Exploring Genome-Wide Analysis of Heat Shock Proteins (HSPs) in Small Millets as Potential Candidates for Development of Multistress Tolerant Crop Plants

  • Chapter
  • First Online:
Omics of Climate Resilient Small Millets

Abstract

With climate change a reality today, towards maintaining a sustainable and enhanced production we require crop plants well suited to stressful environments. Small millets, hitherto relegated away from the mainstream agriculture are slowly and steadily making a comeback in recent times. This diverse group of crop plants are a veritable powerhouse of genomic resource for mining stress tolerant genes and alleles with their natural inherent resilience. One such group of molecules are the multifaceted molecular chaperones called heat shock proteins (HSPs). From their initial discovery in Drosophila in 1962, HSPs have come a long way as a multi-functional group of proteins with demonstrated critical roles in plant life cycle, hormonal biology as well as regulatory role in plant abiotic and biotic defence. In this chapter we have described the structural and functional attributes of HSP in model plants and small millets, thereby highlighting their potential roles. The research can be utilized towards improvement of small millets as well as other crop plants for multiple stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrási N, Rigó G, Zsigmond L, Pérez-Salamó I, Papdi C, Klement E, Pettkó-Szandtner A, Baba AI, Ayaydin F, Dasari R, Cséplő Á (2021) Corrigendum to: The mitogen-activated protein kinase 4-phosphorylated heat shock factor A4A regulates responses to combined salt and heat stresses. J Exp Bot 72(15):5781

    Article  PubMed  PubMed Central  Google Scholar 

  • Berka M, Kopecká R, Berková V, Brzobohatý B, Černý M (2022) Regulation of heat shock proteins 70 and their role in plant immunity. J Exp Bot 73(7):1894–1909

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj N, Gogoi N, Barthakur S, Basumatary N (2018) Morpho-physiological responses in different mungbean genotypes under drought stress. Res J Recent Sci 7(7):10–18

    CAS  Google Scholar 

  • Bharadwaj N, Barthakur S, Biswas AD, Kumar Das M, Kour M, Ramteke A, Gogoi N (2019) Transcript expression profiling in two contrasting cultivars and molecular cloning of a SKP-1 like gene, a component of SCF-ubiquitin proteasome system from mungbean Vigna radiate L. Sci Rep 9(1):1–7

    Article  CAS  Google Scholar 

  • Bharti K, Nover L (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Article  PubMed  Google Scholar 

  • Biamonti G, Caceres JF (2009) Cellular stress and RNA splicing. Trends Biochem Sci 34(3):146–153

    Article  CAS  PubMed  Google Scholar 

  • Bondino HG, Valle EM, Ten Have A (2012) Evolution and functional diversification of the small heat shock protein/alpha-crystallin family in higher plants. Planta 235:1299–1313. https://doi.org/10.1007/s00425-011-1575-9

    Article  CAS  PubMed  Google Scholar 

  • Bora MS, Devi U, Bharadwaj N, Sharma P, Kalita S, Baruah S, Das A, Sarma KP (2021) Pollution and health risk assessment of toxic metals in solid waste dum** site soil and its impact on groundwater: a case study. Int J Environ Anal Chem 10:1–21

    Article  CAS  Google Scholar 

  • Borchiellini C, Boury-Esnault N, Vacelet J, Le Parco Y (1998) Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of Metazoa and specific phylogenetic relationships between animals and fungi. Mol Biol Evol 15:647–655

    Article  CAS  PubMed  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    Article  CAS  PubMed  Google Scholar 

  • Carvalho HH, Silva PA, Mendes GC, Brustolini OJB, Pimenta MR, Gouveia BC, Valente MAS, Ramos HJO, Soares-Ramos JRL, Fontes EPB (2014) The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events. Plant Physiol 164:654–670

    Article  CAS  PubMed  Google Scholar 

  • Catlett MG, Kaplan KB (2006) Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J Biol Chem 281:33739–33748

    Article  CAS  PubMed  Google Scholar 

  • Ceasar A (2021) Genome-editing in millets: current knowledge and future perspectives. Mol Biol Rep 26:1–9

    Google Scholar 

  • Cha JY, Su’udi M, Kim WY et al (2012) Functional characterization of orchard grass cytosolic Hsp70 (DgHsp70) and the negative regulation by Ca2+/AtCaM2 binding. Plant Physiol Biochem 58:29–36

    Article  CAS  PubMed  Google Scholar 

  • Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Theor Appl Genet 35:1912–1931

    CAS  Google Scholar 

  • Chen K, Wang Y, Zhang R et al (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  PubMed  Google Scholar 

  • Cho EK, Hong CB (2004) Molecular cloning and expression pattern analyses of heat shock protein 70 genes from Nicotiana tabacum. J Plant Biol 47(2):149–159

    Article  CAS  Google Scholar 

  • Chopperla R, Singh S, Tomar R, Mohanty S, Khan S, Reddy N, Padaria JC, Solanke AU (2018) Isolation and allelic characterization of finger millet (Eleusine coracana L.) small heat shock protein echsp17.8 for stress tolerance. Indian J Genet Plant Breed 78:95–103

    Article  CAS  Google Scholar 

  • Clément M, Leonhardt N, Droillard MJ, Reiter I, Montillet JL, Genty B, Lauriere C, Nussaume L, Noël LD (2011) The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant Physiol 156(3):1481–1492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czarnecka-Verner E, Pan S, Salem T, Gurley WB (2004) Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol Biol 56:57–75

    Article  CAS  PubMed  Google Scholar 

  • De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11:1–12

    Article  PubMed  Google Scholar 

  • De Maio A, Santoro MG, Tanguay RM, Hightower LE (2012) Ferruccio Ritossa’s scientific legacy 50 years after his discovery of the heat shock response: a new view of biology, a new society, and a new journal. Cell Stress Chaperones 17:139–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • di Donato M, Geisler M (2019) HSP 90 and co-chaperones: a multitaskers’ view on plant hormone biology. FEBS Lett 593(13):1415–1430

    Article  PubMed  CAS  Google Scholar 

  • Divya K, Kavi Kishor PB, Maraka N, Bhatnagar-Mathur P, Singam P, Vadez V, Reddy PS (2019) Genome-wide identification and characterization of Hsp70 gene family in Pearl millet (Pennisetum glaucum). Curr Trends Biotechnol Pharm 13(2):102–111

    CAS  Google Scholar 

  • Doyle JA, Donoghue MJ (1993) Phytogenies and angiosperm diversification. Paleobiology 19:141–167

    Article  Google Scholar 

  • Duan YH, Guo J, Ding K et al (2011) Characterization of a wheat Hsp70 gene and its expression in response to stripe rust infection and abiotic stresses. Mol Biol Rep 38(1):301–307

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Gogoi N, Barthakur S, Baroowa B, Bharadwaj N, Alghamdi SS, Siddique KH (2017a) Drought stress in grain legumes during reproduction and grain filling. J Agron Crop Sci 203(2):81–102

    Article  Google Scholar 

  • Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi HM, Alghamdi SS, Siddique KH (2017b) Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem 118:199–217

    Article  CAS  PubMed  Google Scholar 

  • Feige U, Morimoto RI, Yahara I, Polla BS (eds) (1996) Stress-inducible cellular responses. Birkhauser, Basel

    Google Scholar 

  • Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Guihur A, Rebeaud ME, Bourgine B, Goloubinoff P (2022) How do humans and plants feel the heat?. Trends Plant Sci S1360-1385(22)00059-0. https://doi.org/10.1016/j.tplants.2022.03.006

  • Guo M, Zhai YF, Lu JP et al (2014) Characterization of CaHsp70-1, a pepper heat-shock protein gene in response to heat stress and some regulation exogenous substances in Capsicum annuum L. Int J Mol Sci 15(11):19741–19759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra R, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384

    Article  CAS  PubMed  Google Scholar 

  • Harris SF, Shiau AK, Agard DA (2004) The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12(6):1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324332. https://doi.org/10.1038/nature10317

    Article  CAS  Google Scholar 

  • Hasan M, Barthakur S (2014) Hsp70 based gene expression biomarker shows growth stage specific genotypic diversity in Indian wheat (Triticum aestivum L.) cultivars. Ann Agric Res 35(3):233–243

    CAS  Google Scholar 

  • Hillary VE, Ceasar SA (2019) Application of CRISPR/Cas9 genome editing system in cereal crops. Open Biotechnol J 13(1):173–179

    Article  CAS  Google Scholar 

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129(4):1568–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang LH, Wang HS, Kang L (2008) Different evolutionary lineages of large and small heat shock proteins in eukaryotes. Cell Res 18(10):1074–1076

    Article  CAS  PubMed  Google Scholar 

  • Jacob P, Heribert H, Abdelhafid B (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 15:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jelenska J, van Hal JA, Greenberg JT (2010) Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc Natl Acad Sci U S A 107:13177–13182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Prasad K, Lafer EM, Sousa R (2005) Structural basis of interdomain communication in the Hsc70 chaperone. Mol Cell 20(4):513–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **g M, Wang Y (2020) Plant pathogens utilize effectors to hijack the host endoplasmic reticulum as part of their infection strategy. Engineering 6:500–504

    Article  CAS  Google Scholar 

  • Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Kam**a HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev 11:579–592

    Article  CAS  Google Scholar 

  • Kim NH, Hwang BK (2015) Pepper heat shock protein 70a interacts with the type III effector AvrBsT and triggers plant cell death and immunity. Plant Physiol 167:307–322

    Article  CAS  PubMed  Google Scholar 

  • Kityk R, Kopp J, Sinning I, Mayer MP (2012) Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 48:863–874

    Article  CAS  PubMed  Google Scholar 

  • Kityk R, Kopp J, Mayer MP (2018) Molecular mechanism of J-domain-triggered ATP hydrolysis by Hsp70 chaperones. Mol Cell 69:227–237.e4

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Döring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39:98–112

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316

    Article  CAS  PubMed  Google Scholar 

  • Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J 24:3633–3642. https://doi.org/10.1096/fj.10-156992

    Article  CAS  PubMed  Google Scholar 

  • Krishna P, Sacco M, Cherutti JF, Hill S (1995) Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiol 107:915–923. https://doi.org/10.1104/pp.107.3.915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK (2021) The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 95(6):1943–1970

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lee SE, Oh S, Seo E, Choi D (2018) HSP70s enhance a Phytophthora infestans effector-induced cell death via an MAPK cascade in Nicotiana benthamiana. Mol Plant-Microbe Interact 31:356–362

    Article  CAS  PubMed  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. In: Water, radiation, salt and other stresses, vol II, 2nd edn. Academic Press Inc., New York

    Google Scholar 

  • Lin CY, Roberts JK, Key JL (1984) Acquisition of thermotolerance in soybean seedlings: synthesis and accumulation of heat shock proteins and their cellular localization. Plant Physiol 74(1):152–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Low D, Brandle K, Nover L, Forreiter C (2000) Cytosolic heat-stress proteins Hsp 17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta 211:575–582

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Haslbeck M, Babujee L, Jahn O, Reumann S (2006) Identification and characterization of a stress inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiol 141:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mambula SS, Stevenson MA, Ogawa K, Calderwood SK (2007) Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods 43:168–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrs KA, Casey ES, Capitant SA, Bouchard RA, Dietrich PS, Mettler IJ, Sinibaldi RM (1993) Characterization of two maize HSP90 heat shock protein genes: expression during heat shock, embryogenesis, and pollen development. Dev Genet 14:2741. https://doi.org/10.1002/dvg.1020140105

    Article  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAlister L, Finkelstein DB (1980) Heat shock proteins and thermal resistance in yeast. Biochem Biophys Res Commun 93:819–824

    Article  CAS  PubMed  Google Scholar 

  • Molitor A, Zajic D, Voll LM, Pons-Kühnemann J, Samans B, Kogel KH, Waller F (2011) Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica-mediated systemic induced resistance to powdery mildew. Mol Plant-Microbe Interact 24:1427–1439

    Article  CAS  PubMed  Google Scholar 

  • Mu C, Zhang S, Yu G, Chen N, Li X (2013) Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses. PLoS One 8:e82264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukesh Sankar S, Tara Satyavathi C, Barthakur S, Singh SP, Bharadwaj C, Soumya SL (2021) Differential modulation of heat-inducible genes across diverse genotypes and molecular cloning of a sHSP from Pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 2021:1333

    Google Scholar 

  • Mulaudzi-Masuku T, Mutepe RD, Mukhoro OC, Faro A, Ndimba B (2015) Identification and characterization of a heat-inducible Hsp70 gene from Sorghum bicolor which confers tolerance to thermal stress. Cell Stress Chaperones 20(5):793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M et al (2019) Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: a climate change perspective. Adv Genet 103:1–38

    Article  CAS  PubMed  Google Scholar 

  • Nagaraju M, Reddy PS, Kumar SA, Kumar A, Rajasheker G, Rao DM, Kishor PK (2020) Genome-wide identification and transcriptional profiling of small heat shock protein gene family under diverse abiotic stress conditions in Sorghum bicolor (L.). Int J Biol Macromol 142:822–834

    Article  CAS  PubMed  Google Scholar 

  • Naveed ZA, Ali GS (2018) Comparative transcriptome analysis between a resistant and a susceptible wild tomato accession in response to Phytophthora parasitica. Int J Mol Sci 19:3735

    Article  PubMed Central  CAS  Google Scholar 

  • Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91(6):727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh S-J, Kwon C, Oh D-H, Moon, jae sun & Chung, Won-Il. (2003) Expression of an evolutionarily distinct novel BiP gene during the unfolded protein response in Arabidopsis thaliana. Gene 311:81–91

    Article  CAS  PubMed  Google Scholar 

  • Noël LD, Cagna G, Stuttmann J, Wirthmüller L, Betsuyaku S, Witte CP, Bhat R, Pochon N, Colby T, Parker JE (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19(12):4061–4076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park CJ, Seo YS (2015) Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J 31(4):323–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsell PA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance. Degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  • Pincus D (2020) Regulation of Hsf1 and the heat shock response. Adv Exp Med Biol 1243:41–50

    Article  CAS  PubMed  Google Scholar 

  • Poulain P, Gelly JC, Flatters D (2010) Detection and architecture of small heat shock protein monomers. PLoS One 5:e9990. https://doi.org/10.1371/journal.pone.0009990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90(1):65–75

    Article  CAS  PubMed  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624

    Article  CAS  PubMed  Google Scholar 

  • Reddy PS, Mallikarjuna G, Kaul T, Chakradhar T, Mishra RN, Sopory SK, Reddy MK (2010) Molecular cloning and characterization of gene encoding for cytoplasmic Hsc70 from Pennisetum glaucum may play a protective role against abiotic stresses. Mol Gen Genet 283:243–254

    Article  CAS  Google Scholar 

  • Regente M, Pinedo M, San Clemente H, Balliau T, Jamet E, de la Canal L (2017) Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. J Exp Bot 68:5485–5495

    Article  CAS  PubMed  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    Article  CAS  PubMed  Google Scholar 

  • Samakovli D, Thanou A, Valmas C, Hatzopoulos P (2007) Hsp 90 canalizes developmental perturbation. J Exp Bot 58:3513–3524

    Article  CAS  PubMed  Google Scholar 

  • Sarkar NK, Kundnani P, Grover A (2013) Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones 18:427–437

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Schirmer EC, Lindquist S, Vierling E (1994) An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6:1899–1909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schultheiss J, Kunert O, Gase U, Scharf KD, Nover L, Rüterjans H (1996) Solution structure of the DNA-binding domain of the tomato heat stress transcription factor HSF24. Eur J Biochem 236:911–921

    Article  CAS  PubMed  Google Scholar 

  • Shigeta T, Zaizen Y, Sugimoto Y, Nakamura Y, Matsuo T, Okamoto S (2015) Heat shock protein 90 acts in brassinosteroid signaling through interaction with BES1/BZR1 transcription factor. J Plant Physiol 178:69–73

    Article  CAS  PubMed  Google Scholar 

  • Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13:83–197

    Article  CAS  Google Scholar 

  • Singh RK, Jaishankar J, Muthamilarasan M, Shweta S, Dang A, Prasad M (2016) Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci Rep 6(1):1–14

    Article  CAS  Google Scholar 

  • Song A, Zhu X, Chen F et al (2014) A chrysanthemum heat shock protein confers tolerance to abiotic stress. Int J Mol Sci 15(3):5063–5078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochem Biophys Acta 1577:1–9

    CAS  PubMed  Google Scholar 

  • Sun L, Liu Y, Kong X, Zhang D, Pan J, Zhou Y, Wang L, Li D, Yang X (2012) ZmHSP16. 9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep 31:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tichá T, Samakovli D, Kuchařová A, Vavrdová T, Šamaj J (2020) Multifaceted roles of HEAT SHOCK PROTEIN 90 molecular chaperones in plant development. J Exp Bot 71(14):3966–3985

    Article  PubMed  CAS  Google Scholar 

  • Tissiéres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84(3):389–398

    Article  PubMed  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Vierling E (1991) The role of heat shock proteins in plants. Annu Rev Plant Biol 42:579–620

    Article  CAS  Google Scholar 

  • Waddington CH (1961) Genetic assimilation. Adv Genet 10:257–293

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang M, Sun Y, Wang Y, Li T, Chai G, Jiang W, Shan L, Li C, **ao E, Wang Z (2015) FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.). J Exp Bot 66(5):1165–1178

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7:10269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403. https://doi.org/10.1093/jxb/ers355

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure, and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Yamamori T, Yura T (1982) Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proc Natl Acad Sci U S A 79:860–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Zhang H, Li X et al (2020) A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants 6:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Xu ZS, Li ZY, Chen Y, Chen M, Li LC, Ma YZ (2012) Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses. Int J Mol Sci 13:15706–15723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Zhao X, Burkholder WF et al (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272(5268):1606–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barthakur, S., Bharadwaj, N. (2022). Exploring Genome-Wide Analysis of Heat Shock Proteins (HSPs) in Small Millets as Potential Candidates for Development of Multistress Tolerant Crop Plants. In: Pudake, R.N., Solanke, A.U., Sevanthi, A.M., Rajendrakumar, P. (eds) Omics of Climate Resilient Small Millets. Springer, Singapore. https://doi.org/10.1007/978-981-19-3907-5_17

Download citation

Publish with us

Policies and ethics

Navigation