A Review of Animal Individual Recognition Based on Computer Vision

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2022)

Abstract

With the improvement of modernization, China’s animal husbandry and fishery enterprise has ushered in a new vogue of informationization, factorization, and precision farming, and the demand for unique identification of individual animals is growing. Traditional individual animal identification methods, such as footprint identification, molecular biology, and different techniques, have low accuracy, excessive cost, and different risks. RFID technological know-how and implants put on monitoring units and different techniques additionally face invasiveinvasiveness, excessive labor costs, slender application scopes and challenges in promoting a massive place and different issues. Deep learning is enjoying an increasing number of essential positions in the discipline of animal individual identification, which has made it possible for the noninvasive recognition of individual animals. This paper discusses the progress of individual animal recognition using computer vision techniques and its application popularity in different species fields, focuses on the issues and challenges of individual animal recognition, and suggests that future lookup instructions for animal identification are foreseen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hou, J., He, Y., Yang, H., et al.: Identification of animal individuals using deep learning: a case study of giant panda. Biol. Conserv. 242, 1–6 (2020)

    Article  Google Scholar 

  2. Sun, Y.K., Huo, P.J., Wang, Y.J., et al.: Automatic monitoring system for individual dairy cows based on a deep learning framework that provides identification via body parts and estimation of body condition score. J. Dairy Sci. 102(11), 10140–10151 (2019)

    Article  Google Scholar 

  3. Kalafut, K.L., Kinley, R.: Using radio frequency identification for behavioral monitoring in little blue penguins. J. Appl. Anim. Welf. Sci. 23(1), 62–73 (2020)

    Article  Google Scholar 

  4. Lu, H.K.: Analysis and Research of Giant Panda Individual Identification System Based on Voiceprint, pp. 1–75. University of Electronic Science and Technology of China (2019)

    Google Scholar 

  5. Psota, E.T., Schmidt, T., Mote, B., et al.: Long-term tracking of group-housed livestock using keypoint detection and MAP estimation for individual animal identification. Sensors 20(13), 3670 (2020)

    Article  Google Scholar 

  6. Guo, S.T., Xu, P.F., Miao, Q.G.: Accurate identification of “true and false Monkey King” animal individual identification system is coming. Netinfo Secur. 21(03), 99 (2021)

    Google Scholar 

  7. Lin, S., Zhao, Y.: Review on key technologies of target exploration in underwater optical images. Laser Optoelectron. Prog. 57(6), 060002 (2020)

    Article  Google Scholar 

  8. Terayama, K., Shin, K., Mizuno, K., et al.: Integration of sonar and optical camera images using deep neural network for fish monitoring. Aquacult. Eng. 86, 102000 (2019)

    Article  Google Scholar 

  9. Deng, J., Dong, W., Socher, R., et al.: ImageNet: A large-scale hierarchical image database. In: Proceedings of IEEE Computer Vision & Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  10. Khan, M.H., Mcdonagh, J., Khan, S., et al.: AnimalWeb: a large-scale hierarchical dataset of annotated animal faces. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, pp. 6939–6948. IEEE (2020)

    Google Scholar 

  11. Yuan, H.C., Zhang, S.: Detection of underwater fish based on Faster R-CNN and image enhancement. J. Dalian Ocean Univ. 35(4), 612–619 (2020)

    MathSciNet  Google Scholar 

  12. Liu, Z.Y., Li, X., Fan, L.Z., et al.: Measuring feeding activity of fish in RAS using computer vision. Aquacult. Eng. 60, 20–27 (2014)

    Article  Google Scholar 

  13. Ye, X.C., Li, Z., Sun, B.L., et al.: Deep joint depth estimation and color correction from monocular underwater images based on unsupervised adaptation networks. IEEE Trans. Circ. Syst. Video Technol. 30(11), 3995–4008 (2020)

    Article  Google Scholar 

  14. Ma, L., et al.: Learning multi-scale retinex with residual network for low-light image enhancement. In: Peng, Y., et al. (eds.) PRCV 2020. LNCS, vol. 12305, pp. 291–302. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60633-6_24

    Chapter  Google Scholar 

  15. Chen, G., Song, X.: Quantum color image scaling on QIRHSI model. In: Zeng, J., Qin, P., **g, W., Song, X., Lu, Z. (eds.) ICPCSEE 2021. CCIS, vol. 1451, pp. 453–467. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5940-9_35

    Chapter  Google Scholar 

  16. Jia, Y.X., Fan, S.C., Yi, X.M.: Fish recognition based on significant enhancement and transfer learning. Fish. Modernization 264(01), 40–48 (2020)

    Google Scholar 

  17. Liu, P., Yang, H.B., Song, Y.: Marine biometric algorithm based on improved YOLOv3 network. Appl. Res. Comput. 37(S1), 394–397 (2020)

    Google Scholar 

  18. Wang, Y., Liang, Z., Cheng, X.: Fast target tracking based on improved deep sort and YOLOv3 fusion algorithm. In: Zeng, J., Qin, P., **g, W., Song, X., Lu, Z. (eds.) ICPCSEE 2021. CCIS, vol. 1451, pp. 360–369. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5940-9_27

    Chapter  Google Scholar 

  19. Ren, S.Q., He, K.M., Girshick, R., et al.: Faster R-CNN: toward real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  20. Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, pp. 580–587. IEEE (2014)

    Google Scholar 

  21. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  22. Huang, G., Liu, Z., Van, D., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 4700–4708. IEEE (2017)

    Google Scholar 

  23. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection, pp. 779–788. IEEE (2016)

    Google Scholar 

  24. Shi, J., Zhang, G., Yuan, J., Zhang, Y.: Improved YOLOv3 infrared image pedestrian detection algorithm. In: Zeng, J., **g, W., Song, X., Lu, Z. (eds.) ICPCSEE 2020. CCIS, vol. 1257, pp. 506–517. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-7981-3_37

    Chapter  Google Scholar 

  25. Ghiasi, G., Lin, T.Y., Le, Q.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, pp. 7029–7038. IEEE (2019)

    Google Scholar 

  26. Shah, S., Wu, W., Lu, Q., et al.: AmoebaNet: an SDNenabled network service for big data cience. J. Netw. Comput. Appl. 119, 70–82 (2018)

    Article  Google Scholar 

  27. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, pp. 10778–10787. IEEE (2020)

    Google Scholar 

  28. Chen, Q., Wang, Y., Yang, T., et al.: You only look one-level feature. ar**v:2103.09460 (2021)

  29. Chaudhari, S., Mithal, V., Polatkan, G., et al.: An attentive survey of attention models. ACM Trans. Intell. Syst. Technol. (TIST) 12(5), 1–32 (2021)

    Article  Google Scholar 

  30. Guo, S.T., Xu, P.F., Miao, Q.G., et al.: Automatic identification of individual primates with deep learning techniques. iScience 23(8), 101412 (2020)

    Article  Google Scholar 

  31. Zhang, K.P., Zhang, Z.P., Li, Z.F., et al.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Sig. Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  32. Wang, Z.D., Zheng, L., Li, Y.L., et al.: Linkage based face clustering via graph convolution network. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, pp. 1117–1125. IEEE (2019)

    Google Scholar 

  33. Zhang, J.L., Zeng, G.S., Qin, R.F.: Fish recognition method for submarine observation video based on deep learning. J. Comput. Appl. 39(2), 376–381 (2019)

    Google Scholar 

  34. Schofield, D., Nagrani, A., Zisserman, A., et al.: Chimpanzee face recognition from videos in the wild using deep learning. Sci. Adv. 5(9), eaaw0736 (2019)

    Article  Google Scholar 

  35. Brust, C.A., Burghardt, T., Groenenberg, M., et al.: Toward automated visual monitoring of individual gorillas in the wild. In: 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), Venice, pp. 2820–2830. IEEE (2017)

    Google Scholar 

  36. Deng, K., Liu, W., Wang, D.H.: Social network analysis and its application in animal behavior. Acta Theriologica Sin. 39(03), 87–98 (2019)

    Google Scholar 

  37. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  38. Chen, X., Zou, Q.N., **e, S.Y., et al.: A key frame automatic selection method for moving object. Comput. Modernization (10), 81–89 (2020)

    Google Scholar 

  39. Liu, J.: Individual identification and sex identification based on black muntjac feces, pp. 1–61. Zhejiang Normal University (2012)

    Google Scholar 

  40. Van, B.S., Fernandez-Duque, E., Di, F.A.: Demography and life history of wild red titi monkeys (Callicebus discolor) and equatorial sakis (Pithecia aequatorialis) in Amazonian Ecuador: a 12-year study. Am. J. Primatol. 78, 204–215 (2016)

    Article  Google Scholar 

  41. Guan, T.P., Owens, J.R., Gong, M.H., et al.: Role of new nature reserve in assisting endangered species conservation-case study of giant pandas in the Northern Qionglai Mountains, China. PLoS ONE 11(8), e0159738 (2016)

    Article  Google Scholar 

  42. Alli, M.N., Viriri, S.: Animal identification based on footprint recognition. In: 2013 International Conference on Adaptive Science and Technology, Pretoria, pp. 1–4. IEEE (2013)

    Google Scholar 

  43. Burghardt, T., Campbell, N.: Individual animal identification using visual biometrics on deformable coat patterns. In: International Conference on Computer Vision Systems: Proceedings, Rio de Janeiro, pp. 1–10. IEEE (2007)

    Google Scholar 

  44. Qin, L.: Research and Development of the Information Collection and Management System for Stocking Sheep Based on RFID, pp. 1–48. Inner Mongolia University (2016)

    Google Scholar 

  45. Chen, P., Swarup, P., Matkowski, W.M., et al.: A study on giant panda recognition based on images of a large proportion of captive pandas. Ecol. Evol. 10(7), 3561–3573 (2020)

    Article  Google Scholar 

  46. Xu, F.Q., Ding, X.Y., Peng, J.J., et al.: Real-time detecting method of marine small object with underwater robot vision. In: 2018 CEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, pp. 1–4. IEEE (2018)

    Google Scholar 

  47. He, K.M., Zhang, X.Y., Ren, S.Q., et al.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  48. Jaderberg, M., Simonyan, K., Zisserman, A.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, Montreal, pp. 2017–2025. NIPS (2015)

    Google Scholar 

  49. Clapham, M., Miller, E., Nguyen, M., et al.: Automated facial recognition for wildlife that lack unique markings: a deep learning approach for brown bears. Ecol. Evol. 10(23), 12883–12892 (2020)

    Article  Google Scholar 

  50. Hilderbrand, G.V., Schwartz, C.C., Robbins, C.T., et al.: The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77(1), 132–138 (1999)

    Article  Google Scholar 

  51. Chopra, S., Hadsell, R., Lecun, Y.: Learning a similarity metric discriminatively, with application to face verification. IEEE Comput. Soc. 1, 539–546 (2005)

    Google Scholar 

  52. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering, pp. 815–823. IEEE (2015)

    Google Scholar 

  53. Papageorgiou, C., Poggio, T.: A trainable system for object detection. Int. J. Comput. Vis. 38(1), 15–33 (2000)

    Article  Google Scholar 

  54. Al Arif, S.M.M.R., Knapp, K., Slabaugh, G.: Spnet: shape prediction using a fully convolutional neural network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 430–439. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_49

    Chapter  Google Scholar 

  55. Wang, K.L., Yuan, H.C.: Aquatic animal image classification method based on transfer learning. J. Comput. Appl. 333(05), 88–92+110 (2018)

    Google Scholar 

  56. Qiao, Y.L., Su, D., Kong, H., et al.: Individual cattle identification using a deep learning based framework. IFAC-PapersOnLine 52(30), 318–323 (2019)

    Article  Google Scholar 

  57. Szegedy, C., Vanhoucke, V., Ioffe, S., et al.: Rethinking the inception architecture for computer vision, pp. 2818–2826. IEEE (2016)

    Google Scholar 

  58. Ordóñez, F., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Article  Google Scholar 

  59. Kumar, S., Pandey, A., Satwik, K.S., et al.: Deep learning framework for recognition of cattle using muzzle point image pattern. Measurement 116, 1–17 (2018)

    Article  Google Scholar 

  60. Qin, X., Song, G.F.: Pig face recognition algorithm based on bilinear convolution neural network. J. Hangzhou Dianzi Univ. (Nat. Sci). 39(02), 12–17 (2019)

    Google Scholar 

  61. Hansen, M.F., Smith, M.L., Smith, L.N., et al.: Toward on-farm pig face recognition using convolutional neural networks. Comput. Ind. 98, 145–152 (2018)

    Article  Google Scholar 

  62. Gaber, T., Tharwat, A., Hassanien, A.E., et al.: Biometric cattle identification approach based on Webers Local Descriptor and AdaBoost classifier. Comput. Electron. Agric. 122, 55–66 (2016)

    Article  Google Scholar 

  63. Lin, T.Y., Roychowdhury, A., Maji, S.: Bilinear CNN models for fine- grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, Santiago, pp. 1449–1457. IEEE (2015)

    Google Scholar 

  64. Cui, S.X., Zhou, Y., Wang, Y.H., et al.: Fish Detection Using Deep Learning. Appl. Comput. Intell. Soft Comput. 2020, 1–13 (2020)

    Google Scholar 

  65. Wang, K.: Research and system development of layer behavior detection method based on deep learning, pp. 1–87. Zhejiang A&F University (2019)

    Google Scholar 

  66. Ye, Z.J., Ren, M.: An experimental animal information management system and an individual identity discrimination method for experimental animals. China, CN111523017A[P], 11 August 2020

    Google Scholar 

  67. Witham, C.L.: Automated face recognition of rhesus macaques. J. Neurosci. Methods 300, 157–165 (2018)

    Article  Google Scholar 

  68. Crouse, D., Jacobs, R.L., Richardson, Z., et al.: LemurFaceID: a face recognition system to facilitate individual identification of lemurs. BMC Zool. 2(1), 1–14 (2017). https://doi.org/10.1186/s40850-016-0011-9

    Article  Google Scholar 

  69. Swarup, P., Chen, P., Hou, R., et al.: Giant panda behavior recognition using images. Glob. Ecol. Conserv. 26, e01510 (2021)

    Article  Google Scholar 

  70. Huang, I.W., Hwang, J.N., Rose, C.S.: Chute based automated fish length measurement and water drop detection. In: IEEE International Conference on Acoustics, Shanghai, pp. 1906–1910. IEEE (2016)

    Google Scholar 

  71. Dong, M.: Object multi-mark recognition algorithm based on machine learning and image processing. Comput. Digit. Eng. 44(12), 2488–2492 (2016)

    Google Scholar 

  72. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2(60), 91–110 (2004)

    Article  Google Scholar 

  73. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision & Pattern Recognition, San Diego, pp. 886–893. IEEE (2005)

    Google Scholar 

  74. Lin, T.Y., Dollár, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 2117–2125. IEEE (2017)

    Google Scholar 

  75. Dai, J.F., Qi, H.Z., **ong, Y.W., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, Venice, pp. 764–773. IEEE (2017)

    Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China (31972846) funded this research, Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education (202205), Major Special Plan for Science and Technology in Liaoning Province (2020JH1/10200002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Wu, J., Yu, H., Zhang, H., Zhou, Y., Zhang, Y. (2022). A Review of Animal Individual Recognition Based on Computer Vision. In: Wang, Y., Zhu, G., Han, Q., Wang, H., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2022. Communications in Computer and Information Science, vol 1628. Springer, Singapore. https://doi.org/10.1007/978-981-19-5194-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5194-7_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5193-0

  • Online ISBN: 978-981-19-5194-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation