• 3308 Accesses

Despite the fact that up to 60% of the Earth's surface is covered by seas of depths exceeding 1,000 m, the study of microorganisms in the deep sea is very incomplete. The deep sea is regarded as an extreme environment with high hydrostatic pressures (up to 110 MPa), predominantly low temperatures (2–4°C), but with occasional regions of extremely high temperatures (up to 370°C) at hydrothermal vents, darkness, and low nutrient availability, although with sufficient dissolved oxygen (Fig. 5.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720.

    CAS  PubMed  Google Scholar 

  • Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720.

    CAS  PubMed  Google Scholar 

  • Bartlett DH (1999) Microbial adaptations to the psychrosphere/piezosphere. J Mol Microbiol Biotechnol 1:93–100.

    CAS  PubMed  Google Scholar 

  • Beijerinck MW (1889) Le Photobacterium luminosum, Bactérie luminosum de la Mer Nord. Arch Néerl Sci 23:401–427 (in French).

    Google Scholar 

  • Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nichols PD, Skerratt JH, Staley JT, McMeekin TA (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6w3). Int J Syst Bacteriol 48:1171–1180.

    Article  CAS  Google Scholar 

  • Colwell RR, Morita RY (1964) Reisolation and emendation of description of Vibrio marinus (Russell) Ford. J Bacteriol 88:831–837.

    CAS  PubMed  Google Scholar 

  • DeLong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103.

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737.

    CAS  PubMed  Google Scholar 

  • DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationship of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108.

    CAS  PubMed  Google Scholar 

  • Deming JW, Hada H, Colwell RR, Luehrsen KR, Fox GE (1984) The nucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol 130:1911–1920.

    CAS  PubMed  Google Scholar 

  • Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT (1988) Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 10:152–160.

    Google Scholar 

  • Fang JS, Barcelona MJ, Nogi Y, Kato C (2000) Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11, 000 m. Deep-Sea Res Part I 47:1173–1182.

    Article  CAS  Google Scholar 

  • Fang JS, Chan O, Kato C, Sato T, Peeples T, Niggemeyer K (2003) Phospholipid FA of piezophilic bacteria from the deep sea. Lipids 38:885–887.

    Article  CAS  PubMed  Google Scholar 

  • Kato C (1999) Barophiles (Piezophiles). In: Horikoshi K, Tsujii K (eds) Extremophiles in deep-sea environments. Springer, Tokyo, pp 91–111.

    Google Scholar 

  • Kato C, Nogi Y (2001) Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35:223–230.

    Article  CAS  PubMed  Google Scholar 

  • Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodiv Conserv 4:1–9.

    Article  Google Scholar 

  • Kato C, Li L, Nakamura Y, Nogi Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11, 000 meters. Appl Environ Microbiol 64:1510–1513.

    CAS  PubMed  Google Scholar 

  • Kato C, Nakasone K, Qureshi MH, Horikoshi K (2000) How do deep-sea microorganisms respond to changes in environmental pressure? In: Storey KB, Storey JM (eds) Cell and molecular response to stress, vol 1. Elsevier Science, Amsterdam, pp 277–291.

    Google Scholar 

  • MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182.

    CAS  Google Scholar 

  • Margesin R, Nogi Y (2004) Psychropiezophilic microorganisms. Cell Mol Biol 50:429–436.

    CAS  PubMed  Google Scholar 

  • Mountfort DO, Rainey FA, Burghardt J, Kasper F, Stackebrant E (1998) Psychromonas antarcticus gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, Antarctica. Arch Microbiol 169:231–238.

    Article  CAS  PubMed  Google Scholar 

  • Nakasone K, Ikegami A, Kato C, Usami R, Horikoshi K (1998) Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 2:149–154.

    Article  CAS  PubMed  Google Scholar 

  • Nakasone K, Ikegami A, Kawano H, Usami R, Kato C, Horikoshi K (2002) Transcriptional regulation under pressure conditions by the RNA polymerase s54 factor with a two component regulatory system in Shewanella violacea. Extremophiles 6:89–95.

    Article  CAS  PubMed  Google Scholar 

  • Nakasone K, Mori H, Baba T, Kato C (2003) Whole-genome analysis of piezophilic and psychrophilic microorganism. Kagaku to Seibutu 41:32–39 (in Japanese).

    Google Scholar 

  • Nogi Y, Kato C (1999) Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench, and Moritella yayanosii sp. nov., a new barophilic bacterial species. Extremophiles 3:71–77.

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998a) Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44:289–295.

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998b) Taxonomic studies of deep-sea barophilic Shewanella species, and Shewanella violacea sp. nov., a new barophilic bacterial species. Arch Microbiol 170:331–338.

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (2002) Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 52:1527–1532.

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Hosoya S, Kato C, Horikoshi K (2004) Colwellia piezophila sp. nov., isolation of novel piezophilic bacteria from the deep-sea fissure sediments of the Japan Trench. Int J Syst Evol Microbiol 54:1627–1631.

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Masui N, Kato C (1998c) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Owen R, Legros RM, Lapage SP (1978) Base composition, size and sequence similarities of genome deoxyribonucleic acids from clinical isolates of Pseudomonas putrefaciens. J Gen Microbiol 104:127–138.

    CAS  PubMed  Google Scholar 

  • Seo HJ, Bae SS, Lee J-H, Kim S-J (2005) Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int J Syst Evol Microbiol 55:1661–1666.

    Article  CAS  PubMed  Google Scholar 

  • Urakawa H, Kita-Tsukamoto K, Steven SE, Ohwada K, Colwell RR (1998) A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol Lett 165:373–378.

    Article  CAS  PubMed  Google Scholar 

  • Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Laauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Nogi Y, Kato C, Liang Z, Rüger H-J, Kegel DD, Glansdorff N (2003a) Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int J Syst Evol Microbiol 53:527–532.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Nogi Y, Kato C, Liang Z, Rüger H-J, Kegel DD, Glansdorff N (2003b) Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53:533–538.

    Article  CAS  PubMed  Google Scholar 

  • Yayanos AA (1995) Microbiology to 10, 500 meters in the deep sea. Annu Rev Microbiol 49:777–805.

    Article  CAS  PubMed  Google Scholar 

  • Yayanos AA, Dietz AS, Van Boxtel R (1979) Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810.

    Article  PubMed  CAS  Google Scholar 

  • ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nogi, Y. (2008). Bacteria in the Deep Sea: Psychropiezophiles. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_5

Download citation

Publish with us

Policies and ethics

Navigation