Nanomedicine for Treating Specific Disorders

  • Chapter
  • First Online:
Integrative Nanomedicine for New Therapies

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Nanomedicine utilizes the molecular nanotechnology in the form of nanomaterial, and nanobiosensors to modify the properties of the drug for the treatment of human illness. The nanomedicine improves the pharmacokinetics, pharmacodynamics, stability properties of existing drugs. In addition, the nanomedicine serves as a diagnostic tool to monitor the physiological functions of the human body. The nanomedicine formulates the existing drug without using dose-limiting toxic excipients, and therefore nanomedicines reduce the toxicity of the drug. The sustained and controlled release of drug from nanomedicine also enhances the safety and efficacy. Overall, the therapeutic index of a drug is enhanced when the drug is administered in the form of nanomedicine. At present, a numerous number of nanomedicines have been developed to treat a wide range of human illness like cancer, HIV, kidney diseases, angiogenesis, etc. Recently, nanotechnology has been viewed as a revolutionary discipline in pharmaceutical and medical sciences. The advancements in nanomedicines are continuously growing to treat life-threatening diseases such as cancer, HIV, etc. Despite, there is a significant progress in the development of nanomedicines, the clinical translation of nanomedicine remains challenge in drug development. The present review describes the challenges, recent progress in development, therapeutic properties, clinical role and potential outcome of nanomedicine in treating specific human disorders. It will be useful to simplify the monitoring, diagnosis, and curing of diseases in personalized health care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., et al. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8, 102.

    Google Scholar 

  • Allaker, R. (2010). The use of nanoparticles to control oral biofilm formation. Journal of Dental Research, 89, 1175–1186.

    CAS  Google Scholar 

  • Arruebo, M., Valladares, M., & González-Fernández, Á. (2009). Antibody-conjugated nanoparticles for biomedical applications. Journal of Nanomaterials, 2009, 37.

    Google Scholar 

  • Asta, M., Kauzlarich, S. M., Liu, K., Navrotsky, A., & Osterloh, F. E. (2007). Inorganic nanoparticles. Unique properties and novel applications. Material Matters (Milwaukee, WI, USA), 2, 3–6.

    CAS  Google Scholar 

  • Azar, D. T. (2006). Corneal angiogenic privilege: Angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Transactions of the American Ophthalmological Society, 104, 264–302.

    Google Scholar 

  • Bennett, K. M., Zhou, H., Sumner, J. P., Dodd, S. J., Bouraoud, N., Doi, K., et al. (2008). MRI of the basement membrane using charged nanoparticles as contrast agents. Magnetic Resonance in Medicine, 60, 564–574.

    Google Scholar 

  • Besinis, A., De Peralta, T., & Handy, R. D. (2014). Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology, 8, 745–754.

    CAS  Google Scholar 

  • Bhaskar, S., & Lim, S. (2017). Engineering protein nanocages as carriers for biomedical applications. NPG Asia Materials, 9, e371.

    Google Scholar 

  • Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2015). Pericytes at the intersection between tissue regeneration and pathology. Clinical Science, 128, 81–93.

    CAS  Google Scholar 

  • Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. (2014). Type-2 pericytes participate in normal and tumoral angiogenesis. American Journal of Physiology-Cell Physiology, 307, C25–C38.

    Google Scholar 

  • Bose, A., & Wong, T. W. (2015). Nanotechnology-enabled drug delivery for cancer therapy. Nanotechnology applications for tissue engineering (pp. 173–193). Amsterdam: Elsevier.

    Google Scholar 

  • Boussoufi, F., Gallón, S. M. N., Chang, R., & Webster, T. J. (2018). Synthesis and study of cell-penetrating peptide-modified gold nanoparticles. International Journal of Nanomedicine, 13, 6199–6205.

    CAS  Google Scholar 

  • Buhleier, E., Wehner, W., & Vögtle, F. (1978). ‘Cascade’‐and’ Nonskid‐Chain‐Like’ syntheses of molecular cavity topologies. Chemischer Informationsdienst 9.

    Google Scholar 

  • Carson, D., Jiang, Y., & Woodrow, K. A. (2016). Tunable release of multiclass anti-HIV drugs that are water-soluble and loaded at high drug content in polyester blended electrospun fibers. Pharmaceutical Research, 33, 125–136.

    CAS  Google Scholar 

  • Chuang, S. Y., Lin, C. H., Huang, T. H., & Fang, J. Y. (2018). Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials, 8, 42.

    Google Scholar 

  • de Ilarduya, C. T., Sun, Y., & Düzgüneş, N. (2010). Gene delivery by lipoplexes and polyplexes. European Journal of Pharmaceutical Sciences, 40, 159–170.

    Google Scholar 

  • Duro-Castano, A., Gallon, E., Decker, C., & Vicent, M. J. (2017). Modulating angiogenesis with integrin-targeted nanomedicines. Advanced Drug Delivery Reviews, 119, 101–119.

    CAS  Google Scholar 

  • Etheridge, M. L., Campbell, S. A., Erdman, A. G., Haynes, C. L., Wolf, S. M., & McCullough, J. (2013). The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine: Nanotechnology, Biology and Medicine 9(1), 1–14.

    Google Scholar 

  • Gannimani, R., Ramesh, M., Mtambo, S., Pillay, K., Soliman, M. E., & Govender, P. (2016). γ-Cyclodextrin capped silver nanoparticles for molecular recognition and enhancement of antibacterial activity of chloramphenicol. Journal of Inorganic Biochemistry, 157, 15–24.

    CAS  Google Scholar 

  • Gao, Y., Zhou, Y., Zhao, L., Zhang, C., Li, Y., Li, J., et al. (2015). Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomaterialia, 23, 127–135.

    CAS  Google Scholar 

  • Gebel, T., Foth, H., Damm, G., Freyberger, A., Kramer, P. J., Lilienblum, W., et al. (2014). Manufactured nanomaterials: Categorization and approaches to hazard assessment. Archives of Toxicology, 88, 2191–2211.

    CAS  Google Scholar 

  • Hall, C. E. (1953). Introduction to electron microscopy. London: McGra-hill Publishing Company Ltd.

    Google Scholar 

  • Hare, J. I., Lammers, T., Ashford, M. B., Puri, S., Storm, G., & Barry, S. T. (2017). Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Advanced Drug Delivery Reviews, 108, 25–38.

    CAS  Google Scholar 

  • Jędrzak, A., Grześkowiak, B. F., Coy, E., Wojnarowicz, J., Szutkowski, K., Jurga, S., et al. (2018). Dendrimer based theranostic nanostructures for combined chemo-and photothermal therapy of liver cancer cells in Vitro. Colloids and Surfaces B: Biointerfaces, 173, 698–708.

    Google Scholar 

  • Kawamura, A., & Aoyama, Y. (1983). Immunofluorescence in medical science. Tokyo: University of Tokyo Press.

    Google Scholar 

  • Khurana, A., Tekula, S., & Godugu, C. (2018). Nanoceria suppresses multiple low doses of streptozotocin-induced Type 1 diabetes by inhibition of Nrf2/NF-κB pathway and reduction of apoptosis. Nanomedicine, 13, 1905–1922.

    CAS  Google Scholar 

  • Klibanov, A. L., Maruyama, K., Torchilin, V. P., & Huang, L. (1990). Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Letters, 268, 235–237.

    CAS  Google Scholar 

  • Kreuter, J. (2014). Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Advanced Drug Delivery Reviews, 71, 2–14.

    CAS  Google Scholar 

  • Lampri, E., & Elli, I. (2013). Angiogenesis: Insights from a systematic overview.

    Google Scholar 

  • Leuschner, F., Dutta, P., Gorbatov, R., Novobrantseva, T. I., Donahoe, J. S., Courties, G., et al. (2011). Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 29, 1005.

    CAS  Google Scholar 

  • Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 46, 6387–6392.

    CAS  Google Scholar 

  • Miller, M. A., Gadde, S., Pfirschke, C., Engblom, C., Sprachman, M. M., Kohler, R. H., Yang, K. S., et al. (2015). Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Science Translational Medicine, 7, 314ra183.

    Google Scholar 

  • Min, Y., Caster, J. M., Eblan, M. J., & Wang, A. Z. (2015). Clinical translation of nanomedicine. Chemical Reviews, 115, 11147–11190.

    CAS  Google Scholar 

  • Pan, D., Caruthers, S. D., Chen, J., Winter, P. M., SenPan, A., Schmieder, A. H., et al. (2010). Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Medicinal Chemistry, 2, 471–490.

    CAS  Google Scholar 

  • Pardridge, W. M. (2005). The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2, 3–14.

    Google Scholar 

  • Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. British Journal of Ophthalmology, 96, 614–618.

    Google Scholar 

  • Pokorski, J. K., & Steinmetz, N. F. (2010). The art of engineering viral nanoparticles. Molecular Pharmaceutics, 8, 29–43.

    Google Scholar 

  • Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Critical Reviews™ in Therapeutic Drug Carrier Systems, 26.

    Google Scholar 

  • Rajeshkumar, S., & Naik, P. (2018). Synthesis and biomedical applications of Cerium oxide nanoparticles–A Review. Biotechnology Reports, 17, 1–5.

    CAS  Google Scholar 

  • Rosan, B., & Lamont, R. J. (2000). Dental plaque formation. Microbes and Infection, 2, 1599–1607.

    CAS  Google Scholar 

  • Sahoo, S. K. (2005). Applications of nanomedicine. Asia Pacific Biotech News, 9, 3.

    Google Scholar 

  • Santulli, G. (2013). Angiogenesis: Insights from a systematic overview. Nova Biomedical.

    Google Scholar 

  • Singh, R., & Lillard, J. W., Jr. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86, 215–223.

    CAS  Google Scholar 

  • Sonneville-Aubrun, O., Simonnet, J. T., & L’alloret, F. (2004). Nanoemulsions: A new vehicle for skincare products. Advances in Colloid and Interface Science, 108, 145–149.

    Google Scholar 

  • Stuart, B. (2005). Infrared spectroscopy. In Kirk‐Othmer encyclopedia of chemical technology.

    Google Scholar 

  • US National Science Foundation. (2014, February 25). Market report on emerging nanotechnology now available. Market Report. Retrieved June 7, 2016.

    Google Scholar 

  • Venkatraman, S. (2014). Has nanomedicine lived up to its promise? Nanotechnology, 25, 372501.

    Google Scholar 

  • Ventola, C. L. (2012). The nanomedicine revolution: Part 1: Emerging concepts. Pharmacy and Therapeutics, 37, 512.

    Google Scholar 

  • Weng, Y., Liu, J., **, S., Guo, W., Liang, X., & Hu, Z. (2017). Nanotechnology-based strategies for treatment of ocular disease. Acta pharmaceutica sinica B, 7, 281–291.

    Google Scholar 

  • Whitesides, G. M. (2005). Nanoscience, nanotechnology, and chemistry. Small, 1, 172–179.

    CAS  Google Scholar 

  • Yang, S., Yang, Y., Cui, S., Feng, Z., Du, Y., Song, Z., et al. (2018). Chitosan-polyvinyl alcohol nanoscale liquid film-forming system facilitates MRSA-infected wound healing by enhancing antibacterial and antibiofilm properties. International Journal of Nanomedicine, 13, 4987–5002.

    CAS  Google Scholar 

  • Yao, H., Li, J., Song, Y., Zhao, H., Wei, Z., Li, X., et al. (2018). Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells. International Journal of Nanomedicine, 13, 6249–6264.

    CAS  Google Scholar 

  • Yuan, X., Marcano, D. C., Shin, C. S., Hua, X., Isenhart, L. C., Pflugfelder, S. C., & Acharya, G. (2015). Ocular drug delivery nanowafer with enhanced therapeutic efficacy. ACS nano, 9, 1749–1758.

    Google Scholar 

  • Zhang, B., Jiang, T., Tuo, Y., **, K., Luo, Z., Shi, W., et al. (2017). Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels. Cancer Letters, 410, 12–19.

    CAS  Google Scholar 

  • Zhou, X., Shi, G., Fan, B., Cheng, X., Zhang, X., Wang, X., et al. (2018). Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. International Journal of Nanomedicine, 13, 6265–6277.

    CAS  Google Scholar 

  • Zuckerman, J. E., & Davis, M. E. (2013). Targeting therapeutics to the glomerulus with nanoparticles. Advances in Chronic Kidney Disease, 20, 500–507.

    Google Scholar 

Download references

Acknowledgements

Dr. M. Ramesh thank the faculty members of Omega College of Pharmacy, Hyderabad, India for their considerable supports. Dr. K. Anand, thank the University of the Free State, College of Health Science, School of Pathology, Department of Chemical Pathology for Post-Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramesh, M., Anand, K. (2020). Nanomedicine for Treating Specific Disorders. In: Krishnan, A., Chuturgoon, A. (eds) Integrative Nanomedicine for New Therapies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-36260-7_11

Download citation

Publish with us

Policies and ethics

Navigation