The Properties of Materials from Raw Epoxidised Natural Rubber

  • Chapter
  • First Online:
Epoxidised Natural Rubber
  • The original version of the chapter was revised: The term “methylene proton” has been corrected as “methine proton”. The correction to this chapter is available at https://doi.org/10.1007/978-981-19-8836-3_12.

Abstract

The raw rubber epoxidised natural rubber (ENR) differs in its chemical structure from the technically specified rubber (TSR) or Standard Malaysian Rubber (SMR) as a result of chemical modification via epoxidation to enhance its properties. This epoxidation value determines the extent of modification in NR is quantitatively determined using the 1H-NMR spectrometry. Besides block rubber, ENR is also available in the form of concentrated latex. The concentrated ENR latex prepared via an ultrafiltration membrane showed an increase in both TSC and DRC. SEM images also showed a softer and more deformable latex particle after the ultrafiltration process. Further understanding of the ENR latex behaviour can be obtained using particle size, particle morphology, zeta potential and rheology. Apart from being concentrated, the ENR latex also acts as the starting raw material in the preparation of liquid epoxidised natural rubber (LENR). In an effort to facilitate an effective chain scission reaction, this chapter delineates the properties of LENR for optimum production conditions. It is noted that the molecular weight and gel content are dependent on the severity of reaction conditions. The thermal property and hydrophilicity of LENR improved due to the degradation. Thus, the polar functional groups on the LENR backbone play an important role in the characteristics and properties of LENR. The shelf life of LENR shows no substantial changes with storage time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 10 August 2023

    A correction has been published.

References

  1. ISO International Standard (2000) Rubber, raw natural — guidelines for the specification of technically specified rubber (TSR). ISO 2020:1–10

    Google Scholar 

  2. Malaysian Rubber Board (2018) SMR bulletin No 7 revised edition 2018. Malaysian Rubber Board: 1–145

    Google Scholar 

  3. Gelling IR (1991) Epoxidised natural rubber. J Nat Rubb Res 6(2):271–297

    Google Scholar 

  4. Mohd Nor Z (2007) EKOPRENA the “Green” material. MRB Rubb Technol Dev: 6–7

    Google Scholar 

  5. Burfield DR, Kooi Ling L, Kia Sang L, Soon N (1984) Analysis of epoxidized natural rubber, a comparative study of DSC, NMR, elemental analysis and direct titration methods. Polym (Guildf) 25(7):995–998

    Google Scholar 

  6. Davey J, Loadman M (1984) A chemical demonstration of the randomness of epoxidation of natural rubber. Br Polym J 16(3):134–138

    Article  CAS  Google Scholar 

  7. Gnecco S, Pooley A, Krause M (1996) Epoxidation of low-molecular-weight Euphorbia lactiflua natural rubber with “in situ” formed performic acid. Polym Bull 37:609–615

    Article  CAS  Google Scholar 

  8. ISO International Standard (2019) ASTM D3677 – 10 standard test methods for rubber—identification by infrared spectrophotometry

    Google Scholar 

  9. He** Y, Zongqiang Z, Guang L, Qifang W (2008) Processing characteristics and thermal stabilities of gel and sol of epoxidized natural rubber. Eur Polym J 44(2):453–464

    Article  Google Scholar 

  10. Mohd Rasdi FR, Mohamed Yusof Y, Mohd Som F (2006) Evaluation of epoxidized natural rubber from latex concentrate. Young Res Conf Appl Sci

    Google Scholar 

  11. Takayuki S, Warunee K, Seiichi K (2007) Characterization of epoxidized natural rubber by 2D NMR spectroscopy. Polym (Guildf). 48 (3):750–757

    Article  Google Scholar 

  12. Hamzah R, Abu Bakar M, Khairuddean M, Mohammed IA, Adnan R (2012) A structural study of epoxidized natural rubber (ENR 50) and its cyclic dithiocarbamate derivative using NMR spectroscopy technique. Molecules 17:10974–10993

    Article  CAS  Google Scholar 

  13. Tengfei L, Xuhui Z, Zhenghai T, Baochun G (2015) Renewable conjugated acids as curatives for high performance rubber/silica composites. Green Chem 17(6):3301–3305

    Google Scholar 

  14. ISO (2014) ISO 124 Latex, Rubber – Determination of Total Solids Content

    Google Scholar 

  15. ISO (2005) ISO 126 Natural Rubber Latex Concentrate – Determination of Dry Rubber Content

    Google Scholar 

  16. ISO (2011) ISO 125 Natural Rubber Latex Concentrate – Determination of Alkalinity

    Google Scholar 

  17. Singh M, Mohd RF (2019) Colloidal properties of epoxidized natural rubber latex prepared via membrane separation technology. J Rubb Res 22(4):153–167

    Article  Google Scholar 

  18. Blackley D (1997) Polymer latices science and technology. Fundam Principles 1(2) Chapman & Hall

    Google Scholar 

  19. Hunter R (1981) Zeta potential in colloid science: principles and applications. Academic Press, London

    Google Scholar 

  20. Singh M, Esquena J, Solans C, Booten K, Tadros T (2014) Influence of hydrophobically modified inulin (INUTEC NRA) on the stability of vulcanized natural rubber latex. Colloids Surf A 451:90–100

    Article  CAS  Google Scholar 

  21. Kronberg B (2001) Chapter 22: Measuring adsorption. In: Holmberg K (ed) Handbook of applied surface and colloid chemistry. Wiley, England

    Google Scholar 

  22. Bingham E (1922) Fluidity and plasticity. McGraw-Hill, New York

    Google Scholar 

  23. Quemada D (1998) Rheological modeling of complex fluids I. The concept of effective volume fraction revisited. Eur Phys J AP 1:119–27

    Google Scholar 

  24. Tadros T (2010) Rheology of dispersions: principles and applications. Wiley, Weinheim

    Book  Google Scholar 

  25. Nestor J, Obiols-Rabasa M, Esquena J, Solans C, Levecke B, Booten K et al (2008) Viscoelastic properties of polystyrene and poly(methyl methacrylate) dispersions sterically stabilized by hydrophobically modified inulin (polyfructose) polymeric surfactant. J Colloid Interface Sci 319:152–159

    Article  CAS  Google Scholar 

  26. Darji D, Md Said M (2010) Vulcanisation and coagulant dip** of epoxidised natural rubber. Pertanika J Sci Technol 18(2):421–425

    Google Scholar 

  27. Che Ali R, Mohd Yazid N, Mohd Rasdi FR, Mustafa A (2015) Effect of pre-vulcanization time on the latex particles, surface morphology and strength of epoxidised natural rubber films. In: CAMS-2015: 3rd International Conference on Chemical, Agricultural and Medical Sciences: 64–69

    Google Scholar 

  28. Yusof NH, Darji D, Nesan KVB, Mohd Rasdi FR (2018) Preparation of liquid epoxidized natural rubber in latex stage by chemical degradation. In: AIP Conf Proc 1985(1):040006

    Google Scholar 

  29. Yusof NH, Darji D, Mohd Rasdi FR, Nesan KVB (2021) Preparation and characterisation of liquid epoxidised natural rubber in latex stage by chemical degradation. J Rubb Res 24(1):93–106

    Article  CAS  Google Scholar 

  30. Bach R, Glukhovtsev M, G C (1998) High-level computational study of the stereoelectronic effects of substituents on alkene epoxidations with peroxyformic acid. J Am Chem Soc 120(38):9902–9910

    Google Scholar 

  31. Lobachev V, Rudakov E (2006) The chemistry of peroxynitrite. Reaction mechanisms and kinetics. Russ Chem Rev 75(5):375

    Google Scholar 

  32. Ibrahim S, Daik R, Abdullah I (2014) Functionalization of liquid natural rubber via oxidative degradation of natural rubber. Polym (Basel) 6(12):2928–2941

    Article  Google Scholar 

  33. Bac N, Terlemezyan L, Mihailov M (1993) Epoxidation of natural rubber in latex in the presence of a reducing agent. J Appl Polym Sci 50(5):845–849

    Article  Google Scholar 

  34. Klinklai W, Kawahara S, Mizumo T, Yoshizawa M, Sakdapipanich J, Isono Y et al (2003) Depolymerization and ionic conductivity of enzymatically deproteinized natural rubber having epoxy group. Eur Polym J 39(8):1707–1712

    Article  CAS  Google Scholar 

  35. Rooshenass P, Yahya R, Gan S (2018) Preparation of liquid epoxidized natural rubber by oxidative degradations using periodic acid, potassium permanganate and UV-irradiation. J Polym Environ 26(4):1378–1392

    Article  CAS  Google Scholar 

  36. Rooshenass P, Yahya R, Gan S (2016) Comparison of three different degradation methods to produce liquid epoxidized natural rubber. Rubb Chem Technol 89(1):177–198

    Article  CAS  Google Scholar 

  37. Yongyue L, Chang** Y, Bangqian C, Kui X, Zhong J, P Z, et al (2013) Thermal degradation of epoxidized natural rubber in presence of neodymium stearate. J Rare Earths 31(5):526–30

    Google Scholar 

  38. Khalyavina A, Häußler L, Lederer A (2012) Effect of the degree of branching on the glass transition temperature of polyesters. Polym (Guildf) 53(5):1049–1053

    Article  CAS  Google Scholar 

  39. Thitithammawong A, Srangkhum S, Rungvichaniwat A (2011) Hydroxytelechelic natural rubber from natural rubber and epoxidised natural rubber. J Rubb Res 14(4):230–440

    CAS  Google Scholar 

  40. Davey J, Loadma M (1984) Chemical demonstration of the randomness of epoxidation of natural rubber. Br Polym J 16(3):134–138

    Article  CAS  Google Scholar 

  41. Darji D, Yusof NH, Mohd Rasdi FR (2018) Shelf life of liquid epoxidized natural rubber (LENR). In: AIP Conf Proc

    Google Scholar 

  42. Sriring M, Nimpaiboon A, Kumarn S, Sirisinha C, Sakdapipanich J, Toki S (2018) Viscoelastic and mechanical properties of large-and small-particle natural rubber before and after vulcanization. Polym Test 70:127–134

    Article  CAS  Google Scholar 

  43. Tangpakdee J, Mizokoshi M, Endo A, Tanaka Y (1998) Novel method for preparation of low molecular weight natural rubber latex. Rubb Chem Technol 71(4):795–802

    Article  CAS  Google Scholar 

  44. Tarachiwin L, Sakdapipanich J, Tanaka Y (2005) Relationship between particle size and molecular weight of rubber from Hevea brasiliensis. Rubb Chem Technol 78(4):694–704

    Article  CAS  Google Scholar 

  45. Agapov A, Wang Y, Kunal K, Robertson C, Sokolov A (2012) Effect of polar interactions on polymer dynamics. Macromol 45(20):8430–8437

    Article  CAS  Google Scholar 

  46. Darji D, Yusof NH, Mohd Rasdi FR (2021) Characterization of liquid epoxidized natural rubber (LENR) upon storage. J Rubb Res 24(3): 435-446

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatimah Rubaizah Mohd Rasdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yusof, N.H., Jaswan Singh, M.S., Mohamed Yusof, Y., Mohd Som, F., Mohd Rasdi, F.R. (2023). The Properties of Materials from Raw Epoxidised Natural Rubber. In: Sarkawi, S.S., Rubaizah Mohd Rasdi, F., Charlotte, V. (eds) Epoxidised Natural Rubber. Springer, Singapore. https://doi.org/10.1007/978-981-19-8836-3_3

Download citation

Publish with us

Policies and ethics

Navigation