Role of Salicylic Acid in Biotic and Abiotic Stress Tolerance in Plants

  • Chapter
  • First Online:
Plant Phenolics in Sustainable Agriculture

Abstract

Salicylic acid (SA) is an endogenous growth regulator of phenolic nature and also a signaling molecule, which participates in the regulation of physiological processes in plants such as growth, photosynthesis, and other metabolic processes. Several studies support a major role of SA in modulating the plant response to various biotic and abiotic stresses. Its role in plant disease resistance is well documented for dicotyledonous plants, where it is required for basal resistance against pathogens as well as for the inducible defense mechanism and systemic acquired resistance (SAR); this confers resistance against a broad spectrum of pathogens. The activation of SAR is associated with the heightened level of expression of the pathogenesis-related proteins, some of which possess antimicrobial activity. Also, SA potentially generates a wide array of metabolic responses in plants and also affects plant-water relations. This molecule also found to be very active in mitigating oxidative stress under adverse environmental conditions. Hence, understanding the physiological role of SA would help in develo** biotic and abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahammed GJ, Li X, Yu J, Shi K (2015) NPR1-dependent salicylic acid signaling is not involved in elevated CO2 induced heat stress tolerance in Arabidopsis thaliana. Plant Signal Behav 10(6):e101194

    Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Akladious SA, Mohamed HI (2018) Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci Hortic 236:244–250

    CAS  Google Scholar 

  • Alam MM, Hasanuzzaman M, Nahar K, Fujita M (2013) Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by upregulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 7:1053–1063

    CAS  Google Scholar 

  • Anderson MD, Chen Z, Klessig DF (1998) Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR1 gene expression. Phytochemistry 47:555–566

    CAS  Google Scholar 

  • Arfan M, Athar H, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685–694

    CAS  PubMed  Google Scholar 

  • Ballhorn DJ, Kautz S, Heil M, Hegeman AD (2009) Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. PLoS One 4(5):e5450

    PubMed  PubMed Central  Google Scholar 

  • Bandurska H, Stroinski A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Bastam N, Baninasab B, Ghobadi C (2013) Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regul 69:275–284

    CAS  Google Scholar 

  • Bechtold U, Lawson T, Mejia-Carranza J, Meyer RC, Brown IR, Altmann T, Ton J, Mullineaux PM (2010) Constitutive salicylic acid defences do not compromise seed yield, drought tolerance and water productivity in the Arabidopsis accession C24. Plant Cell Environ 33:1959–1973

    CAS  PubMed  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowles DJ (1990) Defense-related proteins in higher plants. Annu Rev Biochem 59:873–907

    CAS  PubMed  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 8:1583–1592

    Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    CAS  PubMed  Google Scholar 

  • Chen J, Zhu C, Li L-P, Sun Z-Y, Pan X-B (2007) Effects of exogenous salicylic acid on growth and H2O2 metabolizing enzymes in rice seedlings under lead stress. J Environ Sci 19(1):44–49

    CAS  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4:493–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong J, Pierrel M-A, Atanassova R, Werck-Reichhart D, Fritig B, Saindrenan PS (2001) Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiol 125:318–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–437

    CAS  PubMed  Google Scholar 

  • Conrath U, Chen Z, Ricigliano JR, Klessig DF (1995) Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc Natl Acad Sci U S A 92:7143–7147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S, Tari I (2014) Glutathione transferases uperupper gene family in tomato: salt stress- regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26

    PubMed  Google Scholar 

  • de Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230

    PubMed  Google Scholar 

  • Davies PJ (2004) Plant hormones: their nature, occurrence and functions. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action. Kluwer Academic Publishers, London, pp 1–15

    Google Scholar 

  • Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181–2191

    PubMed  PubMed Central  Google Scholar 

  • Durner J, Klessig DF (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2, 6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci U S A 92:11312–11316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    CAS  PubMed  Google Scholar 

  • Eichhorn H, Klinghammer M, Becht P, Tenhaken R (2006) Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. J Exp Bot 57:2193–2201

    CAS  PubMed  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Sofy MR (2020) Role of Ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules 25(7):E1702. https://doi.org/10.3390/molecules25071702

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    CAS  PubMed  Google Scholar 

  • Gaille C, Kast P, Hass D (2002) Salicylate biosynthesis in Pseudomonas aeruginosa. Purification and characterization of PchB, a novel bifunctional enzyme displaying isochorismate pyruvatelyase and chorismate mutase activities. J Biol Chem 277:21768–21775

    CAS  PubMed  Google Scholar 

  • Gaille C, Reimmann C, Haas D (2003) Isochorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of Pseudomonas aeruginosa. J Biol Chem 278:16893–16898

    CAS  PubMed  Google Scholar 

  • Galani S, Hameed S, Ali MK (2016) Exogenous application of salicylic acid: inducing thermotolerance in cotton (Gossypium Hirsutum L.) seedlings. Int J Agric Food Res 5:9–18

    Google Scholar 

  • Gamir J, Darwiche R, van’t Hof P, Choudhary V, Stumpe M, Schneiter R, Mauch F (2017) The sterol-binding activity of pathogenesis-related protein 1 reveals the mode of action of an antimicrobial protein. Plant J 89:502–509

    CAS  PubMed  Google Scholar 

  • Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, Doermann P, Métraux J-P (2008) Characterization and biological function of the isochorismate synthase2 gene of the Arabidopsis. Plant Physiol 147:1279–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemzadeh A, Jaafar HZE, Karimi E, Ibrahim MH (2012) Combined effect of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger. BMC Complement Altern Med 12:229–23911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    CAS  PubMed  Google Scholar 

  • Gozzo F, Faoro F (2013) Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J Agric Food Chem 61(51):12473–12491

    CAS  PubMed  Google Scholar 

  • Guo B, Liang YC, Zhu YG, Zhao FJ (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147:743–749

    CAS  PubMed  Google Scholar 

  • Habibi G (2012) Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biol Szeged 56:57–63

    Google Scholar 

  • Hasanuzzaman M, Alam MM, Nahar K, Mahmud JA, Ahamed KU, Fujita M (2014) Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Aust J Crop Sci 8:631–639

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Bhuiyan TF, Anee TI, Inafuku M, Oku H, Fujita M (2017) Salicylic acid: an all-rounder in regulating abiotic stress responses in plants. In: Phytohormones – signaling mechanisms and crosstalk in plant development and stress responses. INTECH, Rijeka, pp 31–57

    Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68(1):14–25

    CAS  Google Scholar 

  • He Y, Zhu ZJ (2008) Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicun esculentum. Biol Plant 52:792–795

    CAS  Google Scholar 

  • Hegazi AM, El-Shrayi AM (2007) Impact of salicylic acid and paclobutrazol exogenous application on the growth, yield and nodule formation of common bean. Aust J Basic Appl Sci 1:834–840

    Google Scholar 

  • Hoffmann-Sommergruber K (2000) Plant allergens and pathogenesis related proteins. What do they have in common? Int Arch Allergy Immunol 122:155–166

    CAS  PubMed  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    Google Scholar 

  • Hussein MM, Balbaa LK, Gaballah MS (2007) Salicylic acid and salinity effects on growth of maize plants. Res J Agric Biol Sci 3:321–328

    CAS  Google Scholar 

  • Imran H, Zhang Y, Du G, Wang G, Zhang J (2007) Effect of salicylic acid (SA) on delaying fruit senescence of Huang Kum pear. Front Agric China 1(4):456–459

    Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Riaz M, Shahzad SM, Imran Q, Ali I (2016) Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467

    CAS  PubMed  Google Scholar 

  • Janda T, Szalai G, Tari I, Páldi E (1997) Exogenous salicylic acid has an effect on chilling symptoms in maize (Zea mays L.) plants. In: Sowinski P, Zagdanska B, Aniol A, Klaus P (eds) Crop development for cool and wet European climate. ECSP-EEC-EAEC, Brussels, pp 179–187

    Google Scholar 

  • Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

    CAS  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64:2255–2268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jupin I, Chua N-H (1996) Activation of the CaMV as-1 ciselement by salicylic acid: differential DNA-binding of a factor related to TGAla. EMBO J 15:5679–5689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jurivich DA, Sistonen L, Kroes RA, Morimoto RI (1992) Effect of sodium salicylate on the human HS response. Science 255:1243–1245

    CAS  PubMed  Google Scholar 

  • Kang GZ, Wang CH, Sun GC, Wang ZX (2003) Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ Exp Bot 50:9–15

    CAS  Google Scholar 

  • Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y (2012) Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res 11:6066–6079

    CAS  PubMed  Google Scholar 

  • Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY, Zhu YJ, Guo TC (2013) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol Plant 57:718–724

    CAS  Google Scholar 

  • Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J (1994) Induction of systemic acquired disease resistance in plants by chemicals. Annu Rev Phytopathol 32:439–459

    CAS  PubMed  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    CAS  PubMed  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374

    PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Khanna P, Kaur K, Gupta AK (2016) Salicylic acid induces differential antioxidant response in spring maize under high temperature stress. Indian J Exp Biol 54:386–393

    PubMed  Google Scholar 

  • Khokon MDAR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443

    CAS  PubMed  Google Scholar 

  • Kim ST, Kim SG, Hwang DH, Kang SY, Koo SC, Cho MJ, Kang KY (2004) Expression of a salt-induced protein (SALT) in suspension-cultured cells and leaves of rice following exposure to fungal elicitor and phytohormones. Plant Cell Rep 23:256–262

    CAS  PubMed  Google Scholar 

  • Kim YH, Hamayun M, Khan AL, Na CI, Kang SM, Han HH, Lee IJ (2009) Exogenous application of plant growth regulators increased the total flavonoid content in Taraxacum officinale (Wigg). Afr J Biotechnol 8:5727–5732

    CAS  Google Scholar 

  • Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26:1439–1458

    CAS  PubMed  Google Scholar 

  • Knorzer OC, Lederer B, Durner J, Boger P (1999) Antioxidative defense activation in soybean cells. Physiol Plant 107:294–302

    CAS  Google Scholar 

  • Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves require the NPR1/NIM1 gene in Arabidopsis. Plant Physiol 128:1046–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korkmaz A (2005) Inclusion of acetyl salicylic acid and methyl jasmonate into the priming solution improves low temperature germination and emergence of sweet pepper. HortScience 40:197–200

    CAS  Google Scholar 

  • Kumar RR, Sharma SK, Goswami S, Verma P, Singh K, Dixit N, Pathak H, Viswanathan C, Rai RD (2015) Salicylic acid alleviates the heat stress-induced oxidative damage of starch biosynthesis pathway by modulating the expression of heat-stable genes and proteins in wheat (Triticum aestivum). Acta Physiol Plant 37:1–12

    Google Scholar 

  • Larqué-Saavedra A, Martin-Méx R (2007) Effects of salicylic acid on bioproductivity of plants. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Dordrecht, pp 15–23

    Google Scholar 

  • Lee JS (1998) The mechanism of stomatal closing by salicylic acid in Commelina communis L. J Plant Biol 41:97–102

    Google Scholar 

  • Lee H-I, Leon J, Raskin I (1995) Biosynthesis and mechanism of salicylic acid. Proc Natl Acad Sci U S A 92:4076–4079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kim SG, Park CM (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol 188:627–637

    Google Scholar 

  • Leon J, Yalpani N, Raskin I, Lawton MA (1993) Induction of benzoic acid 2-hydroxylase in virusinoculated tobacco. Plant Physiol 103:323–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leon J, Lawton MA, Raskin I (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol 108:1673–1678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Peng X, Wei L, Kang G (2013) Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529:321–325

    CAS  PubMed  Google Scholar 

  • Liu X, Huang B (2005) Root physiological factors involved in cool-season grass response to high soil temperature. Environ Exp Bot 53:233–245

    Google Scholar 

  • Liu Y, Zhang J, Liu H, Huang W (2008) Salicylic acid or heat acclimation pre-treatment enhances the plasma membrane associated ATPase activities in young grape plants under heat shock. Sci Hortic 119:21–27

    CAS  Google Scholar 

  • Liu S, Dong Y, Kong XJ (2014) Effects of foliar application of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regul 73:67–78

    CAS  Google Scholar 

  • Lopez-Delgado H, Dat JF, Foyer CH, Scot IM (1998) Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J Exp Bot 49:713–720

    CAS  Google Scholar 

  • Luo Z, Wu X, **e Y, Chen C (2012) Alleviation of chilling injury and browning of postharvest bamboo shoot by salicylic acid treatment. Food Chem 131:456–461

    CAS  Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959

    CAS  PubMed  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    CAS  PubMed  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature 419:399–403

    CAS  PubMed  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism to productivity. Springer, New York, pp 1–20

    Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104

    CAS  PubMed  Google Scholar 

  • Mishra A, Choudhuri M (1997) Ameliorating effects of salicylic acid on lead and mercury: induced inhibition of germination and early seedling growth of two rice cultivars. Seed Sci Technol 25(2):263–270

    Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104

    CAS  PubMed  Google Scholar 

  • Mohamed HI, Latif HH, Hanafy RS (2016) Influence of nitric oxide application application on some biochemical aspects, endogenous hormones, minerals and phenolic compounds of Vicia faba plant grown under arsenic stress. Gesunde Pflanzen 68:99–107

    CAS  Google Scholar 

  • Molina A, Bueno P, Marيn MC, Rodriguez-Rosales MP, Belver A, Venema K, Donaire JP (2002) Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytol 156:409–415

    CAS  PubMed  Google Scholar 

  • Moore AL, Albury MS, Crichton PG, Affourtit C (2002) Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci 7:478–481

    CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    CAS  PubMed  Google Scholar 

  • Mukherjee D, Kumar R (2007) Kinetin regulates plant growth and biochemical changes during maturation and senescence of leaves, flowers, and pods of Cajanus cajan (L.). Biol Plant 50:80–85

    Google Scholar 

  • Munne-Bosch S, Penuelas J (2003) Photo-and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766

    CAS  PubMed  Google Scholar 

  • Mur LAJ, Naylor G, Warner SAJ, Sugars JM, White RF, Draper J (1996) Salicylic acid potentiates defense gene expression in tissue exhibiting acquired resistance to pathogen attack. Plant J 9:559–571

    CAS  Google Scholar 

  • Mohamed HI, Latif HH (2017) Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plants 23:545–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed HI, Akladious SA, Ashry NA (2018) Evaluation of water stress tolerance of soybean using physiological parameters and retrotransposon-basedmarkers. Gesunde Pflanzen 70:205–215

    CAS  Google Scholar 

  • Mohamed HI, Akladious SA (2017) Changes in antioxidants potential, econdary metabolites and plant hormones induced by different fungicides treatment in cotton plants. Pestic Biochem Physiol 142:117–122

    CAS  PubMed  Google Scholar 

  • Mohamed HI, El-Beltagi HS, Aly AA, Latif HH (2018) The role of systemic and non systemic fungicides on the physiological and biochemical parameters in Gossypium hirsutum plant, implications for defense responses. Fresenius Environ Bull 27(12):8585–8593

    CAS  Google Scholar 

  • Ogawa D, Nakajima N, Seo S, Mitsuhara I, Kamada H, Ohashi Y (2006) The phenylalanine pathway is the main route of salicylic acid biosynthesis in tobacco tobacco mosaic virus-infected tobacco leaves. Plant Biotechnol 23:395–398

    CAS  Google Scholar 

  • Pandey P, Srivastava RK, Dubey RS (2013) Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology 22(4):656–670

    CAS  PubMed  Google Scholar 

  • Parashar A, Yusuf M, Fariduddin Q, Ahmad A (2014) Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int J Biol Macromol 70:551–558

    CAS  PubMed  Google Scholar 

  • Peng J, Deng X, Huang J, Jia S, Miao X, Huang Y (2004) Role of salicylic acid in tomato defense against cotton bollworm, Helicoverpa armigera Hubner. Z Naturforsch C 59:856–862

    CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464

    CAS  PubMed  Google Scholar 

  • Rajjou L, Belghazu M, Huget R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    CAS  PubMed  Google Scholar 

  • Rao MV, Paliyat G, Ormrod D, Murr DP, Watkin CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. Plant Physiol 115:137–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760

    CAS  PubMed  Google Scholar 

  • Ribnicky DM, Shulaev V, Raskin I (1998) Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol 118:565–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas-San VM, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Shakirova FM (2004) Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. Appl Biochem Microbiol 40:501–505

    CAS  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saruhan N, Saglam A, Kadioglu A (2012) Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiol Plant 34:97–106

    CAS  Google Scholar 

  • Sawada H, Shim IS, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis-modulation by salt stress in rice seedlings. Plant Sci 171:263–270

    CAS  Google Scholar 

  • Schafer H, Wink M (2009) Medicinally important secondary metabolites in recombinant microorganism or plants: progress in alkaloid biosynthesis. Biotechnol J 4(12):1684–1703

    PubMed  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    CAS  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    CAS  PubMed  Google Scholar 

  • Shah J (2005) Lipids, lipases and lipid modifying enzymes in plant disease resistance. Annu Rev Phytopathol 43:229–260

    CAS  PubMed  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    CAS  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    CAS  Google Scholar 

  • Singh DP, Moore CA, Gilliland A, Carr JP (2004) Activation of multiple antiviral defence mechanisms by salicylic acid. Mol Plant Pathol 5:57–63

    CAS  PubMed  Google Scholar 

  • Singh A, Srivastava AK, Singh AK (2011) Exogenous application of salicylic acid to alleviate the toxic effects of insecticides in Vicia faba L. Environ Toxicol 28(12):666–672

    PubMed  Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakrabarty D, Tripathi RD (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Frontiers. Plant Sci 6:340

    Google Scholar 

  • Slaymaker DH, Navarre DA, Clark D, Del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci U S A 99:11640–11645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava MK, Dwivedi UN (2000) Delaying ripening of banana fruits by salicylic acid. Plant Sci 158:87–96

    CAS  PubMed  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Advances in low-temperature biology, vol 2. JAI Press, London, pp 211–312

    Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:353–270

    Google Scholar 

  • Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC (2007) Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282:5919–5933

    CAS  PubMed  Google Scholar 

  • Szepesi A (2006) Salicylic acid improves the acclimation of Lycopersicon esculentum mill. L. to high salinity by approximating its salt stress response to that of the wild species L. pennellii. Acta Biol Szeged 50:177

    Google Scholar 

  • Szepesi Á, Csiszár J, Sz B, Gémes K, Horváth F, Erdei L, Deér A, Simon LM, Tari I (2005) Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biol Szeged 49:123–125

    Google Scholar 

  • Tari I, Csiszár J, Szalai G, Horváth F, Pécsváradi A, Kiss G, Szepesi Á, Szabó M, Erdei L (2002) Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biol Szeged 46:55–56

    Google Scholar 

  • Tari I, Simon LM, Deér KA, Csiszár J, Sz B, Gy K, Szepesi Á (2004) Influence of salicylic acid on salt stress acclimation of tomato plants: oxidative stress responses and osmotic adaptation. Acta Physiol Plant 26S:237

    Google Scholar 

  • Tasgin E, Atici O, Nalbantoglu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41:231–236

    CAS  Google Scholar 

  • Thaler JS (1999) Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399:686–688

    CAS  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    CAS  PubMed  Google Scholar 

  • Urbanek Krajnc A, Müller M (2006) An insight into the defense mechanisms and the role of glutathione during advance ZYMV infection in Styrian oil pumpkin. Agricultura 4:27–35

    Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanacker H, Lu H, Rate DN, Greenberg JT (2001) A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J 28:209–216

    CAS  PubMed  Google Scholar 

  • Vlot AC, Dempsey MA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    CAS  PubMed  Google Scholar 

  • Wang LJ, Li SH (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    CAS  Google Scholar 

  • Wang H, Feng T, Peng X, Yan M, Tang X (2009) Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicol Environ Saf 72:1354–1362

    CAS  PubMed  Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34

    PubMed  PubMed Central  Google Scholar 

  • White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412

    CAS  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthesis is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    CAS  PubMed  Google Scholar 

  • Wobbe KK, Klessig DF (1996) Salicylic acid – an important signal in plants. In: Dennis ES et al (eds) Plant gene research. Springer Verlag, Wien/New York, pp 167–196

    Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    CAS  Google Scholar 

  • Ying Y, Yue Y, Huang X, Wang H, Mei L, Yu W, Zheng B, Wu J (2013) Salicylic acid induces physiological and biochemical changes in three Red bayberry (Myric rubra) genotypes under water stress. Plant Growth Regul 71:181–189

    CAS  Google Scholar 

  • Yoshioka H, Bouteau F, Kawano T (2008) Discovery of oxidative burst in the field of plant immunity. Plant Signal Behav 3:143–155

    Google Scholar 

  • Yu X-M, Griffith M, Wiseman SB (2001) Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol 126:1232–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Klessig DF (1997) Salicylic acid activates a 48 kilodalton MAP kinase in tobacco. Plant Cell 9:809–824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Du X, Wang Q, Chen X, Lv D, Xu K, Qu S, Zhang Z (2010) Expression of pathogenesis related genes in response to salicylic acid, methyl jasmonate and 1-aminocyclopropane-1- carboxylic acid in Malus hupehensis (Pamp.) Rehd. BMC Res Notes 3:208

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xu S, Yang S, Chen Y (2015) Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma 2(3):911–924

    Google Scholar 

  • Zhao LY, Chen JL, Cheng DF, Sun JR, Liu Y, Tian Z (2009) Biochemical and molecular characterizations of Sitobion avenae induced wheat defense responses. Crop Prot 28:435–442

    CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbas AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, H.I., El-Shazly, H.H., Badr, A. (2020). Role of Salicylic Acid in Biotic and Abiotic Stress Tolerance in Plants. In: Lone, R., Shuab, R., Kamili, A. (eds) Plant Phenolics in Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-15-4890-1_23

Download citation

Publish with us

Policies and ethics

Navigation