Part of the book series: Springer Theses ((Springer Theses))

  • 389 Accesses

Abstract

Under broken time-reversal symmetry, a single species of 2D Dirac fermions simultaneously breaks 2D parity symmetry, which gives rise to half-integer quantization of Hall conductance as a manifestation of the parity anomaly in quantum field theory. In this chapter, we demonstrate the half-integer quantization in a synthetic heterostructure termed a semi-magnetic topological insulator, where only one surface state is gapped by magnetic do** and the opposite one is non-magnetic and gapless. We observe the half-integer quantization in Faraday and Kerr rotations as well as Hall conductivity in dc transport at zero magnetic field. Our results open a way for studying unconventional phenomena enabled by a single Dirac fermion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Morimoto, Y. Hatsugai, H. Aoki, Phys. Rev. Lett. 103(11), 116803 (2009)

    Google Scholar 

  2. W.K. Tse, A.H. MacDonald, Phys. Rev. Lett. 105(5), 057401 (2010)

    Google Scholar 

  3. J. Maciejko, X.L. Qi, H.D. Drew, S.C. Zhang, Phys. Rev. Lett. 105(16), 166803 (2010)

    Google Scholar 

  4. K.N. Okada, Y. Takahashi, M. Mogi, R. Yoshimi, A. Tsukazaki, K.S. Takahashi, N. Ogawa, M. Kawasaki, Y. Tokura, Nat. Commun. 7, 12245 (2016)

    Article  ADS  Google Scholar 

  5. X.L. Qi, T.L. Hughes, S.C. Zhang, Phys. Rev. B 78(19), 195424 (2008)

    Google Scholar 

  6. R. Yoshimi, K. Yasuda, A. Tsukazaki, K. Takahashi, N. Nagaosa, M. Kawasaki, Y. Tokura, Nat. Commun. 6, 8530 (2015)

    Article  ADS  Google Scholar 

  7. R. Shimano, G. Yumoto, J. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, H. Aoki, Nat. Commun. 4, 1841 (2013)

    Article  ADS  Google Scholar 

  8. A.M.M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988). https://doi.org/10.1103/PhysRevLett.61.1297. https://link.aps.org/doi/10.1103/PhysRevLett.61.1297

  9. B.P. Dolan, Nucl. Phys. B 554(3), 487 (1999). https://doi.org/10.1016/S0550-3213(99)00326-0. http://www.sciencedirect.com/science/article/pii/S0550321399003260

  10. K. Nomura, N. Nagaosa, Phys. Rev. Lett. 106, 166802 (2011). https://doi.org/10.1103/PhysRevLett.106.166802. https://link.aps.org/doi/10.1103/PhysRevLett.106.166802

  11. J. Checkelsky, R. Yoshimi, A. Tsukazaki, K. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, Y. Tokura, Nat. Phys. 10, 731 (2014). https://doi.org/10.1038/nphys3053

    Article  Google Scholar 

  12. X.L. Qi, R. Li, J. Zang, S.C. Zhang, Science 323(5918), 1184 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. B. Lian, X.Q. Sun, A. Vaezi, X.L. Qi, S.C. Zhang, Proc. Natl. Acad. Sci. USA 115(43), 10938 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Q.L. He, L. Pan, A.L. Stern, E.C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E.S. Choi et al., Science 357(6348), 294 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Kayyalha, D. **ao, R. Zhang, J. Shin, J. Jiang, F. Wang, Y.F. Zhao, R. **ao, L. Zhang, K.M. Fijalkowski et al., Science 367(6473), 64 (2020)

    Article  ADS  Google Scholar 

  16. J.J. He, T. Liang, Y. Tanaka, N. Nagaosa, Commun. Phys. 2(1), 1 (2019)

    Google Scholar 

  17. G. Széchenyi, M. Vigh, A. Kormányos, J. Cserti, J. Phys. Condens. Matter 28(37), 375802 (2016)

    Google Scholar 

  18. W.K. Tse, A.H. MacDonald, Phys. Rev. B 84(20), 205327 (2011)

    Google Scholar 

  19. J. Wang, B. Lian, S.C. Zhang, Phys. Scr. 2015(T164), 014003 (2015)

    Google Scholar 

  20. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Rev. Mod. Phys. 82(2), 1539 (2010)

    Article  ADS  Google Scholar 

  21. M. Kawamura, M. Mogi, R. Yoshimi, A. Tsukazaki, Y. Kozuka, K.S. Takahashi, M. Kawasaki, Y. Tokura, Phys. Rev. B 98(14), 140404 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Mogi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mogi, M. (2022). Half-Integer Quantized Electrodynamics in 3D Topological Insulator. In: Quantized Phenomena of Transport and Magneto-Optics in Magnetic Topological Insulator Heterostructures. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-19-2137-7_6

Download citation

Publish with us

Policies and ethics

Navigation