Psychrotrophic Microfungi: Major Habitats, Diversity and Living Strategies

  • Chapter
  • First Online:
Extremophilic Fungi

Abstract

Ecology of extreme cold areas with subzero temperatures at least in some part of the year is the subject of interest. Microfungi from these areas show special morphological and physiological adaptations to avoid cold stresses. Some of them are endemic, but majority are cosmopolitan in distribution. Except for a few, mostly fungi from these areas show a wide range of growth temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe F (2004) Piezophysiology of yeast: occurrence and significance. Cell Mol Biol 50(4):437–445

    CAS  PubMed  Google Scholar 

  • Aislabie JM, Broady PA, Saul DJ (2006) Culturable aerobic heterotrophic bacteria from high altitude, high latitude soil of La Gorce Mountains (86°30’S, 147°W), Antarctica. Antarct Sci 18(3):313–321

    Article  Google Scholar 

  • Altunatmaz SS, Issa G, Aydin A (2012) Detection of airborne psychrotrophic bacteria and fungi in food storage refrigerators. Braz J Microbiol 43:1436–1443

    Article  PubMed  PubMed Central  Google Scholar 

  • Amato P, Hennebelle R, Magand O, Sancelme M, Delort AM, Barbante C, Boutron C, Ferrari C (2007) Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol Ecol 59(2):255–264

    Article  CAS  PubMed  Google Scholar 

  • Anupama P, Praveen KD, Singh RK, Kumar S, Srivastava AK, Arora DK (2011) A psychrophilic and halotolerant strain of thelebolus microsporus from Pangong Lake, Himalaya. Mycosphere 2:601–609

    Article  Google Scholar 

  • Arenz BE, Blanchette RA (2009) Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can J Microbiol 55(1):46–56

    Article  CAS  PubMed  Google Scholar 

  • Arenz BE, Blanchette RA (2011) Distribution and abundance of soilfungi in Antarctica at sites on the Peninsula, Ross Sea Region, and McMurdo dry valleys. Soil Biol Biochem 43(2):308–315

    Article  CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea region of Antarctica. Soil Biol Biochem 38(10):3057–3064

    Article  CAS  Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie; of inleiding tot de milieukunde. WP Van Stockum and Zoon NV, The Hague, p 263

    Google Scholar 

  • Babalola OO, Kirby BM, Le Roes-Hill M, Cook AE, Cary SC, Burton SG, Cowan DA (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11(3):566–576

    Article  CAS  PubMed  Google Scholar 

  • Beijerinck MW (1913) De infusies en de ontdekking der bakterien. Jaarboek van de Koninklijke Akademie van Wetenschappen:1–28

    Google Scholar 

  • Bej AK, Aislabie J, Atlas RM (2009) Polar microbiology. The ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Bjorbaekmo MFM, Carlsen T, Brysting A, Vrålstad T, Høiland K, Ugland KI, Geml J, Schumacher T, Kauserud H (2010) High diversity of root associated fungi in both alpine and arctic Dryas octopetala. BMC Plant Biol 10(1):1–2

    Article  Google Scholar 

  • Blanchette RA, Held BW, Farrell RL (2002) Defibration of wood in the expedition huts of Antarctica: an unusual deterioration process occurring in the polar environment. Polar Record 38:313–322

    Article  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13(3):253–261

    Article  CAS  PubMed  Google Scholar 

  • Cockell CS, Cordoba-Jabonero C (2004) Coupling of climate change and biotic UV exposure through changing snow-ice covers in terrestrial habitats. Photochem Photobiol 79(1):26–31

    CAS  PubMed  Google Scholar 

  • Coulson SJ, Hodkinson ID, Strathdee AT, Block W, Webb NR, Bale JS, Worland MR (1995) Thermal environments of Arctic soil organisms during winter. Arct Alp Res 27(4):364–370

    Article  Google Scholar 

  • De Los Ríos A, Wierzchos J, Sancho LG, Grube M, Ascaso C (2002) Microbial endolithic biofilms: a means of surviving the harsh conditions of the Antarctic. Eur Space Agency Publ Div 518:219–222

    Google Scholar 

  • Deming JW (2009) Extremophiles: cold environments. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp 147–158

    Chapter  Google Scholar 

  • Deslippe JR, Hartmann M, Mohn WW, Simard SW (2011) Longterm experimental manipulation of climate alters the ectomycorrhizal community of Betula nana in Arctic tundra. Glob Chang Biol 17(4):1625–1636

    Article  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol I. Academic Press, London

    Google Scholar 

  • Farrell RL, Blanchette RA, Auger M, Duncan SM, Held BW, Jurgens JE, Minasaki R (2004) Scientific evaluation of deterioration in historic huts of Ross Island, Antarctica. In: Barr S, Chaplin P (eds) Polar monuments and sites cultural heritage work in the Arctic and Antarctic regions. ICOMOS Monuments and Sites No. VIII. Int Polar Heritage Committee, Oslo, pp 33–38

    Google Scholar 

  • Farrell RL, Arenz BE, Duncan SM, Held BW, Jurgens JA, Blanchette RA (2011) Introduced and indigenous fungi of the Ross Island historic huts and pristine areas of Antarctica. Polar Biol 34(11):1669–1677

    Article  Google Scholar 

  • Finlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species. Nature 400(6747):828

    Article  CAS  Google Scholar 

  • Flanagan PW, Scarborough AM (1974) Physiological groups of decomposer fungi on tundra plant remains. In: Holding AJ, Heal OW, MacLean SF Jr, Flanagan PW (eds) Soil organisms and decomposition in tundra. Tundra Biome Steering Committee, Stockholm, pp 159–181

    Google Scholar 

  • Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS (2009) Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108(1):147–154

    Google Scholar 

  • Geml J, Kauff F, Brochmann C, Lutzoni F, Laursen GA, Redhead SA, Taylor DL (2012) Frequent circumarctic and rare transequatorial dispersals in the lichenised agaric genus Lichenomphalia (Hygrophoraceae, Basidiomycota). Fungal Biol 116(3):388–400

    Article  PubMed  Google Scholar 

  • Gocheva Y, Krumova E, Slokoska L, Miteva J, Angelova M (2006) Cell response of Antarctic and temperate strains of Penicillium spp. to different growth temperature. Mycol Res 110:1347–1354

    Article  CAS  PubMed  Google Scholar 

  • Griffin DW (2008) Non-spore forming eubacteria isolated at an altitude for 20,000 m in Earth’s atmosphere: extended incubation periods needed for culture-based assays. Aerobiologia 24(1):19–25

    Article  Google Scholar 

  • Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F (2016) Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Biotechnol 15(2):147–172

    Article  Google Scholar 

  • Held BW, Blanchette RA, Jurgens JA, Duncan S, Farrell RL (2003) Deterioration and conservation issues associated with Antarctica’s historic huts. In: Koestler RJ, Koestler VR, Charloa AE, Nieto-Fernandez FE (eds) Art, biology, and conservation: biodeterioration of works of art. The metropolitan museum of art. New York and Yale University Press, New Haven, pp 370–388

    Google Scholar 

  • Hobbie JE, Hobbie EA (2006) 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87(4):816–822

    Article  PubMed  Google Scholar 

  • Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78(1):41–67

    Article  Google Scholar 

  • Hoshino T, Tronsmo AM, Matsumoto N, Araki T, Georges F, Goda T, Ohgiya S, Ishizaki K (1998) Freezing resistance among isolates of a psychrophilic fungus, Typhula ishikariensis, from Norway. Proc NIPR Symp Polar Biol 11:112–118

    Google Scholar 

  • Hoshino T, Terami F, Tkachenko OB, Tojo M, Matsumoto N (2010) Mycelial growth of the snow mold fungus Sclerotinia borealis, improved at low water potentials: an adaptation to frozen environment. Mycoscience 51(2):98–103

    Article  Google Scholar 

  • Jones HG (1999) The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. Hydrol Process 13(14–15):2135–2147

    Article  Google Scholar 

  • Li HY, Shen M, Zhou ZP, Li T, Wei YL, Lin LB (2012) Diversity and cold adaptation of endophytic fungi from five dominant plant species collected from the Baima Snow Mountain, Southwest China. Fungal Divers 54(1):79–86

    Article  Google Scholar 

  • Lipson DA (2007) Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol 59(2):418–427

    Article  CAS  PubMed  Google Scholar 

  • Little L (2009) Lichen Life in Antarctica: a review on growth and environmental adaptation of Lichens. https://ir.canterbury.ac.nz

  • Lyakh SP, Kozlova TM, Salivonik SM (1984) Effect of periodic freezing and thawing of cells of the Antarctic black yeast Nadsoniella nigra var. hesuelica. Microbiology 52:486–491

    Google Scholar 

  • Männistö MK, Häggblom MM (2006) Characterization of psychrotolerant heterotrophic bacteria from Finnsish Lapland. Sytemat Appl Microbiol 29(3):229–243

    Article  CAS  Google Scholar 

  • Männistö MK, Tiirola M, Häggblom MM (2007) Bacterial communities in Arctic fields of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol 59(2):452–465

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Fell JW (2008) Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and arctic habitats. Int J Syst Evol Microbiol 58(12):2977–2982

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162(3):346–361

    Article  PubMed  Google Scholar 

  • Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33(1):1–14

    Article  CAS  Google Scholar 

  • Margesin R, Fonteyne PA, Schinner F, Sampaio JP (2007) Novel psychrophilic basidiomycetous yeasts from Alpine environments: Rhodotorula psychrophila sp. nov. Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov. Int J Syst Evol Microbiol 57:2179–2184

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto N (2009) Snow molds: a group of fungi that prevail under snow. Microbes Environ 24(1):14–20

    Article  PubMed  Google Scholar 

  • McRae CF, Seppelt RD (1999) Filamentous fungi of the Windmill Islands, continental Antarctica. Effect of water content in moss turves on fungal diversity. Polar Biol 22(6):389–394

    Article  Google Scholar 

  • Moghaddam MSH, Soltani J (2014) Psychrophilic endophytic fungi with biological activity inhabit Cupressaceae plant family. Symbiosis 63(2):79–86

    Article  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39(2):144–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima T, Abe J (1994) Development of resistance to Microdochium nivale in winter wheat during autumn and decline and the resistance under snow. Can J Bot 72(8):1211–1215

    Article  Google Scholar 

  • Nogi Y (2008) Bacteria in the deep sea: psychropiezophiles. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 73–82

    Chapter  Google Scholar 

  • Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5(8):650–659

    Article  CAS  PubMed  Google Scholar 

  • Parmelee JA (1989) The rusts (Uredinales) of arctic Canada. Can J Bot 67(11):3315–3365

    Article  Google Scholar 

  • Pearce DA (2009) Antarctic subglacial lake exploration: a new frontier in microbial ecology. ISME J 3(8):877–880

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69(2):143–157

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA, Hughes KA, Lachlan-Cope T, Harangozo SA, Jones AE (2010) Biodiversity of air-borne microorganisms at Halley station, Antarctica. Extremophiles 14(2):145–159

    Article  PubMed  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151(2):341–353

    Article  CAS  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6(1):127–141

    Article  Google Scholar 

  • Ryanzhin SV, Subetto DA, Kochkov NV, Akhmetova NS, Veinmeister NV (2010) Polar lakes of the world: current data and status of investigations. Water Resour 37(4):427–436

    Article  CAS  Google Scholar 

  • Schipper MA (1967) Mucor strictus hagem, a psychrophilic fungus, and Mucor falcatus sp. n. Antonie Van Leeuwenhoek 33(1):189–195

    Article  CAS  PubMed  Google Scholar 

  • Scholler M, Schnittler M, Piepenbring M (2003) Species of Anthracoidea (Ustilaginales, Basidiomycota) on Cyperaceae in Arctic Europe. Nova Hedwigia 76(3–4):415–428

    Article  Google Scholar 

  • Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol 71(1):123–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbmann L, De Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud Mycol 51(1):1–32

    Google Scholar 

  • Shivaji S, Bhadra B, Rao RS, Pradhan S (2008) Rhodotorula himalayensis sp. nov., a novel psychrophilic yeast isolated from Roopkund Lake of the Himalayan mountain ranges, India. Extremophiles 12(3):375–381

    Article  CAS  PubMed  Google Scholar 

  • Singh SM, Puja G, Bhat DJ (2006) Psychrophilic fungi from Schirmacher oasis, East Antarctica. Curr Sci 90:1388–1392

    Google Scholar 

  • Smith JA, Blanchette RA, Newcombe G (2004) Molecular and morphological characterization of the willow rust fungus, Melampsora epitea, from arctic and temperate hosts in North America. Mycologia 96:1330–1338

    Article  PubMed  Google Scholar 

  • Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microbal Ecol 51(4):413–421

    Article  Google Scholar 

  • Souza V, Eguiarte L, Siefert J, Elser J (2008) Microbial endemism: does phosphorus limitation enhance speciation? Nat Rev Microbiol 6(7):559–564

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Jiang XZ, Wu WP, Wang MM, Hamid MI, **ang MC, Liu XZ (2016) Provide insights into the cold adaptation mechanism of the obligate psychrophilic fungus Mrakia psychrophila. G3: genes, genomes. Genetics 6(11):3603–3613

    CAS  Google Scholar 

  • Sun C, Wang JW, Fang L, Gao XD, Tan RX (2004) Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sci 75:1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps—description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59

    Article  CAS  PubMed  Google Scholar 

  • Timling I, Taylor DL (2012) Peeking through a frosty window: molecular insights into the ecology of Arctic soil fungi. Fungal Ecol 5(4):419–429

    Article  Google Scholar 

  • Traquair JA, Smith DJ (1982) Sclerotial strains of Coprinus psychromorbidus, a snow mold basidiomycete. Can J Plant Pathol 4(1):27–36

    Article  Google Scholar 

  • Treseder KK (2005) Nutrient acquisition strategies of fungiand their relation to elevated atmospheric CO2. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem. CRC Press, Boca Ration, FL, pp 713–731

    Chapter  Google Scholar 

  • Turk M, Plemenitas A, Gunde-Cimerman N (2011) Extremophilic yeasts: plasma-membrane fluidity as determinant of stress tolerance. Fungal Biol 115:950–958

    Article  CAS  PubMed  Google Scholar 

  • Vincent WF, Hobbie JE, Laybourn-Parry J (2008) Introduction to the limnology of high-latitude lake and river ecosystems. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers—limnology of Arctic and Antarctic aquatic ecosystems, vol 11. Oxford University Press, pp 1–23

    Google Scholar 

  • Vishniac HS (1996) Biodiversity of yeasts and filamentous microfungi in terrestrial Antarctic ecosystems. Biodivers Conserv 5(11):1365–1378

    Article  Google Scholar 

  • Wainwright M, Wickramasinghe NC, Narlikar JV, Rajaratnam P (2004) Microorganisms cultured from stratospheric air samples obtained at 41 km. FEMS Microbiol Lett 218(1):161–165

    Article  Google Scholar 

  • Wang M, Jiang X, Wu W, Hao Y, Su Y, Cai L, **ang M, Liu X (2015) Psychrophilic fungi from the world’s roof. Persoon Molecul Phylog Evolut Fungi 34:100

    Article  CAS  Google Scholar 

  • Wang M, Tian J, **ang M, Liu X (2017) Living strategy of cold-adapted fungi with the reference to several representative species. Mycology 8(3):178–188

    Article  PubMed  PubMed Central  Google Scholar 

  • Watling R (2005) Fungal conservation: some impressions – a personal view. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem. CRCPress, Boca Ration, FL, pp 881–896

    Chapter  Google Scholar 

  • Weinstein RN, Palm ME, Johnstone K, Wynn-Williams DD (1997) Ecological and physiological characterization of Humicola marvinii, a new psychrophilic fungus from fellfield soils in the maritime Antarctic. Mycologia 89(5):705–711

    Article  Google Scholar 

  • Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229

    Article  CAS  Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978

    Article  CAS  PubMed  Google Scholar 

  • Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. Adv Microb Ecol 11:71–146

    Article  Google Scholar 

  • **n MX, Zhou PJ (2007) Mrakia psychrophila sp. nov. a new species isolated from antarctic soil. J Zhejiang Univ Sci B 8(4):260–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Zhang Y-Q, Liu H-Y, Wei Y-Z, Li H-L, Su J, Zhao L-X, Yu L-Y (2013) Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica. FEMS Microbiol Lett 341:52–61

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Wei XL, Zhang YQ, Liu HY, Yu LY (2015) Diversity and distribution of lichen associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing. Sci Rep 5:1485

    Google Scholar 

  • Zucconi L, Ripa C, Selbmann L, Onofri S (2002) Effects of UV on the spores of the fungal species Arthrobotrys oligospora and A. ferox. Polar Biol 25:500–505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhary, K. et al. (2022). Psychrotrophic Microfungi: Major Habitats, Diversity and Living Strategies. In: Sahay, S. (eds) Extremophilic Fungi. Springer, Singapore. https://doi.org/10.1007/978-981-16-4907-3_6

Download citation

Publish with us

Policies and ethics

Navigation