Log in

Characterization, Anti-glycation, Anti-inflammation, and Lipase Inhibitory Properties of Rauvolfia vomitoria Leaf Extract: In Vitro and In Silico Evaluations for Obesity Treatment

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pancreatic lipase (PLP) is an enzyme responsible for the catalytic hydrolysis of fats and its inhibition is relevant for obesity management. Side effects linked with orthodox inhibitors have, however, paved the way for an increased search for safe natural sources. The present study investigated the anti-glycation, anti-inflammatory, and anti-lipase properties of Rauvolfia vomitoria aqueous (ARV), ethanolic (ERV), and methanolic (MRV) leaf extracts coupled with the molecular interactions of selected bioactive compounds with PLP using in vitro and in silico techniques. Phytochemical constituents were characterized using spectroscopic techniques. Drug-likeness and chemical reactivity profile of selected bioactive compounds were analyzed using SwissADME and quantum chemical calculations. FT-IR and GC-MS affirmed the presence of phenolic compounds including 3-phenyl-2-ethoxypropylphthalimide and 5-methyl-2-phenyl-1H-indole. All extracts showed moderate anti-glycation, anti-inflammatory, and lipase inhibitory capacities relative to standard controls. However, MRV exhibited the highest lipase inhibition (IC50, 0.17 ± 0.01 mg/mL), using a mixed-inhibition pattern. MRV interaction with PLP resulted in decreased secondary structure components of PLP (α-sheet, β-turn). MRV compounds (MCP20, MCP28, etc.) exhibited low chemical hardness, EHOMO-ELUMO energy gap, and high chemical reactivity. Foremost MRV compounds obeyed Lipinski’s rule of five for drug-likeness and interacted with PHE-78 amongst others at PLP catalytic domain with high binding affinity (≥ − 9.3 kcal/mol). Pi-alkyl hydrophobic interaction and hydrogen bonding were predominantly involved. Our findings provide scientific insights into the ethnotherapeutic uses of R. vomitoria extracts for the management of obesity and related complications, plus useful information for optimizable drug-like candidates against obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors are bound to issues of experimental data on rational grounds, but relevant data are already made available in the article and in the Supplementary file.

References

  1. Akpanabiatu, M. I., Uboh, F. E., Ekanem, T. B., Umoh, I. B., Eyong, E. U., & Ukafia, S. O. (2009). The effect of interaction of Rauwolfia Vomitoria root bark extract with vitamin E on rats’ liver enzymes. Turkish Journal of Biology, 33, 189–194.

    CAS  Google Scholar 

  2. Al-Omar, M. A., Al-Suwailem, A., Al-Tamimi, A., & Al-Suhibani, M. (2006). Safety and mechanism of action of orlistat (tetrahydrolipstatin) as the first local antiobesity drug. Journal of Applied Sciences Research, 2, 205–208.

    Google Scholar 

  3. Alam, M. S., & Lee, D. U. (2021). Molecular structure, spectral (FT-IR, FT-Raman, Uv-Vis, and fluorescent) properties and quantum chemical analyses of azomethine derivative of 4-aminoantipyrine. Journal of Molecular Structure, 1227, 129512.

    Article  CAS  Google Scholar 

  4. Alias, N., Leow, T., Ali, M., Tajudin, A., Salleh, A., & Rnzra, R. (2017). Anti-obesity potential of selected tropical plants via pancreatic lipase inhibition. Advances in Obesity, Weight Management and Control, 6, 1–11.

    Google Scholar 

  5. Anigboro, A. A., Avwioroko, O. J., & Tonukari, N. J. (2018). Brillantasia patula aqueous leaf extract averts hyperglycermia, lipid peroxidation, and alterations in hematological parameters in alloxan-induced diabetic rats. International Journal of Biomedical Sciences, 6, 43–51.

    Google Scholar 

  6. Anigboro, A. A., Avwioroko, O. J., Ohwokevwo, O. A., & Pessu, B. (2019). Bioactive components of Ficus Exasperata, Moringa oleifera and Jatropha tanjorensis leaf extracts and evaluation of their antioxidant properties. EurAsian Journal of Biosciences, 13, 1763–1769.

  7. Anigboro, A. A., Avwioroko, O. J., Akeghware, O., & Tonukari, N. J. (2021). Anti-obesity, antioxidant and in silico evaluation of Justicia carnea bioactive compounds as potential inhibitors of an enzyme linked with obesity: Insights from kinetics, semi-empirical quantum mechanics and molecular docking analysis. Biophysical Chemistry, 274, 106607.

    Article  CAS  PubMed  Google Scholar 

  8. Anigboro, A. A., Akeghware, O., Avwioroko, O. J., & Tonukari, N. J. J. B. R. (2022). Evaluation of bio-active constituents and in vitro antioxidant potentials of the ethanolic leaf extracts of Dracaena Mannii, Euphorbia hirta and Senna alata. Bio-Research, 20(3), 1753–1762.

  9. Anigboro, A. A., Ajoh, A. I., Avwioroko, O. J., Ehwarieme, D. A., & Tonukari, N. J. J. C. A. (2023). Solid-state fermentation of Cassava (Manihot esculenta) peels using Rhizopus Oligosporus: Application of the fermented peels in yeast production and characterization of α-amylase enzyme produced in the process. Chemistry Africa, 6(3), 1669–1678. https://doi.org/10.1007/s42250-022-00582-3

  10. Antao, A. M., Tyagi, A., Kim, K. S., & Ramakrishna, S. (2020). Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers, 12, 1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Atanu, F. O., Ikeojukwu, A., Owolabi, P. A., & Avwioroko, O. J. (2022). Evaluation of chemical composition, in vitro antioxidant, and antidiabetic activities of solvent extracts of Irvingia gabonensis leaves. Heliyon, 8, e09922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Avwioroko, O. J., Anigboro, A. A., Atanu, F. O., Otuechere, C. A., Alfred, M. O., Abugo, J. N., & Omorogie, M. O. (2020). Investigation of the binding interaction of α-amylase with Chrysophyllum albidum seed extract and its silver nanoparticles: A multi-spectroscopic approach. Chemical Data Collections, 29, 100517.

    Article  CAS  Google Scholar 

  13. Avwioroko, O. J., Anigboro, A. A., Otuechere, C. A., Atanu, F. O., Dairo, O. F., Oyetunde, T. T., Ilesanmi, O. B., Apiamu, A., Ejoh, A. S., & Olorunnisola, D. (2022). α-Amylase inhibition, anti-glycation property and characterization of the binding interaction of citric acid with α-amylase using multiple spectroscopic, kinetics and molecular docking approaches. Journal of Molecular Liquids, 360, 119454. https://doi.org/10.1016/j.molliq.2022.119454

  14. Bisong, S. A., Brown, R., & Osim, E. E. (2010). Comparative effects of Rauwolfia Vomitoria and chlorpromazine on locomotor behaviour and anxiety in mice. Journal of Ethnopharmacology, 132, 334–339.

    Article  PubMed  Google Scholar 

  15. Cardullo, N., Muccilli, V., Pulvirenti, L., Cornu, A., Pouységu, L., Deffieux, D., Quideau, S., & Tringali, C. (2020). C-glucosidic ellagitannins and galloylated glucoses as potential functional food ingredients with anti-diabetic properties: A study of α-glucosidase and α-amylase inhibition. Food Chemistry, 313, 126099.

    Article  PubMed  Google Scholar 

  16. Das, A., Matada, G. S. P., Dhiwar, P. S., Raghavendra, N. M., Abbas, N., Singh, E., Ghara, A., & Shenoy, G. P. (2023). Molecular recognition of some novel mTOR kinase inhibitors to develop anticancer leads by drug-likeness, molecular docking and molecular dynamics based virtual screening strategy. Computational Toxicology, 25, 100257.

    Article  CAS  Google Scholar 

  17. de Heredia, F. P., Gómez-Martínez, S., & Marcos, A. (2012). Obesity, inflammation and the immune system. Proceedings of the Nutrition Society, 71, 332–338.

  18. Deora, N., & Venkatraman, K. (2022). Lipase activity inhibited by Aloenin A: Glycoside from Aloe vera (L.) Burm. f.-In vitro and molecular docking studies. Journal of Molecular Recognition, 36(2), e3002. https://doi.org/10.1002/jmr.3002

  19. Duan, X., Li, M., Ji, B., Liu, X., & Xu, X. (2017). Effect of fertilization on structural and molecular characteristics of hen egg ovalbumin. Food Chemistry, 221, 1340–1345.

    Article  CAS  PubMed  Google Scholar 

  20. Ehiagbonare, E. J. (2007). Regeneration of Rauwolfia Vomitoria. African Journal of Biotechnology, 6(8), 979–981.

  21. Eşme, A., & Sağdınç, S. (2017). Spectroscopic (FT–IR, FT–Raman, UV–Vis) analysis, conformational, HOMO-LUMO, NBO and NLO calculations on monomeric and dimeric structures of 4–pyridazinecarboxylic acid by HF and DFT methods. Journal of Molecular Structure, 1147, 322–334.

    Article  ADS  Google Scholar 

  22. Fategbe, M. A., Avwioroko, O. J., & Ibukun, E. O. (2021). Comparative biochemical evaluation of the Proximate, Mineral, and Phytochemical constituents of Xylopia aethiopica whole fruit, seed, and pericarp. Preventive Nutrition and Food Science, 26, 219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fevzioglu, M., Ozturk, O. K., Hamaker, B. R., & Campanella, O. H. (2020). Quantitative approach to study secondary structure of proteins by FT-IR spectroscopy, using a model wheat gluten system. International Journal of Biological Macromolecules, 164, 2753–2760.

    Article  CAS  PubMed  Google Scholar 

  24. Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., & Shimomura, I. (2017). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation, 114, 1752–1761.

    Article  Google Scholar 

  25. Gunathilake, K., Ranaweera, K., & Rupasinghe, H. J. P. (2018). Influence of boiling, steaming and frying of selected leafy vegetables on the in vitro anti-inflammation associated biological activities. Plants, 7(1), 22. https://doi.org/10.3390/plants7010022

  26. Ha, M. T., Tran, M. H., Ah, K. J., Jo, K. J., Kim, J., Kim, W. D., Cheon, W. J., Woo, M. H., Ryu, S. H., & Min, B. S. (2016). Potential pancreatic lipase inhibitory activity of phenolic constituents from the root bark of Morus alba L. Bioorganic and Medicinal Chemistry Letters, 26, 2788–2794.

    Article  CAS  PubMed  Google Scholar 

  27. Jeong, D., & Priefer, R. (2022). Anti-obesity weight loss medications: Short-term and long-term use. Life Sciences, 306, 120825. https://doi.org/10.1016/j.lfs.2022.120825

  28. Kalita, D., Holm, D. G., LaBarbera, D. V., Petrash, J. M., & Jayanty, S. S. (2018). Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PloS One, 13, e0191025.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim, B. Y., Kang, S. M., Kang, J. H., Kim, K. K., Kim, B., Kim, S. J., Kim, Y. H., Kim, J. H., Kim, J. H., & Nam, G. E. (2020). Current long-term pharmacotherapies for the management of obesity. Journal of Obesity and Metabolic Syndrome, 29, 99–109.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kutalek, R., & Prinz, A. (2007). African Medicinal Plants in Yaniv Z and U. Bachrach (Eds.) Handbook of medicinal plants. CBS Publishers.

  31. Li, Y., Khan, M. S., Akhter, F., Husain, F. M., Ahmad, S., & Chen, L. (2019). The non-enzymatic glycation of LDL proteins results in biochemical alterations-A correlation study of apo B100-AGE with obesity and rheumatoid arthritis. International Journal of Biological Macromolecules, 122, 195–200.

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y., Li, G., Sun, H., & Chen, Y. (2021). Characterization of a novel sn1, 3 lipase from Ricinus communis L. suitable for production of oleic acid-palmitic acid-glycerol oleate. Scientific Reports, 11, 1–12.

    Google Scholar 

  33. Liu, S., Li, D., Huang, B., Chen, Y., Lu, X., & Wang, Y. (2013). Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. Journal of Ethnopharmacology, 149, 263–269.

    Article  CAS  PubMed  Google Scholar 

  34. Mahnashi, M. H., Alyami, B. A., Alqahtani, Y. S., Jan, M. S., Rashid, U., Sadiq, A., & Alqarni, A. O. (2021). Phytochemical profiling of bioactive compounds, anti-inflammatory and analgesic potentials of Habenaria Digitata Lindl.: Molecular docking based synergistic effect of the identified compounds. Journal of Ethnopharmacology, 273, 113976.

    Article  CAS  PubMed  Google Scholar 

  35. Mazzeo, F., Vetrano, G., Nocerino, D., & Carpino, M. (2010). Physical activity and exercise in the prevention and treatment of obesity. Medicină Sportivă. Journal of the Romanian Sports Medicine Society, 6, 1319–1331.

    Google Scholar 

  36. Mecha, I., & Adegbola, T. (1980). Chemical Composition of some Southern Nigeria Forage Eaten by Goats. In: H. N. le Houérou (Ed.), Chemical composition of some southern Nigeria forage eaten by goats. International Livestock Centre for Africa, Addis Ababa, Ethiopia (pp. 303–306). https://www.cabidigitallibrary.org/doi/full/10.5555/19850772491

  37. Mun, C. S., Hui, L. Y., Sing, L. C., Karunakaran, R., & Ravichandran, V. (2022). Multi-targeted molecular docking, pharmacokinetics, and drug-likeness evaluation of coumarin based compounds targeting proteins involved in development of COVID-19. Saudi Journal of Biological Sciences, 29, 103458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oborirhovo, O., Anigboro, A. A., Avwioroko, O. J., Akeghware, O., Okafor, B. J., Ovowa, F. O., & Tonukari, N. J. (2023). GC-MS Characterized bioactive constituents and antioxidant capacities of aqueous and ethanolic leaf extracts of Rauvolfia vomitoria: A comparative study. Nigerian Journal of Science and Environment, 21(2), 479–499.

  39. Olasehinde, T. A., Odjadjare, E. C., Mabinya, L. V., Olaniran, A. O., & Okoh, A. I. (2019). Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of β-amyloid fibrils. Electronic Journal of Biotechnology, 40, 1–9.

    Article  CAS  Google Scholar 

  40. Osei Akoto, C., Acheampong, A., Boakye, Y. D., Asante, B., Ohene, S., & Amankwah, F. (2021). Anthelminthic, anti-inflammatory, antioxidant, and antimicrobial activities and FTIR analyses of Vernonia camporum stem-bark. Journal of Chemistry, 2021, 1–15.

    Article  Google Scholar 

  41. Oyewole, R. O., Oyebamiji, A. K., & Semire, B. (2020). Theoretical calculations of molecular descriptors for anticancer activities of 1, 2, 3-triazole-pyrimidine derivatives against gastric cancer cell line (MGC-803): DFT, QSAR and docking approaches. Heliyon 6, e03926.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Prakash, P., Kumari, N., Gayathiri, E., Selvam, K., Ragunathan, M. G., Chandrasekaran, M., Al-Dosary, M. A., Hatamleh, A. A., Nadda, A. K., & Kumar, M. (2021). In vitro and in silico toxicological properties of natural antioxidant therapeutic agent Azima tetracantha. LAM. Antioxidants, 10, 1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Quaresma, D. M., Justino, A. B., Sousa, R. M., Munoz, R. A., de Aquino, F. J., Martins, M. M., Goulart, L. R., Pivatto, M., Espindola, F. S., & de Oliveira, A. (2020). Antioxidant compounds from Banisteriopsis argyrophylla leaves as α-amylase, α-glucosidase, lipase, and glycation inhibitors. Bioorganic Chemistry, 105, 104335.

    Article  CAS  PubMed  Google Scholar 

  44. Quinn, D. M., Shirai, K., Jackson, R. L., & Harmony, J. A. (1982). Lipoprotein lipase-catalyzed hydrolysis of water-soluble p-nitrophenyl esters. Inhibition by apolipoprotein C-II. Biochemistry, 21, 6872–6879.

    Article  CAS  PubMed  Google Scholar 

  45. Razzak, M. A., & Choi, S. S. (2021). Delineating the interaction mechanism of glabridin and ovalbumin by spectroscopic and molecular docking techniques. Food Chemistry, 347, 128981.

    Article  CAS  PubMed  Google Scholar 

  46. Razzak, M. A., Lee, J. E., & Choi, S. S. (2019). Structural insights into the binding behavior of isoflavonoid glabridin with human serum albumin. Food Hydrocolloids, 91, 290–300.

    Article  CAS  Google Scholar 

  47. Singh, R. G., Negi, P. S., & Radha, C. (2013). Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. Journal of Functional Foods, 5, 1883–1891.

    Article  Google Scholar 

  48. Singla, P., Bardoloi, A., & Parkash, A. A. (2010). Metabolic effects of obesity: A review. World Journal of Diabetes, 1, 76.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Song, Q., Liu, J., Dong, L., Wang, X., & Zhang, X. (2021). Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomedicine & Pharmacotherapy, 140, 111750.

    Article  CAS  Google Scholar 

  50. Sundarrajan, S., Nandakumar, M. P., Prabhu, D., Jeyaraman, J., & Arumugam, M. (2020). Conformational insights into the inhibitory mechanism of phyto-compounds against src kinase family members implicated in psoriasis. Journal of Biomolecular Structure and Dynamics, 38, 1398–1414.

    Article  CAS  PubMed  Google Scholar 

  51. Tonukari, N. J., Avwioroko, O. J., Seitonkumoh, G., Enuma, C. C., Sakpa, S. O., Eraga, L., Ezedom, T., Edema, U., Odiyoma, E., & Anigboro, A. A. (2013). Nutritional compositions and antioxidant properties of typical Urhobo Nigerian soups. Nigerian Journal of Technological Research, 8, 55–63.

    Article  Google Scholar 

  52. Turer, A., & Scherer, P. (2012). Adiponectin: Mechanistic insights and clinical implications. Diabetologia, 55, 2319–2326.

    Article  CAS  PubMed  Google Scholar 

  53. WHO (2023). Obesity and overweight, World Health Organization, 2023. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 17/01/2023.

  54. Yun, J. W. (2010). Possible anti-obesity therapeutics from nature–A review. Phytochemistry, 71, 1625–1641.

    Article  CAS  PubMed  Google Scholar 

  55. Zeng, L., Zhang, G., Liao, Y., & Gong, D. (2016). Inhibitory mechanism of morin on α-glucosidase and its anti-glycation properties. Food & Function, 7, 3953–3963.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely appreciate the unequalled efforts of all laboratory assistants and technical personnel who provided assistance during this research work. The fluorescence spectrophotometer used in this study was part of the instrument grant given to Prof. E.I. Unuabonah by Alexander von Humboldt. The authors are also highly grateful to them.

Funding

We do hereby affirm that no funding agency in the public, commercial, or not-for-profit sector provided financial support for this study or its publication.

Author information

Authors and Affiliations

Authors

Contributions

The successful completion of the research work/manuscript publication was made possible by the efforts of all the authors: Akpovwehwee A. Anigboro, Oghenetega J. Avwioroko, Onoriode Akeghware, Ernest U. Durugbo, and Nyerhovwo J. Tonukari: conceived and designed the experiments; Onoriode Akeghware, Omoerere Oborirhovo, Augustine Apiamu, Victor I. Olaoye, and Oghenetega J. Avwioroko: conducted the experiments; Onoriode Akeghware, Oghenetega J. Avwioroko, and Omoerere Oborirhovo: analyzed the data; Akpovwehwee A. Anigboro, Oghenetega J. Avwioroko, Uchechukwu S. Ezealigo, Ernest U. Durugbo, and Nyerhovwo J. Tonukari: validated the results; Onoriode Akeghware, Oghenetega J. Avwioroko, Uchechukwu S. Ezealigo, Augustine Apiamu, Victor I. Olaoye, and Ernest U. Durugbo: developed the manuscript first draft; Akpovwehwee A. Anigboro, Oghenetega J. Avwioroko,, and Nyerhovwo J. Tonukari: supervised the experiments and manuscript drafting. All authors read and consented to the publication of the manuscript.

Corresponding authors

Correspondence to Akpovwehwee A. Anigboro or Oghenetega J. Avwioroko.

Ethics declarations

Ethical Approval

This study was performed in line with the principles of the Institutional Ethical Committee (approval no. BCH/REC/2022/006), following international standards.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 366 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anigboro, A.A., Avwioroko, O.J., Oborirhovo, O. et al. Characterization, Anti-glycation, Anti-inflammation, and Lipase Inhibitory Properties of Rauvolfia vomitoria Leaf Extract: In Vitro and In Silico Evaluations for Obesity Treatment. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04865-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04865-y

Keywords

Navigation