Pancreatic Lipase (PL) Inhibitors from Medicinal Plants and Their Potential Applications in the Management of Obesity

  • Chapter
  • First Online:
Natural Products as Enzyme Inhibitors
  • 473 Accesses

Abstract

Obesity is increasingly recognized as a global issue, and its prevalence is rising at an alarming rate around the globe. Obese people are more likely to develop a variety of metabolic illnesses, and metabolic syndrome is frequently related to obesity. Obesity is more common as lipid homeostasis becomes disrupted as a result of genetic, environmental, and lifestyle factors. One of the investigated targets for the treatment of obesity is pancreatic lipase (PL) suppression. Orlistat is the only clinically approved drug as a lipase inhibitor and is currently available for long-term obesity treatment. However, various side effects are associated with the long-term usage of Orlistat in obesity management. Hence, it is important to find comparatively safe and effective treatment methods for obesity. Due to the high structural diversity and wide range of biological activities, natural products are the major area of focus for researchers to find new and safe PL inhibitors from natural sources. The present chapter discusses the PL inhibitory activity of different phytoconstituents of medicinal plants and highlights their PL inhibitory potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anigboro AA, Avwioroko OJ, Akeghware O, Tonukari NJ (2021) Anti-obesity, antioxidant and in silico evaluation of Justicia carnea bioactive compounds as potential inhibitors of an enzyme linked with obesity: insights from kinetics, semi-empirical quantum mechanics and molecular docking analysis. Biophys Chem 274:106607

    Article  CAS  PubMed  Google Scholar 

  • Barry MP, Shufa D, William DG, Melinda AB, Taghred A, Christopher HH, Reem FA, Mohammed A, Nahar A, Meera S (2020) Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes Rev 21:e13128

    Google Scholar 

  • Batubara I, Kuspradini H, Muddathir AM, Mitsunaga T (2014) Intsia palembanica wood extracts and its isolated compounds as Propionibacterium acnes lipase inhibitor. J Wood Sci 60(2):169–174

    Article  CAS  Google Scholar 

  • Birari RB, Gupta S, Mohan CG, Bhutani KK (2011) Antiobesity and lipid lowering effects of Glycyrrhiza chalcones: experimental and computational studies. Phytomedicine 18(8–9):795–801

    Article  CAS  PubMed  Google Scholar 

  • Chen KY, Chang SS, Chen CYC (2012) In silico identification of potent pancreatic triacylglycerol lipase inhibitors from traditional Chinese medicine. PLoS One 7(9):e43932

    Google Scholar 

  • Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913–920

    Article  CAS  PubMed  Google Scholar 

  • Cuspidi C, Rescaldani M, Sala C, Grassi G (2014) Left-ventricular hypertrophy and obesity: a systematic review and meta-analysis of echocardiographic studies. J Hypertens 32(1):16–25

    Article  CAS  PubMed  Google Scholar 

  • Dong XH, Li-Lin S, Yun-Feng C, Yi-Nan W, Qi Z, Sheng-Quan F, Da-Chang WU, Shi-Zhu Z, Lu C, Yue B, Guang BG, Jie H (2020) Pancreatic lipase inhibitory constituents from Fructus Psoraleae. Chin J Nat Med 18(5):369–378

    Google Scholar 

  • Dorota S, Anna P, MaÅ‚gorzata R, Alicja ZK (2018) Inhibitory effect of black chokeberry fruit polyphenols on pancreatic lipase searching for most active inhibitors. J Funct Foods 49:196–204

    Article  CAS  Google Scholar 

  • Ercan P, El SN (2016) Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chem 205:163–169

    Article  CAS  PubMed  Google Scholar 

  • Fan Q, Xu F, Liang B, Zou X (2021) The anti-obesity effect of traditional Chinese medicine on lipid metabolism. Front Pharmacol 12:696603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando WIT, Attanayake AMKC, Perera HKI, Sivakanesan R, Jayasinghe L, Araya H, Fujimoto Y (2019) Isolation, identification and characterization of pancreatic lipase inhibitors from Trigonella foenum-graecum seeds. S Afr J Bot 121:418–421

    Article  CAS  Google Scholar 

  • Francisco BO, Carl JL, Steven NB (2016) Obesity and cardiovascular disease. Circ Res 118(11):1752–1770

    Article  CAS  Google Scholar 

  • Giuseppe D, Pamela M (2012) Anti-obesity drugs: a review about their effects and their safety. Expert Opin Drug Saf 11(3):459–471

    Article  CAS  Google Scholar 

  • Golay A, Ybarra J (2005) Link between obesity and type 2 diabetes. Best Pract Res Clin Endocrinol Metab 9(4):649–663

    Article  CAS  Google Scholar 

  • Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habtemariam S (2013) Antihyperlipidemic components of Cassia auriculata aerial parts: identification through in vitro studies. Phytother Res 27:152–155

    Article  CAS  PubMed  Google Scholar 

  • Hochuli E, Kupfer E, Maurer R, Meister W, Mercadal Y, Schmidt K (1987) Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini II. Chemistry and structure elucidation. J Antibiot XL:1086–1091

    Article  Google Scholar 

  • Hou XD, Ge GB, Weng ZM, Dai ZR, Leng YH, Ding LL, ** LL, Yu Y, Cao YF, Hou J (2018) Natural constituents from Cortex Mori Radicis as new pancreatic lipase inhibitors. Bioorg Chem 80:577–584

    Article  CAS  PubMed  Google Scholar 

  • Hou DX, Guan XO, Cao YF, Weng ZM, Hu Q, Liu HB, Jia SN, Zang SZ, Zhou Q, Yang L, Guang-BG HJ (2020) Inhibition of pancreatic lipase by the constituents in St. John’s Wort: in vitro and in silico investigations. Int J Biol Macromol 145:620–633

    Article  CAS  PubMed  Google Scholar 

  • Jang DS, Lee GY, Kim J (2008) A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta. Arch Pharm Res 31:666–670

    Article  CAS  PubMed  Google Scholar 

  • Jiang SZ, Lu WZ, Zong XF, Ruan HY, Liu Y (2016) Obesity and hypertension. Exp Ther Med 12(4):2395–2399

    Article  PubMed  PubMed Central  Google Scholar 

  • Juana S, Teresa P, Mariona P, Aixa T, Andreu P, Catalina P (2008) Oral supplementation with physiological doses of leptin during lactation in rats improves insulin sensitivity and affects food preferences later in life. Endocrinology 149(2):733–740

    Article  CAS  Google Scholar 

  • Kato E, Yama M, Nakagom R, Shibata T, Hosokawa K, Kawabata J (2012) Substratelike water soluble lipase inhibitors from Filipendula kamtschatica. Bioorg Med Chem Lett 22:6410–6412

    Article  CAS  PubMed  Google Scholar 

  • Kiyofumi N, Hisashi M, Hiroshi S, Norihisa N, Naoki K, Tomoe Y, Toshio M, Masayuki Y (2004) Carnosic acid, a new class of lipid absorption inhibitor from sage. Bioorg Med Chem Lett 14:1943–1946

    Article  CAS  Google Scholar 

  • Koga K, Hisamura M, Kanetaka T, Yoshino K, Matsuo Y, Tanaka T (2013) Proanthocyanidin oligomers isolated from salacia reticulata leaves potently inhibit pancreatic lipase activity. J Food Sci 78:H105–H111

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Karmase A, Jagtap S, Shekhar R, Bhutani K (2013) Pancreatic lipase inhibitory activity of cassiamin A, a bianthraquinone from Cassia siamea. Nat Prod Commun 8:195–198

    CAS  PubMed  Google Scholar 

  • Kusari S, Spiteller M (2012) In: Patro LR (ed) Natural resources conservation and management. Manglam Publications, New Delhi, pp 1–32

    Google Scholar 

  • Kusari S, Zhlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogs. J Nat Prod 72:2–7

    Article  CAS  PubMed  Google Scholar 

  • Lee EM, Lee SS, Chung BY, Cho JY, Lee IC, Ahn SR et al (2010) Pancreatic lipase inhibition by C-glycosidic flavones isolated from Eremochloa ophiuroides. Molecules 15(11):8251–8259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luyen NT, Tram LH, Hanh T, Binh P, Dang N, Minh CV, Dat NT (2013) Inhibitors of α-glucosidase, a-amylase akond lipase from Chrysanthemum morifolium. Phytochem Lett 6:322–325

    Article  CAS  Google Scholar 

  • Mariana NP, Allisson BJ, Mario MM, Leonardo GP, Danielle DV, Paula SS, Thaise LT, Claudio VS, Luiz RG, Marcos PF, Salmen E (2017a) Stephalagine, an alkaloid with pancreatic lipase inhibitory activity isolated from the fruit peel of Annona crassiflora Mart. Ind Crop Prod 97:324–329

    Article  CAS  Google Scholar 

  • Mariana NP, Allisson BJ, Mário MM, Leonardo GP, Danielle DV, Paula SS, Thaise LT, Cláudio V, Luiz RG, Marcos P, Foued SE (2017b) Stephalagine, an alkaloid with pancreatic lipase inhibitory activity isolated from the fruit peel of Annona crassiflora Mart. Ind Crops Prod 97:324–329

    Article  CAS  Google Scholar 

  • Martinez-Gonzalez AI, Alvarez-Parrilla E, Diaz-Sánchez AG (2017) In vitro inhibition of pancreatic lipase by polyphenols: a kinetic, fluorescence spectroscopy and molecular docking study. Food Technol Biotechnol 4:519–530

    Google Scholar 

  • Marwa E, Yhiya A, Toshinori N, Kuniyoshi S (2019) White poplar: targeted isolation of pancreatic lipase inhibitors. Ind Crop Prod 141:111778

    Article  CAS  Google Scholar 

  • Matsumoto M, Hosokawa M, Matsukawa N (2010) Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated rats. Eur J Nutr 49:243–249

    Article  CAS  PubMed  Google Scholar 

  • McNulty SJ, Ur E, Williams G (2003) A randomized trial of sibutramine in the management of type 2 diabetic patients treated with metformin. Diabetes Care 26:125–131

    Article  CAS  PubMed  Google Scholar 

  • Mutoh M, Nakada N, Matsukuma S, Ohshima S, Yoshinari K, Watanabe J, Arisawa M (1994) Panclicins, novel pancreatic lipase inhibitors I. Taxonomy, fermentation, isolation, and biological activity. J Antibiot 47:1369–1375

    Article  CAS  Google Scholar 

  • Neda A, Ghasem ND (2021) Phytochemical analysis, antioxidant activity, and pancreatic lipase inhibitory effect of ethanolic extract of Trigonella foenumgraceum L. leaves. Biocatal Agric Biotechnol 32:101961

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura DK, Casida JE (2016) Lipases and their inhibitors in health and disease. Chem Biol Interact 259(B):211–222

    Article  CAS  PubMed  Google Scholar 

  • Padwal Raj S (2007) Drug treatments for obesity orlistat, sibutramine, and rimonabant. Lancet 369(9555):71–77

    Article  CAS  PubMed  Google Scholar 

  • Padwal R, Li SK, Lau DCW (2003a) Long-term pharmacotherapy for overweight and obesity. Int J Obes Relat Metab Disord 27:1437–1446

    Article  CAS  PubMed  Google Scholar 

  • Padwal RS, Li SK, Lau DCW (2003b) Long-term pharmacotherapy for obesity and overweight. Cochrane Database Syst Rev 4:CD004094

    Google Scholar 

  • Pascolutti M, Quinn RJ (2014) Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discov Today 19(3):215–221

    Article  CAS  PubMed  Google Scholar 

  • Patil M, Patil R (2019) Data on the inhibitory effect of endophytic fungi of traditional medicinal plants against pancreatic lipase (PL). Data Brief 27:104797

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil SG, Patil MP, Maheshwari VL, Patil RH (2015) In vitro lipase inhibitory effect and kinetic properties of di-terpenoid fraction from Calotropis procera (Aiton). Biocatal Agric Biotechnol 4(4):579–585

    Article  Google Scholar 

  • Patil M, Patil R, Bhadane B, Mohammad S, Maheshwari V (2017) Pancreatic lipase inhibitory activity of phenolic inhibitor from endophytic Diaporthe arengae. Biocatal Agric Biotechnol 10:234–238

    Article  CAS  Google Scholar 

  • Patil R, Patil S, Maheshwari V, Patil M (2021) Inhibitory kinetics and mechanism of pentacyclic triterpenoid from endophytic Colletotrichum gigasporum against pancreatic lipase. Int J Biol Macromol 175:270–280

    Article  CAS  PubMed  Google Scholar 

  • Paulina W, Marta N, Wojciech B, WÅ‚odzimierz G, Mariola O (2014) Pancreatic α-amylase and lipase inhibitory activity of polyphenolic compounds present in the extract of black chokeberry (Aronia melanocarpa L.). Process Biochem 49(9):1457–1463

    Article  CAS  Google Scholar 

  • Pierre MB, Isabelle KV, Katie L, Aline M, Marie AM, Virginie B, Geneviève T, Dominique L, Cedric M (2013) High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle. Endocrinology 154(4):1444–1453

    Article  CAS  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Sakulnarmrat K, Srzednicki G, Konczak I (2014) Composition and inhibitory activities towards digestive enzymes of polyphenolic-rich fractions of Davidson’s plum and quandong. LWT - Food Sci Technol 57(1):366–375

    Article  CAS  Google Scholar 

  • Sakulnarmrat K, Srzednicki G, Konczak I (2015) Antioxidant, enzyme inhibitory and antiproliferative activity of polyphenolic-rich fraction of commercial dry ginger powder. Int J Food Sci Technol 50:2229–2235

    Article  CAS  Google Scholar 

  • Sanchez L, Fanghanel G, Yamamoto J, Martinez L, Campos FE, Berber A (2004) Use of sibutramine in overweight adult hispanic patients with type 2 diabetes mellitus. Clin Ther 26:1427–1435

    Article  CAS  Google Scholar 

  • Shivkumar S, Alagawadi R (2013) Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet-fed female rats. Pharm Biol 51(5):607–613

    Article  CAS  Google Scholar 

  • Simmonds M, Llewellyn A, Owen CG, Woolacott N (2016) Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev 17:95107

    Google Scholar 

  • Sridhar NCS, Mutya S, Paul AT (2017) Bis-indole alkaloids from Tabernaemontana divaricata as potent pancreatic lipase inhibitors: molecular modelling studies and experimental validation. Med Chem Res 26:1268–1278

    Article  CAS  Google Scholar 

  • Sukhdev S, Singh K (2013) Therapeutic role of phytomedicines on obesity: importance of herbal pancreatic lipase inhibitors. Int Res J Med Sci 1:15–26

    Google Scholar 

  • Talaulikar V (2020) Chapter 16 - Medical interventions to improve outcomes in infertile obese women planning for pregnancy. In: Mahmood TA, Arulkumaran S, Chervenak FA (eds) Obesity and gynecology, 2nd edn. Elsevier, Amsterdam, pp 143–150

    Chapter  Google Scholar 

  • Tao Y, Zhang Y, Wang Y, Cheng Y (2013) Hollow fiber-based affinity selection combined with high performance liquid chromatography–mass spectroscopy for rapid screening lipase inhibitors from lotus leaf. Anal Chim Acta 785:75–81

    Article  CAS  PubMed  Google Scholar 

  • Xuli W, He W, Zhang H, Li Y, Liu Z, He Z (2014) Acteoside: a lipase inhibitor from the Chinese tea Ligustrum purpurascens kudingcha. Food Chem 142:306–310

    Article  CAS  Google Scholar 

  • Yoshioka Y, Yoshimura N, Matsumura S, Wada H, Hoshino M, Makino S, Morimoto M (2019) α-Glucosidase and pancreatic lipase inhibitory activities of diterpenes from Indian mango ginger (Curcuma amada Roxb.) and its derivatives. Molecules 24(22):4071

    Article  CAS  PubMed Central  Google Scholar 

  • Yuda N, Tanaka M, Suzuki M, Asano Y, Ochi H, Iwatsuki K (2012) Polyphenols extracted from black tea (Camellia sinensis) residue by hot-compressed water and their inhibitory effect on pancreatic lipase in vitro. J Food Sci 77(12):H254–HH61. https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patil, S., Patil, M., Maheshwari, V.L., Patil, R.H. (2022). Pancreatic Lipase (PL) Inhibitors from Medicinal Plants and Their Potential Applications in the Management of Obesity. In: Maheshwari, V.L., Patil, R.H. (eds) Natural Products as Enzyme Inhibitors. Springer, Singapore. https://doi.org/10.1007/978-981-19-0932-0_7

Download citation

Publish with us

Policies and ethics

Navigation