Quantum Color Image Scaling on QIRHSI Model

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1451))

Abstract

Scaling operations are widely used in traditional image processing. Therefore, in this paper, an improved quantum image representation based on HSI color space (IQIRHSI) is proposed, which extends the original \(2^{n} \times 2^{n}\) size to general \(2^{{n_{1} }} \times 2^{{n_{2} }}\) size. Then, the quantum algorithms and circuits were designed to implement quantum image scaling. Interpolation was introduced to recover the lost information in the scaled image. The nearest neighbor interpolation method was researched on scaled IQIRHSI to make the interpolation method easy to implement. Finally, the complexity of the quantum circuit for image scaling was analyzed and the process of quantum image scaling was described in detail by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 2nd edn. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Feynman, R.P.: Simulating physics with computers. Int. J. Theoret. Phys. 21, 467–488 (1982)

    Google Scholar 

  3. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)

    Google Scholar 

  4. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. foundations of computer science. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, pp. 124–134. IEEE (1994)

    Google Scholar 

  5. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th annual ACM Symposium on Theory of Computing, Philadelphia, Pennsylvania, USA, pp. 212–219. IEEE (1996)

    Google Scholar 

  6. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)

    Google Scholar 

  7. Latorre, J.I.: Image Compression and Entanglement. Quantum Physics (2005). ar**v:quant-ph/0510031v1

  8. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quant. Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  9. Le, P.Q., Dong, F.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quant. Inf. Process 10(1), 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  10. Zhang, Y., Lu, K.: NEQR: a novel enhanced quantum representation of digital images. Quant. Inf. Process 12(12), 2833–2860 (2013)

    Article  MathSciNet  Google Scholar 

  11. Li, H.S., Zhu, Q.: Image storage, retrieval, compression and segmentation in a quantum system. Quant. Inf. Process 12(9), 2269–2290 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chen, G.L., Song, X.H., Venegas-Andraca, S.E.: QIRHSI: novel quantum image representation based on HSI color space model. Quant. Inf. Process (submitted)

    Google Scholar 

  13. Le, P.Q., Iliyasu, A.M.: Fast geometric transformations on quantum images. Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quant. Inf. Process. 14(5), 1589–1604 (2014)

    Article  MathSciNet  Google Scholar 

  15. Zhang, Y., Kai, L., Kai, X., Gao, Y., Wilson, R.: Local feature point extraction for quantum images. Quant. Inf. Process. 14(5), 1573–1588 (2014)

    Article  MathSciNet  Google Scholar 

  16. Jiang, N., Wang, L., Wen-Ya, W.: Quantum Hilbert image scrambling. Int. J. Theoret. Phys. 53(7), 2463–2484 (2014)

    Article  Google Scholar 

  17. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quant. Inf. Process. 14(5), 1693–1715 (2015)

    Article  MathSciNet  Google Scholar 

  18. Zhou, R.-G., Sun, Y.-J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quant. Inf. Process. 14(5), 1717–1734 (2015)

    Article  MathSciNet  Google Scholar 

  19. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  Google Scholar 

  20. Song, X.-H., Wang, S., Liu, S., Abd, A.A., El-Latif, X.-M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quant. Inf. Process. 12(12), 3689–3706 (2013)

    Article  MathSciNet  Google Scholar 

  21. Iliyasu, A.M.: A framework for representing and producing movies on quantum computers. Int. J. Quant. Inf. 09(06), 1459–1497 (2011)

    Article  Google Scholar 

  22. Yan, F., Jiao, S.: Chromatic framework for quantum movies and applications in creating montages. Front. Comput. Sci. 12(4), 736–748 (2018)

    Google Scholar 

  23. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quant. Inf. Process. 14, 1559–1571 (2015)

    Article  MathSciNet  Google Scholar 

  24. Jiang, N., **aowei, L., Hao, H., Dang, Y., Cai, Y.: A novel quantum image compression method based on JPEG. Int. J. Theoret. Phys. 57(3), 611–636 (2017)

    Article  MathSciNet  Google Scholar 

  25. Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quant. Inf. Process. 15(1), 37–64 (2015)

    Article  MathSciNet  Google Scholar 

  26. Zhou, R.-G., Tan, C., Fan, P.: Quantum multidimensional color image scaling using nearest-neighbor interpolation based on the extension of FRQI. Mod. Phys. Lett. B 31(17), 1750184 (2017)

    Article  MathSciNet  Google Scholar 

  27. Li, P., Liu, X.: Bilinear interpolation method for quantum images based on Quantum Fourier Transform. Int. J. Quant. Inf. 16(04), 1850031 (2018)

    Article  MathSciNet  Google Scholar 

  28. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, New Jersey (2007)

    Google Scholar 

  29. Anthony Parker, J., Kenyon, R.V., Troxel, D.E.: Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imaging 2(1), 31–39 (1983)

    Article  Google Scholar 

  30. https://ww2.mathworks.cn/help/images/ref/imresize.html (2021)

  31. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  Google Scholar 

  32. Khan, R.A.: An Improved Flexible Representation of Quantum Images. Quant. Inf. Process 18(7), 201 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is supported by the Postdoctoral Research Foundation of China (2018M631914) and the Heilongjiang Provincial Postdoctoral Science Foundation (CN) (LBH-Z17042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **anhua Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, G., Song, X. (2021). Quantum Color Image Scaling on QIRHSI Model. In: Zeng, J., Qin, P., **g, W., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2021. Communications in Computer and Information Science, vol 1451. Springer, Singapore. https://doi.org/10.1007/978-981-16-5940-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5940-9_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5939-3

  • Online ISBN: 978-981-16-5940-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation