Microbes in Resource and Nutrient Recovery via Wastewater Treatment

  • Chapter
  • First Online:
Industrial Microbiology and Biotechnology

Abstract

Resource and nutrient recovery from wastewater is an essential task to achieve multiple goals such as degradation of toxic organic pollutants prior to discharge in natural water bodies, generation of useful biomass and bioproducts, elimination of waste sludge, etc. Classically, microbes have been used in the biological treatment of industrial wastewater particularly in the aeration tank and anaerobic sludge digester. Of late, several technologies have emerged for simultaneous wastewater treatment and nutrient recovery. In this regard, photosynthetic microorganisms such as purple phototrophic bacteria, cyanobacteria, and a consortium of green microalgae and methanotrophs have garnered significant research interest to treat a variety of wastewater, recover nutrients, and upcycle them to generate value-added products (biofuels, pigments, and feed-grade single-cell protein). The application of bioelectrochemical systems (microbial fuel cells and microbial desalination cells) and fabricated biogenic nanoparticles (BNPs) for oxidizing and adsorbing a wide range of pollutants help in wastewater treatment. In this chapter, we intend to discuss the role of various microorganisms in simultaneous wastewater treatment and synthesis of valuable bioproducts, the diversity and significance of electroactive microorganisms in bioelectrochemical cells for diverse wastewater treatment, resource recovery, and energy generation. Finally, the advantages and challenges in BNP-based wastewater treatment would also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BNP:

biogenic nanoparticles

MDC:

microbial desalination cells

MFC:

microbial fuel cells

SCP:

single-cell protein

SSF:

solid-state fermentation.

NSAIDs:

nonsteroidal anti-inflammatory drugs

PAHs:

polyaromatic hydrocarbons

TP:

total phosphorous

AE:

aeration

AG:

agitation

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • AciénFernández FG, Gómez-Serrano C, Fernández-Sevilla JM (2018) Recovery of nutrients from wastewaters using microalgae. Front Sustain Food Syst 2:59

    Google Scholar 

  • Agrawal K, Bhardwaj N, Kumar B, Chaturvedi V, Verma P (2019) Microbial fuel cell: a boon in bioremediation of wastes. In: Shah MP, Rodriguez-Couto S (eds) Microbial wastewater treatment. Springer, Singapore, pp 175–194

    Google Scholar 

  • Agrawal K, Chaturvedi V, Verma P (2018) Fungal laccase discovered but yet undiscovered. Bioresour Bioprocess 5(4):1–12

    Google Scholar 

  • Agrawal K, Verma P (2019) Biodegradation of synthetic dye Alizarin Cyanine Green by yellow laccase producing strain Stropharia sp. ITCC-8422. Biocatal Agric Biotechnol 21(2019):101291

    Google Scholar 

  • Agrawal K, Verma P (2020a) Potential removal of hazardous wastes using white laccase purified by ATPS–PEG–salt system: An operational study. Environ Technol Innov 17:100556

    Google Scholar 

  • Agrawal K, Verma P (2020b) Myco-valorization approach using entrapped Myrothecium verrucaria ITCC-8447 on synthetic and natural support via column bioreactor for the detoxification and degradation of anthraquinone dyes. Int Biodeterior Biodegradation 153(2020):1050521

    Google Scholar 

  • Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M et al (2018) Biodegradation of plastics: current scenario and future prospects for environmental safety. Environ Sci Pollut Res 25(8):7287–7298. https://doi.org/10.1007/s11356-018-1234-9

    Article  CAS  Google Scholar 

  • Ajayan KV, Selvaraju M, Unnikannan P, Sruthi P (2015) Phycoremediation of tannery wastewater using microalgae Scenedesmus species. Int J Phytoremediation 17(10):907–916

    CAS  PubMed  Google Scholar 

  • Al Sayed A, Fergala A, Eldyasti A (2018) Sustainable biogas mitigation and value-added resources recovery using methanotrophs integrated into wastewater treatment plants. Rev Environ Sci Biotechnol 17(2):351–393

    CAS  Google Scholar 

  • Ali I, Peng C, Naz I, Khan ZM, Sultan M, Islam T, Abbasi IA (2017) Phytogenic magnetic nanoparticles for wastewater treatment: a review. RSC Adv 7(64):40158–40178

    CAS  Google Scholar 

  • Amedea P, Banat IM, Marchant R, Vezzulli L (2007) Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere 66:179–184

    Google Scholar 

  • Araujo GS, Santiago CS, Moreira RT, Neto MPD, Fernandes FA (2020) Nutrient removal by Arthrospira platensis cyanobacteria in cassava processing wastewater. J Water Process Eng:101826

    Google Scholar 

  • Arias DM, García J, Uggetti E (2020a) Production of polymers by cyanobacteria grown in wastewater: current status, challenges and future perspectives. New Biotechnol 55:46–57

    CAS  Google Scholar 

  • Arias DM, Uggetti E, García J (2020b) Assessing the potential of soil cyanobacteria for simultaneous wastewater treatment and carbohydrate-enriched biomass production. Algal Res 51:102042

    Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19(6):771–783. https://doi.org/10.1007/s10532-008-9185-3

    Article  CAS  PubMed  Google Scholar 

  • Avtar R, Tripathi S, Aggarwal AK, Kumar P (2019) Population–urbanization–energy Nexus: a review. Resources 8(3):136

    Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242. https://doi.org/10.1111/j.1574-4976.2005.00010.x

    Article  CAS  PubMed  Google Scholar 

  • Bedade DK, Muley AB, Singhal RS (2019) Magnetic cross-linked enzyme aggregates of acrylamidase from Cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. Bioresour Technol 272:137–145. https://doi.org/10.1016/j.biortech.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  • Bejjanki D, Muthukumar K, Radhakrishnan TK, Alagarsamy A, Pugazhendhi A, Mohamed SN (2021) Simultaneous bioelectricity generation and water desalination using Oscillatoria sp. as biocatalyst in photosynthetic microbial desalination cell. Sci Total Environ 754:142215

    CAS  PubMed  Google Scholar 

  • Benítez MB, Champagne P, Ramos A, Torres AF, Ochoa-Herrera V (2019) Wastewater treatment for nutrient removal with Ecuadorian native microalgae. Environ Technol 40(22):2977–2985

    PubMed  Google Scholar 

  • Beyene HD, Ambaye TG (2019) Application of sustainable nanocomposites for water purification process. In: Sustainable polymer composites and nanocomposites. Springer, Cham, pp 387–412

    Google Scholar 

  • Bidlan R, Manonmani HK (2002) Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochem 38:49–56

    CAS  Google Scholar 

  • Bilal M, Rasheed T, Mehmood S, Tang H, Ferreira LFR, Bharagava RN, Iqbal HM (2020) Mitigation of environmentally-related hazardous pollutants from water matrices using nanostructured materials–A review. Chemosphere:126770

    Google Scholar 

  • Bishoge OK, Zhang L, Suntu SL, ** H, Zewde AA, Qi Z (2018) Remediation of water and wastewater by using engineered nanomaterials: a review. J Environ Sci Health A 53(6):537–554

    CAS  Google Scholar 

  • Cabanelas ITD, Ruiz J, Arbib Z, Chinalia FA, Garrido-Pérez C, Rogalla F et al (2013) Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresour Technol 131:429–436

    CAS  PubMed  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    CAS  Google Scholar 

  • Cai Y, Zheng Y, Bodelier PL, Conrad R, Jia Z (2016) Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun 7(1):1–10

    Google Scholar 

  • Chaturvedi V, Bhange K, Bhatt R, Verma P (2013a) Biodetoxification of high amounts of malachite green by a multifunctional strain of Pseudomonas mendocina and its ability to metabolize dye adsorbed chicken feathers. J Environ Chem Eng 1(4):1205–1213

    CAS  Google Scholar 

  • Chaturvedi V, Chandravanshi M, Rahangdale M, Verma P (2013b) An integrated approach of using polystyrene foam as an attachment system for growth of mixed culture of cyanobacteria with concomitant treatment of copper mine waste water. J Waste Manag. Article ID: 282798:1–7

    Google Scholar 

  • Chokshi K, Pancha I, Ghosh A, Mishra S (2016) Microalgal biomass generation by phycoremediation of dairy industry wastewater: an integrated approach towards sustainable biofuel production. Bioresour Technol 221:455–460

    CAS  PubMed  Google Scholar 

  • Choudhary MA, Manan R, Aslam Mirza M, Rashid Khan H, Qayyum S, Ahmed Z (2018) Biogenic synthesis of copper oxide and zinc oxide nanoparticles and their application as antifungal agents. Int J Mater Sci Eng 4:1–6

    Google Scholar 

  • Clark DP, Pazdernik NJ (2015) Biotechnology, 2nd edn. Newnes Academic Cell, p 850. https://doi.org/10.1016/C2009-0-64257-4

    Book  Google Scholar 

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17(1):145–155

    CAS  Google Scholar 

  • CycoÅ„ M, Piotrowska-Seget Z (2016) Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils: a review. Front Microbiol:7. https://doi.org/10.3389/fmicb.2016.01463

  • Dahiya D, Nigam PS (2020) Waste management by biological approach employing natural substrates and microbial agents for the remediation of dyes’ wastewater. Appl Sci 10(8):2958

    CAS  Google Scholar 

  • Dai HN, Nguyen TAD, Le L-EM, Van Tran M, Lan TH, Wang CT (2020) Power generation of Shewanella oneidensis MR-1 microbial fuel cells in bamboo fermentation effluent. Int J Hydrog Energy

    Google Scholar 

  • Darpito C, Shin WS, Jeon S, Lee H, Nam K, Kwon JH, Yang JW (2015) Cultivation of Chlorella protothecoides in anaerobically treated brewery wastewater for cost-effective biodiesel production. Bioprocess Biosyst Eng 38(3):523–530

    CAS  PubMed  Google Scholar 

  • Das S, Chakraborty J, Chatterjee S, Kumar H (2018) Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environ Sci Nano 5(12):2784–2808

    CAS  Google Scholar 

  • Dey S, Pandit B, Paul AK (2014) Reduction of hexavalent chromium by viable cells of chromium resistant bacteria isolated from chromite mining environment. J Min:2014

    Google Scholar 

  • D'Imporzano G, Veronesi D, Salati S, Adani F (2018) Carbon and nutrient recovery in the cultivation of Chlorella vulgaris: A life cycle assessment approach to comparing environmental performance. J Clean Prod 194:685–694

    CAS  Google Scholar 

  • Du LN, Wang B, Li G, Wang S, Crowley DE, Zhao YH (2012) Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: kinetics and sorption mechanisms. J Hazard Mater 205:47–54

    PubMed  Google Scholar 

  • El Sikaily A, Khaled A, El Nemr A (2012) Textile dyes xenobiotic and their harmful effect. Nova Science, New York, pp 31–64

    Google Scholar 

  • Elumalai P, Parthipan P, Karthikeyan OP, Rajasekar A (2017) Enzyme-mediated biodegradation of long-chain n-alkanes (C32 and C40) by thermophilic bacteria. 3 Biotech 7(2). https://doi.org/10.1007/s13205-017-0773-y

  • Estrada-Arriaga EB, Hernández-Romano J, García-Sánchez L, Garcés RAG, Bahena-Bahena EO, Guadarrama-Pérez O, Chavez GEM (2018) Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration. J Environ Manag 214:232–241

    CAS  Google Scholar 

  • Fernandes TV, Suárez-Muñoz M, Trebuch LM, Verbraak PJ, Van de Waal DB (2017) Toward an ecologically optimized N: P recovery from wastewater by microalgae. Front Microbiol 8:1742

    PubMed  PubMed Central  Google Scholar 

  • Firdous S, Iqbal S, Anwar S (2017) Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60381-3

  • Francis AJ (1994) Microbial transformations of radioactive wastes and environmental restoration through bioremediation. J Alloys Compd 213:226–231

    Google Scholar 

  • Ge S, Champagne P (2016) Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings. Water Res 88:604–612

    CAS  PubMed  Google Scholar 

  • Ge X, Cao X, Song X, Wang Y, Si Z, Zhao Y et al (2020) Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresour Technol 296:122350

    CAS  PubMed  Google Scholar 

  • George DM, Vincent AS, Mackey HR (2020) An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. Biotechnol Rep:e00563

    Google Scholar 

  • Ghodake GS, Talke AA, Jadhav JP, Govindwar SP (2009) Potential of Brassica juncea in order to treat textile—effluent—contaminated sites. Int J Phytoremediation 11(4):297–312

    Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385. https://doi.org/10.1007/s00018-009-0169-1

    Article  CAS  PubMed  Google Scholar 

  • Goswami RK, Mehariya S, Verma P, Lavecchia R, Zuorro A (2021) Microalgae-based biorefineries for sustainable resource recovery from wastewater. J Water Process Eng 40:101747

    Google Scholar 

  • Guo Y, Wang J, Shinde S, Wang X, Li Y, Dai Y et al (2020) Simultaneous wastewater treatment and energy harvesting in microbial fuel cells: an update on the biocatalysts. RSC Adv 10(43):25874–25887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Gu JD (2010) Sorption and Transformation of Toxic Metals by Microorganisms. In: Mitchell R, Gu JD (eds) Environmental microbiology. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Hodgson E (2012) Human environments: definition, scope, and the role of toxicology. Prog Mol Biol Transl Sci 112:1–10

    CAS  PubMed  Google Scholar 

  • Honda R, Boonnorat J, Chiemchaisri C, Chiemchaisri W, Yamamoto K (2012) Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor. Bioresour Technol 125:59–64

    CAS  PubMed  Google Scholar 

  • Jafari N, Kasra-Kermanshahi R, Soudi MR (2013) Screening, identification and optimization of a yeast strain, Candida palmioleophila JKS4, capable of azo dye decolorization. Iran J Microbiol 5(4):434

    PubMed  PubMed Central  Google Scholar 

  • Jamal MT, Pugazhendi A, Jeyakumar RB (2020) Application of halophiles in air cathode MFC for seafood industrial wastewater treatment and energy production under high saline condition. Environ Technol Innov 20:101119

    CAS  Google Scholar 

  • Jia H, Yuan Q (2016) Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environ Sci 2(1):1275089

    Google Scholar 

  • Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74. https://doi.org/10.1016/j.jes.2016.08.023

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Bibi I, Sarwar T, Shah AH, Niazi NK (2018) A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. Int J Environ Res Public Health 15(5):895

    PubMed Central  Google Scholar 

  • Kim IT, Lee YE, Jeong Y, Yoo YS (2020) A novel method to remove nitrogen from reject water in wastewater treatment plants using a methane-and methanol-dependent bacterial consortium. Water Res 172:115512

    CAS  PubMed  Google Scholar 

  • Knapp JS, Bromley-Challoner KCA (2003) Recalcitrant organic compounds. Handbook Water Wastewater Microbiol:559–595. https://doi.org/10.1016/b978-012470100-7/50035-2

  • Kokabian B, Ghimire U, Gude VG (2018) Water deionization with renewable energy production in microalgae-microbial desalination process. Renew Energy 122:354–361

    CAS  Google Scholar 

  • Kokabian B, Gude VG (2019) Microbial desalination systems for energy and resource recovery. In: Microbial electrochemical technology. Elsevier, Amsterdam, pp 999–1020

    Google Scholar 

  • Kokkinos P, Mantzavinos D, Venieri D (2020) Current trends in the application of nanomaterials for the removal of emerging micropollutants and pathogens from water. Molecules 25(9):2016

    CAS  PubMed Central  Google Scholar 

  • Kothari R, Prasad R, Kumar V, Singh DP (2013) Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour Technol 144:499–503

    CAS  PubMed  Google Scholar 

  • Kumar B, Agrawal K, Bhardwaj N, Chaturvedi V, Verma P (2018) Advances in concurrent bioelectricity generation and bioremediation through microbial fuel cells. In: Microbial fuel cell technology for bioelectricity. Springer, Cham, pp 211–239

    Google Scholar 

  • Kumar B, Agrawal K, Bhardwaj N, Chaturvedi V, Verma P (2019) Tech-no-economic assessment of microbe-assisted wastewater treatment strate-gies for energy and value-added product recovery. In: Microbial Technology for the Welfare of Society. Springer, Singapore, pp 147–181

    Google Scholar 

  • Kumar B, Agrawal K, Verma P (2021) Current perspective and advances of microbe assisted electrochemical system as a sustainable approach for mitigating toxic dyes and heavy metals from wastewater, ASCE's. J Hazard Toxic Radioact Waste 25(2):04020082

    CAS  Google Scholar 

  • Lee EH, Cho KS (2009) Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp. J Hazard Mater 167(1–3):669–674

    CAS  PubMed  Google Scholar 

  • Li H, Meng F, Duan W, Lin Y, Zheng Y (2019a) Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. Ecotoxicol Environ Saf 184:109658. https://doi.org/10.1016/j.ecoenv.2019.109658

    Article  CAS  PubMed  Google Scholar 

  • Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W et al (2019b) Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour Technol 291:121934

    CAS  PubMed  Google Scholar 

  • Li N, Wan Y, Wang X (2020) Nutrient conversion and recovery from wastewater using electroactive bacteria. Sci Total Environ 706:135690

    CAS  PubMed  Google Scholar 

  • Lim KT, Shukor MY, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. Biomed Res Int 2014:503784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Moustafa H, Hassouna MSED, He Z (2020) Resource recovery from wastewater can be an application niche of microbial desalination cells. Environ Int 142:105855

    CAS  PubMed  Google Scholar 

  • Lopez L, Pozo C, Rodelas B, Calvo C, Juarez B, Martinez-Toledo MV, Gonzalez-Lopez J (2005) Identification of bacteria isolated from an oligotrophic lake with pesticide removal capacities. Ecotoxicology 14:299–312

    CAS  PubMed  Google Scholar 

  • Luo H, Xu P, Roane TM, Jenkins PE, Ren Z (2012) Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour Technol 105:60–66

    CAS  PubMed  Google Scholar 

  • Luo LZ, Shao Y, Luo S, Zeng FJ, Tian GM (2019) Nutrient removal from piggery wastewater by Desmodesmus sp. CHX1 and its cultivation conditions optimization. Environ Technol 40(21):2739–2746

    CAS  PubMed  Google Scholar 

  • Lv J, Liu Y, Feng J, Liu Q, Nan F, **e S (2018) Nutrients removal from undiluted cattle farm wastewater by the two-stage process of microalgae-based wastewater treatment. Bioresour Technol 264:311–318

    CAS  PubMed  Google Scholar 

  • Mao J, Luo Y, Teng Y, Li Z (2012) Bioremediation of polycyclic aromatic hydrocarbon contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeterior Biodegradation 70:141–147

    CAS  Google Scholar 

  • Mattes TE, Alexander AK, Coleman NV (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34(4):445–475. https://doi.org/10.1111/j.1574-6976.2010.00210.x

    Article  CAS  PubMed  Google Scholar 

  • Mayr MJ, Zimmermann M, Dey J, Brand A, Wehrli B, Bürgmann H (2020) Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn. Commun Biol 3(1):1–9

    Google Scholar 

  • Mehariya S, Goswami R, Verma P, Lavecchia R, Zuorro A (2021) Integrated approach for wastewater treatment and biofuel production in microalgae biorefineries. Energies 14(8):2282

    CAS  Google Scholar 

  • Mohsenpour SF, Hennige S, Willoughby N, Adeloye A, Gutierrez T (2020) Integrating micro-algae into wastewater treatment: a review. Sci Total Environ 142168

    Google Scholar 

  • Mujtaba G, Rizwan M, Kim G, Lee K (2018) Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris. Chem Eng J 343:155–162

    CAS  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815

    CAS  PubMed  Google Scholar 

  • Murshid S, Dhakshinamoorthy GP (2019) Biodegradation of sodium diclofenac and mefenamic acid: kinetic studies, identification of metabolites and analysis of enzyme activity. Int Biodeterior Biodegradation 144:104756. https://doi.org/10.1016/j.ibiod.2019.104756

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2020) Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. J Hazard Mater:123401

    Google Scholar 

  • Ng A, Weerakoon D, Lim E, Padhye LP (2019) Fate of environmental pollutants. Water Environ Res 91(10):1294–1325

    CAS  PubMed  Google Scholar 

  • Ngoepe, N. M., Hato, M. J., Modibane, K. D., & Hintsho-Mbita, N. C. (2020). Biogenic synthesis of metal oxide nanoparticle semiconductors for wastewater treatment. Photocatalysts in advanced oxidation processes for wastewater treatment, p 1–31

    Google Scholar 

  • Okeke BC, Siddique T, Arbestain MC, Frankenberger WT (2002) Biodegradation of γ –hexachlorocyclohexane and α–hexachlorocyclohexane in water and soil slurry by Pandoraea sp. J Agric Food Chem 50:2548–2555

    CAS  PubMed  Google Scholar 

  • Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15(2):249–257

    Google Scholar 

  • Papadopoulos KP, Economou CN, Dailianis S, Charalampous N, Stefanidou N, Moustaka-Gouni M et al (2020) Brewery wastewater treatment using cyanobacterial-bacterial settleable aggregates. Algal Res 49:101957

    Google Scholar 

  • Patel A, Enman J, Gulkova A, Guntoro PI, Dutkiewicz A, Ghorbani Y et al (2020) Integrating biometallurgical recovery of metals with biogenic synthesis of nanoparticles. Chemosphere 128306

    Google Scholar 

  • Ramanjaneyulu G, Reddy BR (2019) Emerging trends of microorganism in the production of alternative energy. In: Recent developments in applied microbiology and biochemistry. Academic Press, Cambridge, pp 275–305

    Google Scholar 

  • Roberts N, Hilliard M, He QP, Wang J (2020) A microalgae-methanotrophcoculture is a promising platform for fuels and chemical production from wastewater. Front Energy Res 8

    Google Scholar 

  • Robinson T, Nigam P (2008) Remediation of textile dye-waste water using a white rot fungus Bjerkandera adusta through solid-state fermentation (SSF). Appl Biochem Biotechnol 151:618–628

    CAS  PubMed  Google Scholar 

  • Roh C, Kang C, Lloyd JR (2015) Microbial bioremediation processes for radioactive waste. Korean J Chem Eng 32(9):1720–1726

    CAS  Google Scholar 

  • Romanis CS, Pearson LA, Neilan BA (2020) Cyanobacterial blooms in wastewater treatment facilities: significance and emerging monitoring strategies. J Microbiol Methods:106123

    Google Scholar 

  • Roy DC, Biswas SK, Saha AK, Sikdar B, Rahman M, Roy AK et al (2018) Biodegradation of Crystal Violet dye by bacteria isolated from textile industry effluents. PeerJ 6:e5015

    PubMed  PubMed Central  Google Scholar 

  • Sacco NJ, Bonetto MC, Cortón E (2017) Isolation and characterization of a novel electrogenic bacterium, Dietzia sp. RNV-4. PLoS One 12(2):e0169955

    PubMed  PubMed Central  Google Scholar 

  • Saeed HM, Husseini GA, Yousef S, Saif J, Al-Asheh S, Fara AA et al (2015) Microbial desalination cell technology: a review and a case study. Desalination 359:1–13

    CAS  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157

    CAS  Google Scholar 

  • Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R (2017) Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conserv Sci Eng 2(4):121–131. https://doi.org/10.1007/s41101-017-0031-5

    Article  Google Scholar 

  • Sevda S, Abu-Reesh IM, Yuan H, He Z (2017) Bioelectricity generation from treatment of petroleum refinery wastewater with simultaneous seawater desalination in microbial desalination cells. Energy Convers Manag 141:101–107

    CAS  Google Scholar 

  • Siddiqi KS, ur Rahman A, Husen A (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11(1):1–13

    Google Scholar 

  • Singh J, Thakur IS (2015) Evaluation of cyanobacterial endolith Leptolyngbya sp. ISTCY101, for integrated wastewater treatment and biodiesel production: a toxicological perspective. Algal Res 11:294–303

    Google Scholar 

  • Singh RP, Singh PK, Singh RL (2014) Bacterial decolorization of textile azo dye acid orange by Staphylococcus hominis RMLRT03. Toxicol Int 21(2):160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sood A, Renuka N, Prasanna R, Ahluwalia AS (2015) Cyanobacteria as potential options for wastewater treatment. In: Phytoremediation. Springer, Cham, pp 83–93

    Google Scholar 

  • Sophia AC, Bhalambaal VM, Lima EC, Thirunavoukkarasu M (2016) Microbial desalination cell technology: contribution to sustainable waste water treatment process, current status and future applications. J Environ Chem Eng 4(3):3468–3478

    Google Scholar 

  • Suteu, D., Blaga, A. C., & Zaharia, C. (2013). The action of microorganisms on chemical pollutants from water and soil. Current topics, concepts and research priorities in environmental chemistry (II), p 259–274

    Google Scholar 

  • Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18(3):318–327

    PubMed  Google Scholar 

  • Tahri, N., Bahafid, W., Sayel, H., & El Ghachtouli, N. (2013). Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegradation—Life of Science doi:https://doi.org/10.5772/56194

  • Tang J, Feng T, Cui C, Feng Y (2013) Simultaneous biodegradation of phenanthrene and oxidation of arsenite by a dual-functional bacterial consortium. Int Biodeterior Biodegradation 82:173–179

    CAS  Google Scholar 

  • Udaiyappan AFM, Hasan HA, Takriff MS, Abdullah SRS (2017) A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. J Water Process Eng 20:8–21

    Google Scholar 

  • Verma P, Madamwar D (2002a) Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Appl Biochem Biotechnol 102(1-6):109–118

    PubMed  Google Scholar 

  • Verma P, Madamwar D (2002b) Decolorization of synthetic textile dyes by lignin peroxidase of Phanerochaete chrysosporium. Folia Microbiol 47(3):283–286

    CAS  Google Scholar 

  • Verma P, Madamwar D (2002c) Comparative study on transformation of azo dyes by different white rot fungi. Indian J Biotechnol 1:393–396

    Google Scholar 

  • Verma P, Madamwar D (2003) Decolourization of synthetic dyes by a newly isolated strain of Serratia marcescens. World J Microbiol Biotechnol 19(6):615–618

    CAS  Google Scholar 

  • Wackett LP, Hershberger CD (2001) Biocatalysis and biodegradation: microbial transformation of organic compounds. ASM, Washington, DC

    Google Scholar 

  • Wang B, Wang J, Zhang W, Meldrum DR (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3:344

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Seiwert B, Kästner M, Miltner A, Schäffer A, Reemtsma T et al (2016) (Bio) degradation of glyphosate in water-sediment microcosms—a stable isotope co-labeling approach. Water Res 99:91–100

    CAS  PubMed  Google Scholar 

  • **ng D, Zuo Y, Cheng S, Regan JM, Logan BE (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42:4146–4151

    CAS  PubMed  Google Scholar 

  • Yang J, Li W, Ng TB, Deng X, Lin J, Ye X (2017) Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.00832

  • Yang Z, Pei H, Hou Q, Jiang L, Zhang L, Nie C (2018) Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: nutrient, organics removal and bioenergy production. Chem Eng J 332:277–285

    CAS  Google Scholar 

  • Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MN (2020) Role of nanomaterials in the treatment of wastewater: A review. Water 12(2):495

    CAS  Google Scholar 

  • Yu H, Kim J, Lee C (2019) Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Sci Rep 9(1):1–13

    Google Scholar 

  • Zeller MA, Hunt R, Jones A, Sharma S (2013) Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. J Appl Polym Sci 130(5):3263–3275

    CAS  Google Scholar 

  • Zha X, Tsapekos P, Zhu X, Khoshnevisan B, Lu X, Angelidaki I (2021) Bioconversion of wastewater to single cell protein by methanotrophic bacteria. Bioresour Technol 320:124351

    CAS  PubMed  Google Scholar 

  • Zhan H, Feng Y, Fan X, Chen S (2018) Recent advances in glyphosate biodegradation. Appl Microbiol Biotechnol 102(12):5033–5043

    CAS  PubMed  Google Scholar 

  • Zhang H, Jia Y, Khanal SK, Lu H, Fang H, Zhao Q (2018) Understanding the role of extracellular polymeric substances on ciprofloxacin adsorption in aerobic sludge, anaerobic sludge, and sulfate-reducing bacteria sludge systems. Environ Sci Technol 52(11):6476–6486

    CAS  PubMed  Google Scholar 

  • Zhang J, Gao D, Li Q, Zhao Y, Li L, Lin H et al (2019a) Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci Total Environ 135931. https://doi.org/10.1016/j.scitotenv.2019.135931

  • Zhang L, Fu G, Zhang Z (2019b) High-efficiency salt, sulfate and nitrogen removal and microbial community in biocathode microbial desalination cell for mustard tuber wastewater treatment. Bioresour Technol 289:121630

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kataki .

Editor information

Editors and Affiliations

Ethics declarations

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, K. et al. (2022). Microbes in Resource and Nutrient Recovery via Wastewater Treatment. In: Verma, P. (eds) Industrial Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-5214-1_22

Download citation

Publish with us

Policies and ethics

Navigation