challenges: the next generation of the wool industry. In: Global Organic Textile Standart (GOTS). http://www.global-standard.org/images/stories/Why_GOTS_Factsheets/GOTS_WoolPoster_June2015_low.pdf. Accessed 25 Nov 2016

  7. GOTS (2014) Version 4.0 Global Organic Textile Standard International Working Group. http://global-standard.org/the-standard.html. Accessed 25 Nov 2016

  8. Shen J (2010) In: Nierstrasz VA, Cavaco-Paulo A (eds) Advances in textile biotechnology, 1st edn. Woodhead Publishing in Textiles. Cambridge

  9. Cegarra J, Pepió M, Naik A, Riva A (2004) Modelización de la acción de una proteasa en las características físicas de un tejido de lana. Boletín Intexter (UPC) 125:9–18.

    CAS  Google Scholar 

  10. Kotlińska A, Lipp-Symonowicz B (2011) Research on the enzymatic treatment of wool fibres and changes in selected properties of wool. Fibres Text East Eur 19:88–93.

    Google Scholar 

  11. Lenting HBM, Schroeder M, Guebitz GM, Cavaco-Paulo A, Shen J (2006) New enzyme-based process direction to prevent wool shrinking without substantial tensile strength loss. Biotechnol Lett 28:711–716

    Article  CAS  Google Scholar 

  12. Araújo R, Silva C, Machado R, Casal M, Cunha AM, Rodriguez-Cabello JC, Cavaco-Paulo A (2009) Proteolytic enzyme engineering: a tool for wool. Biomacromolecules 10:1655–1661

    Article  Google Scholar 

  13. Shen J, Rushforth M, Cavaco-Paulo A, Guebitz G, Lenting H (2007) Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability. Enzyme Microb Technol 40:1656–1661

    Article  CAS  Google Scholar 

  14. Silva CJSM, Prabaharan M, Gubitz G, Cavaco-Paulo A (2005) Treatment of wool fibres with subtilisin and subtilisin-PEG. Enzyme Microb Technol 36:917–922

    Article  CAS  Google Scholar 

  15. Liu B, Zhang J, **angru-Liao BL, Du G, Chen J (2013) Expression and characterization of extreme alkaline, oxidation-resistant keratinase from Bacillus licheniformis in recombinant Bacillus subtilis WB600 expression system and its application in wool fiber processing. World J Microbiol Biotechnol 29:825–832

    Article  Google Scholar 

  16. HERA (2007) Human and environmental risk assessment on ingredients of household cleaning products. Subtilisins (Protease). http://www.heraproject.com/files/22-F-07_PROTEASE_HERA_Final%20Edition%20(unsecured%20-%20PDFA-1b).pdf. Accessed 25 Nov 2016

  17. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  18. Sousa F, Jus S, Erbel A, Kokol V, Cavaco-Paulo A, Gubitz GM (2007) A novel metalloprotease from Bacillus cereus for protein fibre processing. Enzyme Microb Technol 40:1772–1781

    Article  CAS  Google Scholar 

  19. Queiroga AC, Pintado MM, Malcata FX (2007) Novel microbial-mediated modifications of wool. Enzyme Microb Technol 40:1491–1495

    Article  CAS  Google Scholar 

  20. Olivera N, Siñeriz F, Breccia JD (2005) Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. Int J Syst Evol Microbiol 55:443–447

    Article  CAS  Google Scholar 

  21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16 S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  Google Scholar 

  22. Moreira FG, De Souza CGM, Costa MAF, Reis S, Peralta RM (2007) Degradation of keratinous materials by the plant pathogenic fungus Myrothecium verrucaria. Mycopathologia 163:153–160

    Article  CAS  Google Scholar 

  23. Cupp-Enyard C (2008) Sigma’s non-specific protease activity assay—casein as a substrate. J Vis Exp 19:899

    Google Scholar 

  24. Good NE, Izawa S (1972) Hydrogen ion buffers. Methods Enzymol 24:53–68

    Article  CAS  Google Scholar 

  25. Neuhoff V, Stamm R, Pardowitz I, Arold N, Ehrhardt W, Taube D (1990) Essential problems in quantification of proteins following colloidal staining with Coomassie Brilliant Blue dyes in polyacrylamide gels, and their solution. Electrophoresis 11:101–117

    Article  CAS  Google Scholar 

  26. Westergaard JL, Hackbarth C, Treuhaft MW, Roberts RC (1980) Detection of proteinases in electrophoretograms of complex mixtures. J Immunol Methods 34:167–175

    Article  CAS  Google Scholar 

  27. Kenyon PR, Wickham GA (1999) A New technique for measuring loose-wool feltability. J Text Inst 90:266–268

    Article  CAS  Google Scholar 

  28. Norušis MJ (1997) SPSS 7.5 Guide to Data Analysis. Prentice Hall, New Jersey

    Google Scholar 

  29. Infante I, Morel MA, Ubalde MC, Martínez-Rosales C, Belvisi S, Castro-Sowinski S (2010) Wool-degrading Bacillus isolates: extracellular protease production for microbial processing of fabrics. World J Microbiol Biotechnol 26:1047–1052

    Article  CAS  Google Scholar 

  30. Haddar A, Sellami-Kamoun A, Fakhfakh-Zouari N, Hmidet N, Nasri M (2010) Characterization of detergent stable and feather degrading serine proteases from Bacillus mojavensis A21. Biochem Eng J 51:53–63

    Article  CAS  Google Scholar 

  31. Hassan MA, Haroun BM, Amara AA, Serour EA (2013) Production and characterization of keratinolytic protease from new wool-degrading Bacillus species isolated from Egyptian ecosystem. BioMed Res Int 2013:1–14.

    Google Scholar 

  32. Lee DG, Jeon JH, Jang MK, Kim NY, Lee JH, Lee JH, Kim SJ, Kim GD, Lee SH (2007) Screening and characterization of a novel fibrinolytic metalloprotease from a metagenomic library. Biotechnol Lett 29:465–472

    Article  CAS  Google Scholar 

  33. Ibrahim NA, El-Shafei HA, Abdel-Aziz MS, Ghaly MF, Eid BM, Hamed AA (2012) The potential use of alkaline protease from Streptomyces albidoflavus as an eco-friendly wool modifier. J Text Inst 103:490–498

    Article  CAS  Google Scholar 

  34. Daroit DJ, Brandelli A (2013) A current assessment on the production of bacterial keratinases. Crit Rev Biotechnol 34:372–384

    Article  Google Scholar 

  35. Lange L, Huang Y, Busk PK (2016) Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance. Appl Microbiol Biotechnol 100:2083–2096

    Article  CAS  Google Scholar 

  36. Evans KL, Crowder J, Miller ES (2000) Subtilisins of Bacillus spp. hydrolyze keratin and allow growth on feathers. Can J Microbiol 46:1004–1011

    Article  CAS  Google Scholar 

  37. Ramnani P, Gupta R (2007) Keratinases vis-à-vis conventional proteases and feather degradation. World J Microbiol Biotechnol 23:1537–1540

    Article  CAS  Google Scholar 

  38. Brandelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbio Biotechnol 85:1735–1750

    Article  CAS  Google Scholar 

  39. Gupta R, Sharma R, Beg QK (2012) Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit Rev Biotechnol 30:1–13

    Google Scholar 

  40. Liu Q, Zhang T, Song N, Li Q, Wang Z, Zhang X, Lu X, Fang J, Chen J (2014) Purification and characterization of four key enzymes from a feather-degrading Bacillus subtilis from the gut of tarantula Chilobrachys guangxiensis. Int Biodeter Biodegrad 96:26–32.

    Article  Google Scholar 

  41. Rahayu S, Syah D, Suhartono MT (2012) Degradation of keratin by keratinase and disulfide reductase from Bacillus sp. MTS of Indonesian origin. Biocatal Agric Biotechnol 1:152–158.

    CAS  Google Scholar 

  42. Sharma R, Gupta R (2012) Coupled action of γ-glutamyl transpeptidase-glutathione and keratinase effectively degrades feather keratin and surrogate prion protein, Sup 35NM. Bioresour Technol 120:314–317

    Article  CAS  Google Scholar 

  43. Tiwary E, Gupta R (2010) Improved catalytic efficiency of a monomeric γ-glutamyl transpeptidase from Bacillus licheniformis in presence of subtilisin. Biotechnol Lett 32:1137–1141

    Article  CAS  Google Scholar 

  44. Tiwary E, Gupta R (2010) Subtilisin-γ-glutamyl transpeptidase: a novel combination as ungual enhancer for prospective topical application. J Pharma Sci 99:4866–4873

    Article  CAS  Google Scholar 

  45. Chaya E, Suzuki T, Karita S, Hanya A, Yoshino-Yasuda S, Kitamoto N (2014) Sequence analysis and heterologous expression of the wool cuticle-degrading enzyme encoding genes in Fusarium oxysporum 26–1. J Biosci Bioeng 117:711–714

    Article  CAS  Google Scholar 

  46. Fang Z, Zhang J, Liu B, Du G, Chen J (2013) Biochemical characterization of three keratinolytic enzymes from Stenotrophomonas maltophilia BBE11-1 for biodegrading keratin wastes. Int Biodeter Biodegrad 82:166–172.

    Article  CAS  Google Scholar 

  47. Greeff JC, Schlink AC (2002) The inheritance of felting of merino wool. Proc Assoc Advmt Anim Breed Genet 14:497–500.

    Google Scholar 

  48. Allam OG, Mowafi S, El-kheir AA, Abdel-fattah AM, Bendak A (2015) Effect of extracted Egyptian keratinase on the properties of native coarse wool. Int J Adv Res 3:994–1003

    Google Scholar 

  49. Jus S, Schroeder M, Guebitz GM, Heine E, Kokol V (2007) The influence of enzymatic treatment on wool fibre properties using PEG-modified proteases. Enzyme Microb Technol 40:1705–1171

    Article  CAS  Google Scholar 

  50. Jovančić P, Jocić D, Dumić J (1998) The efficiency of an enzyme treatment in reducing wool shrinkage. J Text Inst 89:390–400

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge to Fuhrmann S.A. for kindly providing wool tops and to UNILAN Trelew S.A., Lanera Austral S.A., Estancia San Guillermo, and Estancia Don Martín for raw wool samples. The authors are also grateful to Jaime Groizard (ALUAR Aluminio Argentino) for scanning electron micrographs. This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Ministerio de Ciencia, Tecnología e Innovación Productiva, Argentina (PICT Start Up 2012–2004); and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina (PIP 11220120100050CO). Martín Iglesias is grateful to ANPCyT for his Ph.D. grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelda L. Olivera.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6 KB)

Supplementary material 2 (PDF 1525 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iglesias, M.S., Sequeiros, C., García, S. et al. Newly isolated Bacillus sp. G51 from Patagonian wool produces an enzyme combination suitable for felt-resist treatments of organic wool. Bioprocess Biosyst Eng 40, 833–842 (2017). https://doi.org/10.1007/s00449-017-1748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1748-4

Keywords

Navigation