The Future of Nanomedicine

  • Reference work entry
  • First Online:
Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

Abstract

The recent three decades have witnessed a tremendous progress of nanotechnology in the medical field. The emergence of a huge number of nanomedicines has demonstrated their potential in both disease diagnosis and treatment and is promising to take place of conventional diagnosis and therapeutic approaches in the future. This chapter mainly reviews the current state of nanomedicine in preclinical and clinical studies and envisions the future of nanomedicine in life-threatening disease treatment, life quality improvement, and its combination with other cutting-edge technologies. We also propose three main characteristics desired for future nanomedicine, including multifunctionality (by integrating properties such as diagnosis, imaging, and therapy), intelligence (through utilizing artificial intelligence-guided design of nanostructure and the application of nanorobots), and precision and personalization (through combining patient stratification and customized regimen selection). Finally, common challenges existing for translational nanomedicine will be discussed to accelerate the clinical translation of nanomedicine, including its safety, scale-up/cost, and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kujawa P, Winnik FM (2013) Innovation in nanomedicine through materials nanoarchitectonics. Langmuir 29(24):7354–7361

    Article  Google Scholar 

  2. Wang T, Wang C (2019) Functional metallofullerene materials and their applications in nanomedicine, magnetics, and electronics. Small 15(48):e1901522

    Article  Google Scholar 

  3. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17(1):20–37

    Article  Google Scholar 

  4. Jackman JA, Lee J, Cho NJ (2016) Nanomedicine for infectious disease applications: innovation towards broad-spectrum treatment of viral infections. Small 12(9):1133–1139

    Article  Google Scholar 

  5. Lobatto ME, Fuster V, Fayad ZA, Mulder WJ (2011) Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discov 10(11):835–852

    Article  Google Scholar 

  6. Crommelin DJA, Van Hoogevest P, Storm G (2020) The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release 318:256–263

    Article  Google Scholar 

  7. Deng G, Peng X, Sun Z et al (2020) Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-II fluorescence-guided glioma theranostics. ACS Nano 14(9):11452–11462

    Article  Google Scholar 

  8. Wang M, Hu L, Xu C (2017) Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip 17(8):1373–1387

    Article  Google Scholar 

  9. Heinrich MA, Martina B, Prakash J (2020) Nanomedicine strategies to target coronavirus. Nano Today 35:100961

    Article  Google Scholar 

  10. Lynch I, Feitshans IL, Kendall M (2015) ‘Bio-nano interactions: new tools, insights and impacts’: summary of the Royal Society discussion meeting. Philos Trans R Soc Lond Ser B Biol Sci 370(1661):20140162

    Article  Google Scholar 

  11. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48

    Article  Google Scholar 

  12. Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK (2014) Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release 183:51–66

    Article  Google Scholar 

  13. Feng X, Lv F, Liu L et al (2010) Conjugated polymer nanoparticles for drug delivery and imaging. ACS Appl Mater Interfaces 2(8):2429–2435

    Article  Google Scholar 

  14. Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132(3):171–183

    Article  Google Scholar 

  15. Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs. P T 42(12):742–755

    Google Scholar 

  16. Barenholz Y (2012) Doxil(R) – the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  Google Scholar 

  17. Dawidczyk CM, Kim C, Park JH et al (2014) State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release 187:133–144

    Article  Google Scholar 

  18. Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: an update. Bioeng Transl Med 4(3):e10143

    Article  Google Scholar 

  19. Press NJ, Joly E, Ertl P (2019) Natural product drug delivery: a special challenge? Prog Med Chem 58:157–187

    Article  Google Scholar 

  20. Chue P, Chue J (2012) A review of paliperidone palmitate. Expert Rev Neurother 12(12):1383–1397

    Article  Google Scholar 

  21. Zhao N, Zeng Z, Zu Y (2018) Self-assembled aptamer-nanomedicine for targeted chemotherapy and gene therapy. Small 14(4):1702103

    Google Scholar 

  22. Jiang CT, Chen KG, Liu A et al (2021) Immunomodulating nano-adaptors potentiate antibody-based cancer immunotherapy. Nat Commun 12(1):1359

    Article  Google Scholar 

  23. Zhao L, Seth A, Wibowo N et al (2014) Nanoparticle vaccines. Vaccine 32(3):327–337

    Article  Google Scholar 

  24. Hoy SM (2018) Patisiran: first global approval. Drugs 78(15):1625–1631

    Article  Google Scholar 

  25. Kulkarni JA, Witzigmann D, Chen S, Cullis PR, Van Der Meel R (2019) Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res 52(9):2435–2444

    Article  Google Scholar 

  26. Caplacizumab DS (2018) First global approval. Drugs 78(15):1639–1642

    Article  Google Scholar 

  27. Tang Z, Zhang X, Shu Y, Guo M, Zhang H, Tao W (2021) Insights from nanotechnology in COVID-19 treatment. Nano Today 36:101019

    Article  Google Scholar 

  28. Junghanns JU, Muller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 3(3):295–309

    Google Scholar 

  29. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18

    Article  Google Scholar 

  30. Zhao YX, Shaw A, Zeng X, Benson E, Nystrom AM, Hogberg B (2012) DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6(10):8684–8691

    Article  Google Scholar 

  31. Song Z, Chen X, You X et al (2017) Self-assembly of peptide amphiphiles for drug delivery: the role of peptide primary and secondary structures. Biomater Sci 5(12):2369–2380

    Article  Google Scholar 

  32. Almeida JP, Figueroa ER, Drezek RA (2014) Gold nanoparticle mediated cancer immunotherapy. Nanomedicine 10(3):503–514

    Article  Google Scholar 

  33. Mainini F, Eccles MR (2020) Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules 25(11):2692

    Article  Google Scholar 

  34. Jiang Q, Liu S, Liu J, Wang ZG, Ding B (2019) Rationally designed DNA-origami nanomaterials for drug delivery in vivo. Adv Mater 31(45):e1804785

    Article  Google Scholar 

  35. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20(2):101–124

    Article  Google Scholar 

  36. Liu X, Situ A, Kang Y et al (2016) Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS Nano 10(2):2702–2715

    Article  Google Scholar 

  37. Shafei A, El-Bakly W, Sobhy A et al (2017) A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed Pharmacother 95:1209–1218

    Article  Google Scholar 

  38. Mu Q, Jeon M, Hsiao MH et al (2015) Stable and efficient paclitaxel nanoparticles for targeted glioblastoma therapy. Adv Healthc Mater 4(8):1236–1245

    Article  Google Scholar 

  39. Zhao Y, Houston ZH, Simpson JD et al (2017) Using peptide aptamer targeted polymers as a model nanomedicine for investigating drug distribution in cancer nanotheranostics. Mol Pharm 14(10):3539–3549

    Article  Google Scholar 

  40. Gao H, Yang Z, Zhang S et al (2013) Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep 3:2534

    Article  Google Scholar 

  41. Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2(8):1639–1644

    Article  Google Scholar 

  42. Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 71(2):251–256

    Article  Google Scholar 

  43. Gong YK, Winnik FM (2012) Strategies in biomimetic surface engineering of nanoparticles for biomedical applications. Nanoscale 4(2):360–368

    Article  Google Scholar 

  44. Fu S, Liang M, Wang Y et al (2019) Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl Mater Interfaces 11(2):1841–1854

    Article  Google Scholar 

  45. Li S, Zhang Y, Ho S-H et al (2020) Combination of tumour-infarction therapy and chemotherapy via the co-delivery of doxorubicin and thrombin encapsulated in tumour-targeted nanoparticles. Nat Biomed Eng 4(7):732–742

    Article  Google Scholar 

  46. Prasad P, Gordijo CR, Abbasi AZ et al (2014) Multifunctional albumin–MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 8(4):3202–3212

    Article  Google Scholar 

  47. Munakata L, Tanimoto Y, Osa A et al (2019) Lipid nanoparticles of type-A CpG D35 suppress tumor growth by changing tumor immune-microenvironment and activate CD8 T cells in mice. J Control Release 313:106–119

    Article  Google Scholar 

  48. Cheng N, Watkins-Schulz R, Junkins RD et al (2018) A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 3(22):e120638

    Article  Google Scholar 

  49. Tu K, Deng H, Kong L et al (2020) Resha** tumor immune microenvironment through acidity-responsive nanoparticles featured with CRISPR/Cas9-mediated programmed death-ligand 1 attenuation and chemotherapeutics-induced immunogenic cell death. ACS Appl Mater Interfaces 12(14):16018–16030

    Article  Google Scholar 

  50. Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64(13):1363–1384

    Article  Google Scholar 

  51. Cohen ML (2000) Changing patterns of infectious disease. Nature 406(6797):762–767

    Article  Google Scholar 

  52. Palagyi A, Marais BJ, Abimbola S, Topp SM, Mcbryde ES, Negin J (2019) Health system preparedness for emerging infectious diseases: a synthesis of the literature. Glob Public Health 14(12):1847–1868

    Article  Google Scholar 

  53. Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R (2018) Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin Drug Deliv 15(1):93–114

    Article  Google Scholar 

  54. Abd Ellah NH, Tawfeek HM, John J, Hetta HF (2019) Nanomedicine as a future therapeutic approach for hepatitis C virus. Nanomedicine 14(11):1471–1491

    Article  Google Scholar 

  55. Cojocaru F-D, Botezat D, Gardikiotis I et al (2020) Nanomaterials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics 12(2):171

    Article  Google Scholar 

  56. Hendricks GL, Weirich KL, Viswanathan K et al (2013) Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus. J Biol Chem 288(12):8061–8073

    Article  Google Scholar 

  57. Van Rijt SH, Bein T, Meiners S (2014) Medical nanoparticles for next generation drug delivery to the lungs. Eur Respir J 44(3):765–774

    Article  Google Scholar 

  58. Gorshkov K, Susumu K, Chen J et al (2020) Quantum dot-conjugated SARS-CoV-2 spike pseudo-virions enable tracking of angiotensin converting enzyme 2 binding and endocytosis. ACS Nano 14(9):12234–12247

    Article  Google Scholar 

  59. Weiss C, Carriere M, Fusco L et al (2020) Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano 14(6):6383–6406

    Article  Google Scholar 

  60. Rao L, Tian R, Chen X (2020) Cell-membrane-mimicking nanodecoys against infectious diseases. ACS Nano 14(3):2569–2574

    Article  Google Scholar 

  61. Singh A (2021) Eliciting B cell immunity against infectious diseases using nanovaccines. Nat Nanotechnol 16(1):16–24

    Article  Google Scholar 

  62. Weber B, Kappel C, Scherer M et al (2017) Peptosomes for vaccination: combining antigen and adjuvant in polypept(o)ide-based polymersomes. Macromol Biosci 17(10). https://doi.org/10.1002/mabi.201700061

  63. Chakravarty M, Vora A (2021) Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res 11(3):748–787

    Article  Google Scholar 

  64. Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D (2019) Nanoparticle-based vaccines against respiratory viruses. Front Immunol 10:22

    Article  Google Scholar 

  65. Afkhami S, D’agostino MR, Zhang A et al (2022) Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell. https://doi.org/10.1016/j.cell.2022.02.005

  66. Zhuo SH, Wu JJ, Zhao L, Li WH, Zhao YF, Li YM (2022) A chitosan-mediated inhalable nanovaccine against SARS-CoV-2. Nano Res. https://doi.org/10.1007/s12274-021-4012-91-10

  67. Carroll EC, ** L, Mori A et al (2016) The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-sting-dependent induction of type I interferons. Immunity 44(3):597–608

    Article  Google Scholar 

  68. Li X, Aldayel AM, Cui Z (2014) Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J Control Release 173:148–157

    Article  Google Scholar 

  69. Zhu M, Du L, Zhao R et al (2020) Cell-penetrating nanoparticles activate the inflammasome to enhance antibody production by targeting microtubule-associated protein 1-light chain 3 for degradation. ACS Nano 14(3):3703–3717

    Article  Google Scholar 

  70. Tavakolian M, Okshevsky M, Van De Ven TGM, Tufenkji N (2018) Develo** antibacterial nanocrystalline cellulose using natural antibacterial agents. ACS Appl Mater Interfaces 10(40):33827–33838

    Article  Google Scholar 

  71. Bharadwaz A, Jayasuriya AC (2020) Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl 110:110698

    Article  Google Scholar 

  72. **a Y, Sun J, Zhao L et al (2018) Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 183:151–170

    Article  Google Scholar 

  73. Qi M, Chi M, Sun X et al (2019) Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int J Nanomedicine 14:6937–6956

    Article  Google Scholar 

  74. Xu HH, Weir MD, Sun L et al (2010) Strong nanocomposites with Ca, PO(4), and F release for caries inhibition. J Dent Res 89(1):19–28

    Article  Google Scholar 

  75. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, Mccullough J (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 9(1):1–14

    Article  Google Scholar 

  76. Wang Q, Zhang D, Wu Z, Tian Y, Chen Y (2009) Preparation of scratch and aging resistant nanocomposite coating on PVC substrate. J Nanosci Nanotechnol 9(2):1250–1253

    Article  Google Scholar 

  77. Xu HH, Cheng L, Zhang K et al (2019) Nanostructured dental composites and adhesives with antibacterial and remineralizing capabilities for caries inhibition. Nanobiomaterials in Clinical Dentistry. Elsevier:139–161

    Google Scholar 

  78. Takamiya AS, Monteiro DR, Gorup LF et al (2021) Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Mater Sci Eng C 118:111341

    Article  Google Scholar 

  79. Kasraei S, Sami L, Hendi S, Alikhani M-Y, Rezaei-Soufi L, Khamverdi Z (2014) Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and lactobacillus. Restor Dent Endod 39(2):109–114

    Article  Google Scholar 

  80. Sodagar A, Akhoundi MSA, Bahador A et al (2017) Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in orthodontics. Dental Press J Orthod 22:67–74

    Article  Google Scholar 

  81. Sabatini C, Mennito AS, Wolf BJ, Pashley DH, Renné WG (2015) Incorporation of bactericidal poly-acrylic acid modified copper iodide particles into adhesive resins. J Dent 43(5):546–555

    Article  Google Scholar 

  82. Bapat RA, Joshi CP, Bapat P et al (2019) The use of nanoparticles as biomaterials in dentistry. Drug Discov Today 24(1):85–98

    Article  Google Scholar 

  83. Imazato S, Ebi N, Takahashi Y, Kaneko T, Ebisu S, Russell RR (2003) Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. Biomaterials 24(20):3605–3609

    Article  Google Scholar 

  84. Yang D-L, Cui Y-N, Sun Q, Liu M, Niu H, Wang J-X (2021) Antibacterial activity and reinforcing effect of SiO 2–ZnO complex cluster fillers for dental resin composites. Biomater Sci 9(5):1795–1804

    Article  Google Scholar 

  85. Lee BS, Lee CC, Wang YP et al (2016) Controlled-release of tetracycline and lovastatin by poly(D,L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs. Int J Nanomedicine 11:285–297

    Google Scholar 

  86. Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L (2015) Application of dental nanomaterials: potential toxicity to the central nervous system. Int J Nanomedicine 10:3547

    Google Scholar 

  87. Gavaskar A, Rojas D, Videla F (2018) Nanotechnology: the scope and potential applications in orthopedic surgery. Eur J Orthop Surg Traumatol 28(7):1257–1260

    Article  Google Scholar 

  88. Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR (2019) Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine 14(1):93–126

    Article  Google Scholar 

  89. Puckett SD, Taylor E, Raimondo T, Webster TJ (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31(4):706–713

    Article  Google Scholar 

  90. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232

    Article  Google Scholar 

  91. Shih YRV, Chen CN, Tsai SW, Wang YJ, Lee OK (2006) Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24(11):2391–2397

    Article  Google Scholar 

  92. Gao A, Hang R, Huang X et al (2014) The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials 35(13):4223–4235

    Article  Google Scholar 

  93. Ross RD, Cole LE, Roeder RK (2012) Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue. J Nanopart Res 14(10):1–11

    Article  Google Scholar 

  94. Sadiq IM, Chowdhury B, Chandrasekaran N, Mukherjee A (2009) Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine 5(3):282–286

    Article  Google Scholar 

  95. Sahmani S, Shahali M, Nejad MG, Khandan A, Aghdam M, Saber-Samandari S (2019) Effect of copper oxide nanoparticles on electrical conductivity and cell viability of calcium phosphate scaffolds with improved mechanical strength for bone tissue engineering. Eur Phys J Plus 134(1):1–11

    Article  Google Scholar 

  96. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):544–568

    Article  Google Scholar 

  97. Gibon E, Córdova LA, Lu L et al (2017) The biological response to orthopedic implants for joint replacement. II: polyethylene, ceramics, PMMA, and the foreign body reaction. J Biomed Mater Res B Appl Biomater 105(6):1685–1691

    Article  Google Scholar 

  98. Martin V, Ribeiro IA, Alves MM et al (2019) Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanohydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater Sci Eng C 101:15–26

    Article  Google Scholar 

  99. Zhang Y, **ong M, Ni X et al (2021) Virus-mimicking mesoporous silica nanoparticles with an electrically neutral and hydrophilic surface to improve the oral absorption of insulin by breaking through dual barriers of the mucus layer and the intestinal epithelium. ACS Appl Mater Interfaces 13(15):18077–18088

    Article  Google Scholar 

  100. Zhao J, Xu G, Yao X et al (2021) Microneedle-based insulin transdermal delivery system: current status and translation challenges. Drug Deliv Transl Res. https://doi.org/10.1007/s13346-021-01077-31-25

  101. Adir O, Poley M, Chen G et al (2020) Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv Mater 32(13):1901989

    Article  Google Scholar 

  102. Soltani M, Moradi Kashkooli F, Souri M et al (2021) Enhancing clinical translation of cancer using nanoinformatics. Cancers 13(10):2481

    Article  Google Scholar 

  103. Zhang H, Li Z, Gao C et al (2021) Dual-responsive biohybrid neutrobots for active target delivery. Sci Robot 6. https://doi.org/10.1126/scirobotics.aaz9519

  104. Li S, Jiang Q, Liu S et al (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36(3):258–264

    Article  Google Scholar 

  105. Gao W, Wang J (2014) Synthetic micro/nanomotors in drug delivery. Nanoscale 6(18):10486–10494

    Article  Google Scholar 

  106. Wang J, Dong R, Wu H, Cai Y, Ren B (2020) A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett 12(1):1–19

    Article  Google Scholar 

  107. Zhang Q, Jiang Q, Li N et al (2014) DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8(7):6633–6643

    Article  MathSciNet  Google Scholar 

  108. Wu Z, Li J, De Ávila BEF et al (2015) Water-powered cell-mimicking janus micromotor. Adv Funct Mater 25(48):7497–7501

    Article  Google Scholar 

  109. Singh AV, Chandrasekar V, Janapareddy P et al (2021) Emerging application of nanorobotics and artificial intelligence to cross theBBB: advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem Neurosci 12(11):448–455

    Google Scholar 

  110. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834

    Article  Google Scholar 

  111. Ren KW, Liu Y, Wu J et al (2016) A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat Commun 7:13580

    Article  Google Scholar 

  112. Bujold KE, Hsu JCC, Sleiman HF (2016) Optimized DNA “nanosuitcases” for encapsulation and conditional release of siRNA. J Am Chem Soc 138(42):14030–14038

    Article  Google Scholar 

  113. Li M, ** N, Wang Y, Liu L (2020) Progress in nanorobotics for advancing biomedicine. IEEE Trans Biomed Eng 68(1):130–147

    Article  Google Scholar 

  114. ** Z, Nguyen KT, Go G et al (2019) Multifunctional nanorobot system for active therapeutic delivery and synergistic chemo-photothermal therapy. Nano Lett 19(12):8550–8564

    Article  Google Scholar 

  115. Chen X-Z, Hoop M, Mushtaq F et al (2017) Recent developments in magnetically driven micro-and nanorobots. Appl Mater Today 9:37–48

    Article  Google Scholar 

  116. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44(10):1029–1038

    Article  Google Scholar 

  117. Ambrogio MW, Thomas CR, Zhao Y-L, Zink JI, Stoddart JF (2011) Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 44(10):903–913

    Article  Google Scholar 

  118. Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T (2013) Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol 24(6):1159–1166

    Article  Google Scholar 

  119. Patra JK, Das G, Fraceto LF et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):1–33

    Article  Google Scholar 

  120. Swierczewska M, Liu G, Lee S, Chen X (2012) High-sensitivity nanosensors for biomarker detection. Chem Soc Rev 41(7):2641–2655

    Article  Google Scholar 

  121. Kosaka PM, Pini V, Ruz JJ et al (2014) Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat Nanotechnol 9(12):1047–1053

    Article  Google Scholar 

  122. Huang Q, Wang Y, Chen X et al (2018) Nanotechnology-based strategies for early cancer diagnosis using circulating tumor cells as a liquid biopsy. Nano 2(1):21

    Google Scholar 

  123. Som A, Raliya R, Paranandi K et al (2019) Calcium carbonate nanoparticles stimulate tumor metabolic reprogramming and modulate tumor metastasis. Nanomedicine 14(2):169–182

    Article  Google Scholar 

  124. Wang C, Fan W, Zhang Z, Wen Y, **ong L, Chen X (2019) Advanced nanotechnology leading the way to multimodal imaging-guided precision surgical therapy. Adv Mater 31(49):1904329

    Article  Google Scholar 

  125. Su X, Cheng K, Wang C, **ng L, Wu H, Cheng Z (2013) Image-guided resection of malignant gliomas using fluorescent nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(3):219–232

    Article  Google Scholar 

  126. Zanoni DK, Stambuk HE, Madajewski B et al (2021) Use of ultrasmall core-shell fluorescent silica nanoparticles for image-guided sentinel lymph node biopsy in head and neck melanoma: a nonrandomized clinical trial. JAMA Netw Open 4(3):e211936

    Article  Google Scholar 

  127. Zhao WJ, Luo H, Zhou YM, Gou ZH, Wang B, Zhu JQ (2017) Preoperative ultrasound-guided carbon nanoparticles localization for metastatic lymph nodes in papillary thyroid carcinoma during reoperation: a retrospective cohort study. Medicine (Baltimore) 96(10):e6285

    Article  Google Scholar 

  128. Wojtynek NE, Mohs AM (2020) Image-guided tumor surgery: the emerging role of nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12(4):e1624

    Article  Google Scholar 

  129. Ai T, Shang W, Yan H et al (2018) Near infrared-emitting persistent luminescent nanoparticles for hepatocellular carcinoma imaging and luminescence-guided surgery. Biomaterials 167:216–225

    Article  Google Scholar 

  130. Andreou C, Neuschmelting V, Tschaharganeh DF et al (2016) Imaging of liver tumors using surface-enhanced raman scattering nanoparticles. ACS Nano 10(5):5015–5026

    Article  Google Scholar 

  131. Lee MA, Nguyen FT, Scott K et al (2019) Implanted nanosensors in marine organisms for physiological biologging: design, feasibility, and species variability. ACS Sens 4(1):32–43

    Article  Google Scholar 

  132. Gao W, Emaminejad S, Nyein HYY et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587):509–514

    Article  Google Scholar 

  133. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  Google Scholar 

  134. Wang J, Li Y, Nie G (2021) Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 6(9):766–783

    Google Scholar 

  135. Yang G, Xu L, Chao Y et al (2017) Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun 8(1):1–13

    Google Scholar 

  136. Feng L, Dong Z, Tao D, Zhang Y, Liu Z (2018) The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl Sci Rev 5(2):269–286

    Article  Google Scholar 

  137. Somiya M, Kuroda SI (2015) Development of a virus-mimicking nanocarrier for drug delivery systems: the bio-nanocapsule. Adv Drug Deliv Rev 95:77–89

    Article  Google Scholar 

  138. Caldeira JC, Perrine M, Pericle F, Cavallo F (2020) Virus-like particles as an immunogenic platform for cancer vaccines. Viruses 12(5):488

    Article  Google Scholar 

  139. Narain A, Asawa S, Chhabria V, Patil-Sen Y (2017) Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine 12(21):2677–2692

    Article  Google Scholar 

  140. Gao W, Fang RH, Thamphiwatana S et al (2015) Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett 15(2):1403–1409

    Article  Google Scholar 

  141. Kroll AV, Fang RH, Zhang L (2017) Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem 28(1):23–32

    Article  Google Scholar 

  142. Zhuang J, Gong H, Zhou J et al (2020) Targeted gene silencing in vivo by platelet membrane–coated metal-organic framework nanoparticles. Sci Adv 6(13):eaaz6108

    Article  Google Scholar 

  143. Rao L, Meng QF, Huang Q et al (2018) Platelet–leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells. Adv Funct Mater 28(34):1803531

    Article  Google Scholar 

  144. Chen HY, Deng J, Wang Y, Wu CQ, Li X, Dai HW (2020) Hybrid cell membrane-coated nanoparticles: a multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater 112:1–13

    Article  Google Scholar 

  145. Zhu J, Sevencan C, Zhang M et al (2020) Increasing the potential interacting area of nanomedicine enhances its homotypic cancer targeting efficacy. ACS Nano 14(3):3259–3271

    Article  Google Scholar 

  146. Punt CJ, Koopman M, Vermeulen L (2017) From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol 14(4):235–246

    Article  Google Scholar 

  147. Cobleigh MA, Vogel CL, Tripathy D et al (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17(9):2639–2639

    Article  Google Scholar 

  148. Doroshow DB, Bhalla S, Beasley MB et al (2021) PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol 18(6):345–362

    Article  Google Scholar 

  149. Chang L, Chang M, Chang HM, Chang F (2018) Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl Immunohistochem Mol Morphol 26(2):e15–e21

    Article  Google Scholar 

  150. Loi S, Michiels S, Salgado R et al (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25(8):1544–1550

    Article  Google Scholar 

  151. Ott PA, Hu Z, Keskin DB et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662):217–221

    Article  Google Scholar 

  152. Kowalzik F, Schreiner D, Jensen C, Teschner D, Gehring S, Zepp F (2021) mRNA-based vaccines. Vaccines 9(4):390

    Article  Google Scholar 

  153. Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113(2):171–199

    Article  Google Scholar 

  154. Wolfram J, Zhu M, Yang Y et al (2015) Safety of nanoparticles in medicine. Curr Drug Targets 16(14):1671–1681

    Article  Google Scholar 

  155. Tinkle S, Mcneil SE, Muhlebach S et al (2014) Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci 1313:35–56

    Article  Google Scholar 

  156. Zhuang Y, Ma Y, Wang C et al (2012) PEGylated cationic liposomes robustly augment vaccine-induced immune responses: role of lymphatic trafficking and biodistribution. J Control Release 159(1):135–142

    Article  Google Scholar 

  157. Hua S, De Matos MBC, Metselaar JM, Storm G (2018) Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 9:790

    Article  Google Scholar 

  158. Agrahari V, Agrahari V (2018) Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discov Today 23(5):974–991

    Article  Google Scholar 

  159. Nel A, **a T, Meng H et al (2013) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46(3):607–621

    Article  Google Scholar 

  160. Mathiasen S, Christensen SM, Fung JJ et al (2014) Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes. Nat Methods 11(9):931–934

    Article  Google Scholar 

  161. Shamsi M, Mohammadi A, Manshadi MKD, Sanati-Nezhad A (2019) Mathematical and computational modeling of nano-engineered drug delivery systems. J Control Release 307:150–165

    Article  Google Scholar 

  162. Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1(1):10–29

    Article  Google Scholar 

  163. Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H (2021) Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev 181:114083

    Article  Google Scholar 

  164. Moti LAA, Hussain Z, Thu HE, Khan S, Sohail M, Sarfraz RM (2021) Multi-functionalization, a promising adaptation to overcome challenges to clinical translation of nanomedicines as nano-diagnostics and nano-therapeutics for breast cancer. Curr Pharm Des 27(43):4356–4375

    Article  Google Scholar 

  165. Hafner A, Lovric J, Lakos GP, Pepic I (2014) Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine 9:1005–1023

    Google Scholar 

  166. Sainz V, Conniot J, Matos AI et al (2015) Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 468(3):504–510

    Article  Google Scholar 

  167. Satalkar P, Elger BS, Shaw DM (2016) Defining nano, nanotechnology and nanomedicine: why should it matter? Sci Eng Ethics 22(5):1255–1276

    Article  Google Scholar 

  168. Muhlebach S (2018) Regulatory challenges of nanomedicines and their follow-on versions: a generic or similar approach? Adv Drug Deliv Rev 131:122–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Motao Zhu or Yuliang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shi, Y., Chen, L., Zhu, M., Zhao, Y. (2023). The Future of Nanomedicine. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-8984-0_24

Download citation

Publish with us

Policies and ethics

Navigation