Role of Plant Phenolics Against Reactive Oxygen Species (ROS) Induced Oxidative Stress and Biochemical Alterations

  • Chapter
  • First Online:
Plant Phenolics in Abiotic Stress Management

Abstract

Plants being embedded into the environment have to develop into it and to adjust with the fluctuating environments because of the abiotic stresses. Environmental factors including adverse temperatures, flood, light, drought, salt, and heavy metals come under abiotic stressors that greatly effects plant development and crop productivity. Changes in plant growth and its natural habitat conditions can be recognized as environmental stress which interrupts its metabolic balance. Likewise, we differentiate two dissimilar kinds of environmental tension: biotic stress (brought by viruses, bacteria, or insects) and abiotic stress. Polyphenols are secondary metabolites comprising the major and the supreme predominant assembly of metabolites. These polyphenols are having significant morphological and biological significance in plants. Polyphenols impact the source and movement of organic and inorganic nutrients present in soil accessible to plant or microbes. They also respond to nutrient deficiency therefore offering means for detecting nutrients disorder before the onset of symptoms. The aim of this chapter is to summarize the updated literature about abiotic stress, and its management by polyphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afzal I, Basra SM, Farooq M, Nawaz A (2006) Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int J Agric Biol 8(1):23–28

    CAS  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    Article  CAS  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  Google Scholar 

  • Alasalvar C, Grigor JM, Zhang D, Quantick PC, Shahidi F (2001) Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J Agric Food Chem 49(3):1410–1416

    Article  CAS  Google Scholar 

  • Amarowicz R, Weidner S (2009) Biological activity of grapevine phenolic compounds. In: Grapevine molecular physiology and biotechnology. Springer, Dordrecht, pp 389–405

    Chapter  Google Scholar 

  • Andreasen MF, Christensen LP, Meyer AS, Hansen Å (2000) Content of phenolic acids and ferulic acid dehydrodimers in 17 Rye (Secale cereale L.) varieties. J Agric Food Chem 48(7):2837–2842

    Article  CAS  Google Scholar 

  • Arabbeigi M, Arzani A, Majidi MM, Sayed-Tabatabaei BE, Saha P (2018) Expression pattern of salt tolerance-related genes in Aegilops cylindrica. Physiol Mol Biol Plants 24(1):61–73

    Article  CAS  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412

    Article  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99(1):191–203

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Bota C, Deliu C (2011) The effect of copper sulphate on the production of flavonoids in Digitalis lanata cell cultures. Farmacia 59(1):113–118

    CAS  Google Scholar 

  • Boukid F, Dall’Asta M, Bresciani L, Mena P, Del Rio D, Calani L, Sayar R, Seo YW, Yacoubi I, Mejri M (2019) Phenolic profile and antioxidant capacity of landraces, old and modern Tunisian durum wheat. Eur Food Res Technol 245(1):73–82

    Article  CAS  Google Scholar 

  • Boz H (2015) Ferulic acid in cereals-a review. Czech J Food Sci 33(1):1–7

    Article  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333

    Article  CAS  Google Scholar 

  • Chamekh Z, Ayadi S, Karmous C, Trifa Y, Amara H, Boudabbous K, Yousfi S, Serret MD, Araus JL (2016) Comparative effect of salinity on growth, grain yield, water use efficiency, δ13C and δ15N of landraces and improved durum wheat varieties. Plant Sci 251:44–53

    Article  CAS  Google Scholar 

  • Chen S, Wang Q, Lu H, Li J, Yang D, Liu J, Yan C (2019a) Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia Obovata under Cd and Zn stress. Ecotoxicol Environ Saf 169:134–143

    Article  CAS  Google Scholar 

  • Chen S, Wu F, Li Y, Qian Y, Pan X, Li F, Wang Y, Wu Z, Fu C, Lin H et al (2019b) NtMYB4 and NtCHS1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness. Front Plant Sci 10:178

    Article  CAS  Google Scholar 

  • Chen Z, Ma Y, Yang R, Gu Z, Wang P (2019c) Effects of exogenous Ca2+ on phenolic accumulation and physiological changes in germinated wheat (Triticum aestivum L.) under UV-B radiation. Food Chem 288:368–376

    Article  CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  Google Scholar 

  • Christie PJ, Alfenito MR, Walbot V (1994) Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194(4):541–549

    Article  CAS  Google Scholar 

  • Chung IM, Kim JJ, Lim JD, Yu CY, Kim SH, Hahn SJ (2006) Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environ Exp Bot 56(1):44–53

    Article  CAS  Google Scholar 

  • Dar MI, Naikoo MI, Khan FA, Rehman F, Green ID, Naushin F, Ansari AA (2017) An introduction to reactive oxygen species metabolism under changing climate in plants. In: Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore, pp 25–52

    Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085

    Article  CAS  Google Scholar 

  • do Nascimento NC, Fett-Neto AG (2010) Plant secondary metabolism and challenges in modifying its operation: an overview. In: Plant secondary metabolism engineering. Humana Press, Totowa, NJ, pp 1–13

    Google Scholar 

  • Dykes L, Rooney LW (2006) Sorghum and millet phenols and antioxidants. J Cereal Sci 44:236–251

    Article  CAS  Google Scholar 

  • Ebrahim F, Arzani A, Rahimmalek M, Sun D, Peng J (2020) Salinity tolerance of wild barley Hordeum vulgare ssp. spontaneum. Plant Breed 139:304–316. https://doi.org/10.1111/pbr.12770

    Article  CAS  Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  Google Scholar 

  • Flurkey WH, Inlow JK (2008) Proteolytic processing of polyphenol oxidase from plants and fungi. J Inorg Biochem 102(12):2160–2170

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2012) Managing the cellular redox hub in photosynthetic organisms. Plant Cell Environ 35(2):199–201

    Article  CAS  Google Scholar 

  • França SC, Roberto PG, Marins MA, Puga RD, Rodrigues A, Pereira JO (2001) Biosynthesis of secondary metabolites in sugarcane. Genet Mol Biol 24(1–4):243–250

    Article  Google Scholar 

  • Gautam AK, Singh PK, Aravind M (2020) Defensive role of plant phenolics against pathogenic microbes for sustainable agriculture. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 579–594

    Chapter  Google Scholar 

  • Gerdemann C, Eicken C, Krebs B (2002) The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins. Acc Chem Res 35(3):183–191

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • González-Sarrías A, Li L, Seeram NP (2012) Anticancer effects of maple syrup phenolics and extracts on proliferation, apoptosis, and cell cycle arrest of human colon cells. J Funct Foods 4(1):185–196

    Article  Google Scholar 

  • Gould KS, Lister C (2006) Flavonoid functions in plants. In: Flavonoids: chemistry, biochemistry and applications. Taylor & Francis, Boca Raton, FL, pp 397–441

    Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124(1):21–30

    Article  CAS  Google Scholar 

  • Griffith GW (1994) Phenoloxidases. Prog Ind Microbiol 29:763–788

    CAS  Google Scholar 

  • Gumul D, Korus J, Achremowicz B (2007) The influence of extrusion on the content of polyphenols and antioxidant/antiradical activity of rye grains (secale cereale l.). Acta Sci Pol Technol Aliment 6(4):103–111

    CAS  Google Scholar 

  • Gutiérrez-Grijalva EP, Santos-Zea L, Ambriz-Pérez DL, López-Martínez LX, Heredia JB (2020) Flavones and flavonols: bioactivities and responses under light stress in herbs. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 91–115

    Chapter  Google Scholar 

  • Hajam YA, Rai S, Kumar R, Bashir M, Malik JA (2020) Phenolic compounds from medicinal herbs: their role in animal health and diseases—a new approach for sustainable welfare and development. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 221–239

    Chapter  Google Scholar 

  • Harborne JB, Green PS (1980) A chemotaxonomic survey of flavonoids in leaves of the Oleaceae. Bot J Linn Soc 81(2):155–167

    Article  CAS  Google Scholar 

  • Hawrylak B, Matraszek R, Szymanska M (2007) Response of lettuce (Lactuca sativa L.) to selenium in nutrient solution contaminated with nickel. Veget Crops Res Bull 67:63

    Google Scholar 

  • Hichem H, Mounir D (2009) Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Ind Crop Prod 30(1):144–151

    Article  CAS  Google Scholar 

  • Hodaei M, Rahimmalek M, Arzani A, Talebi M (2018) The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind Crop Prod 120:295–304

    Article  CAS  Google Scholar 

  • Hoque TS, Sohag AAM, Burritt DJ, Hossain MA (2020) Salicylic acid-mediated salt stress tolerance in plants. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 1–38

    Google Scholar 

  • Hura T, Grzesiak S, Hura K, Thiemt E, Tokarz K, Wędzony M (2007) Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Ann Bot 100(4):767–775

    Article  CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Chang-**ng Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31(3):427–436

    Article  Google Scholar 

  • Janská A, Maršík P, Zelenková S, Ovesná J (2010) Cold stress and acclimation–what is important for metabolic adjustment? Plant Biol 12(3):395–405

    Article  Google Scholar 

  • Kagan VE, Tyurina YY (1998) Recycling and redox cycling of phenolic antioxidants. Ann N Y Acad Sci 854(1):425–434

    Article  CAS  Google Scholar 

  • Kassam A, Friedrich T (2011, September) Conservation agriculture: principles, sustainable land management and ecosystem services. In Proceedings of the 40th national convention of the Italian Agronomy Society (pp 7–9)

    Google Scholar 

  • Kaya C, Waqas MA, Riaz A, Farooq M, Nawaz I, Wilkes A, Li Y (2019) Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Front Plant Sci 10:1336

    Article  Google Scholar 

  • Khan MIR, Khan NA (2013) Salicylic acid and jasmonates: approaches in abiotic stress tolerance. J Plant Biochem Physiol 1(4):e113

    Article  Google Scholar 

  • Khan MIR, Khan NA (eds) (2017) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore

    Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8(11):e26374

    Article  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    Article  Google Scholar 

  • Kiani M, Raave H, Simojoki A, Tammeorg O, Tammeorg P (2021) Recycling lake sediment to agriculture: effects on plant growth, nutrient availability, and leaching. Sci Total Environ 753:141984

    Article  CAS  Google Scholar 

  • Kolb CA, Kaser MA, Kopecký J, Zotz G, Riederer M, Pfundel EE (2001) Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 127(3):863–875

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS (2016) Influence of soil and air temperature on soil microbes under current climatic era. Agriculture for Sustainable Development, pp 3–4

    Google Scholar 

  • Kumar S, Beena AS, Awana M, Singh A (2017a) Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front Plant Sci 8:1151

    Article  Google Scholar 

  • Kumar J, Kumar M, Kumar A, Singh SK, Singh L (2017b) Estimation of genetic variability and heritability in bread wheat under abiotic stress. Int J Pure Appl Biosci 5(1):156–163

    Article  Google Scholar 

  • Kumar M, Tak Y, Potkule J, Choyal P, Tomar M, Meena NL, Kaur C (2020) Phenolics as plant protective companion against abiotic stress. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 277–308

    Chapter  Google Scholar 

  • Lake JA, Field KJ, Davey MP, Beerling DJ, Lomax BH (2009) Metabolomic and physiological responses reveal multi-phasic acclimation of Arabidopsis thaliana to chronic UV radiation. Plant Cell Environ 32(10):1377–1389

    Article  CAS  Google Scholar 

  • Lattanzio V, Cardinali A, Ruta C, Fortunato IM, Lattanzio VM, Linsalata V, Cicco N (2009) Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environ Exp Bot 65(1):54–62

    Article  CAS  Google Scholar 

  • Lattanzio V, Cardinali A, Linsalata V (2012) Plant phenolics: a biochemical and physiological perspective. In: Recent advances in polyphenol research, vol 3. Wiley-Blackwell, Chichester, pp 1–39

    Google Scholar 

  • Leufken CM, Moerschbacher BM, Dirks-Hofmeister ME (2015) Dandelion PPO-1/PPO-2 domain-swaps: the C-terminal domain modulates the pH optimum and the linker affects SDS-mediated activation and stability. Biochim Biophys Acta Proteins Proteomics 1854(2):178–186

    Article  CAS  Google Scholar 

  • Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5(2):171–179

    Article  CAS  Google Scholar 

  • Linić I, Šamec D, Grúz J, Vujčić Bok V, Strnad M, Salopek-Sondi B (2019) Involvement of phenolic acids in short-term adaptation to salinity stress is species-specific among Brassicaceae. Plants 8(6):155

    Article  Google Scholar 

  • Malik JA, Bhadauria M, Lone R, Hajam YA (2020) Exploitation of plant phenolics in animal farming. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 69–89

    Chapter  Google Scholar 

  • Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, Mittler R, Rivero RM (2016) Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front Plant Sci 7:838

    Article  Google Scholar 

  • Marusek CM, Trobaugh NM, Flurkey WH, Inlow JK (2006) Comparative analysis of polyphenol oxidase from plant and fungal species. J Inorg Biochem 100(1):108–123

    Article  CAS  Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67(21):2318–2331

    Article  CAS  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 18(2):193–215

    Article  CAS  Google Scholar 

  • Meyer HV, Biehl B (1981) Activation of latent phenolase during spinach leaf senescence. Phytochemistry 21:9

    Article  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Mohamed HI, El-Shazly HH, Badr A (2020) Role of salicylic acid in biotic and abiotic stress tolerance in plants. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 533–554

    Chapter  Google Scholar 

  • Molitor C, Mauracher SG, Pargan S, Mayer RL, Halbwirth H, Rompel A (2015) Latent and active aurone synthase from petals of C. grandiflora: a polyphenol oxidase with unique characteristics. Planta 242(3):519–537

    Article  CAS  Google Scholar 

  • Myers SS, Smith MR, Guth S, Golden CD, Vaitla B, Mueller ND, Dangour AD, Huybers P (2017) [Accepted Manuscript] Climate change and global food systems: potential impacts on food security and undernutrition. In: Annual review of public health

    Google Scholar 

  • O’Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 80(1):1–41

    Article  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41(2):149–158

    Article  CAS  Google Scholar 

  • Per TS, Khan MIR, Anjum NA, Masood A, Hussain SJ, Khan NA (2018) Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environ Exp Bot 145:104–120

    Article  CAS  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    Article  Google Scholar 

  • Posmyk MM, Bailly C, Szafrańska K, Janas KM, Corbineau F (2005) Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. J Plant Physiol 162(4):403–412

    Article  CAS  Google Scholar 

  • Radi AA, Farghaly FA, Hamada AM (2013) Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. J Biol Earth Sci 3(1):72–88

    Google Scholar 

  • Randhir R, Shetty K (2004) Microwave-induced stimulation of L-DOPA, phenolics and antioxidant activity in fava bean (Vicia faba) for Parkinson’s diet. Process Biochem 39(11):1775–1784

    Article  CAS  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2(4):152–159

    Article  Google Scholar 

  • Robards K, Antolovich M (1997) Analytical chemistry of fruit bioflavonoids: a review. Analyst 122(2):11R–34R

    Article  CAS  Google Scholar 

  • Ryan KG, Swinny EE, Winefield C, Markham KR (2001) Flavonoids and UV photoprotection in Arabidopsis mutants. Z Naturforsch C 56(9–10):745–754

    Article  CAS  Google Scholar 

  • Sarker U, Oba S (2018a) Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biol 18(1):1–15

    Article  Google Scholar 

  • Schroeter H, Boyd C, Spencer JP, Williams RJ, Cadenas E, Rice-Evans C (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 23(5):861–880

    Article  CAS  Google Scholar 

  • Selmar D (2008) Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Landbauforschung Volkenrode 58(1/2):139

    Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019a) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452

    Article  CAS  Google Scholar 

  • Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H, Thangavelu L, Rajeshkumar S, Tambuwala M, Bakshi HA, Chellappan DK (2019b) Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact 309:108720

    Article  CAS  Google Scholar 

  • Sharma A, Yuan H, Kumar V, Ramakrishnan M, Kohli SK, Kaur R, Thukral AK, Bhardwaj R, Zheng B (2019c) Castasterone attenuates insecticide induced phytotoxicity in mustard. Ecotoxicol Environ Saf 179:50–61

    Article  CAS  Google Scholar 

  • Solecka D (1997) Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiol Plant 19(3):257–268

    Article  CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96(7):2563–2606

    Article  CAS  Google Scholar 

  • Steffens JC, Harel E, Hunt MD (1994) Polyphenol oxidase. In: Genetic engineering of plant secondary metabolism. Springer, Boston, MA, pp 275–312

    Chapter  Google Scholar 

  • Swain T (1975) Evolution of flavonoid compounds. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids. Chapman & Hall, London, pp 1096–1138

    Chapter  Google Scholar 

  • Thipyapong P, Joel DM, Steffens JC (1997) Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiol 113(3):707–718

    Article  CAS  Google Scholar 

  • Thipyapong P, Melkonian J, Wolfe DW, Steffens JC (2004) Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci 167(4):693–703

    Article  CAS  Google Scholar 

  • Tohidi B, Rahimmalek M, Arzani A (2017) Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem 220:153–161

    Article  CAS  Google Scholar 

  • Tran LT, Taylor JS, Constabel CP (2012) The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion. BMC Genomics 13(1):1–12

    Article  Google Scholar 

  • Trebst A, Depka B (1995) Polyphenol oxidase and photosynthesis research. Photosynth Res 46(1):41–44

    Article  CAS  Google Scholar 

  • Vaughn KC, Duke SO (1984) Function of polyphenol oxidase in higher plants. Physiol Plant 60(1):106–112

    Article  CAS  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11(9):1650–1663

    Article  CAS  Google Scholar 

  • Webb KJ, Cookson A, Allison G, Sullivan ML, Winters AL (2013) Gene expression patterns, localization, and substrates of polyphenol oxidase in red clover (Trifolium pratense L.). J Agric Food Chem 61(31):7421–7430

    Article  CAS  Google Scholar 

  • Webb KJ, Cookson A, Allison G, Sullivan ML, Winters AL (2014) Polyphenol oxidase affects normal nodule development in red clover (Trifolium pratense L.). Front Plant Sci 5:700

    Article  Google Scholar 

  • Weidner S, Karamać M, Amarowicz R, Szypulska E, Gołgowska A (2007) Changes in composition of phenolic compounds and antioxidant properties of Vitis amurensis seeds germinated under osmotic stress. Acta Physiol Plant 29(3):283–290

    Article  CAS  Google Scholar 

  • Weidner S, Karolak M, Karamac M, Kosinska A, Amarowicz R (2009) Phenolic compounds and properties of antioxidants in grapevine roots [Vitis vinifera L.] under drought stress followed by recovery. Acta Soc Bot Pol 78(2):97–103

    Article  CAS  Google Scholar 

  • Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36(7):838–849

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5(3):218–223

    Article  CAS  Google Scholar 

  • Winters AL, Minchin FR, Michaelson-Yeates TP, Lee MR, Morris P (2008) Latent and active polyphenol oxidase (PPO) in red clover (Trifolium pratense) and use of a low PPO mutant to study the role of PPO in proteolysis reduction. J Agric Food Chem 56(8):2817–2824

    Article  CAS  Google Scholar 

  • Wróbel M, Karama M, Amarowicz R, Weidner S (2005) Metabolism of phenolic compounds in Vitis riparia seeds during stratification and during germination under optimal and low temperature stress conditions. Acta Physiol Plant 27(3):313–320

    Article  Google Scholar 

  • Wu S, Chappell J (2008) Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr Opin Biotechnol 19(2):145–152

    Article  CAS  Google Scholar 

  • Yamasaki H, Heshiki R, Ikehara N (1995) Leaf-goldenning induced by high light in Ficus microcarpa L. f., a tropical fig. J Plant Res 108(2):171–180

    Article  Google Scholar 

  • Yamasaki H, Takahashi S, Heshiki R (1999) The tropical fig Ficus microcarpa L. f. cv. golden leaves lacks heat-stable dehydroascorbate reductase activity. Plant Cell Physiol 40(6):640–646

    Article  CAS  Google Scholar 

  • Yoruk R, Marshall MR (2003) Physicochemical properties and function of plant polyphenol oxidase: a review. J Food Biochem 27(5):361–422

    Article  CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hajam, Y.A., Lone, R., Kumar, R. (2023). Role of Plant Phenolics Against Reactive Oxygen Species (ROS) Induced Oxidative Stress and Biochemical Alterations. In: Lone, R., Khan, S., Mohammed Al-Sadi, A. (eds) Plant Phenolics in Abiotic Stress Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-6426-8_7

Download citation

Publish with us

Policies and ethics

Navigation