Calcium Channel Splice Variants and Their Effects in Brain and Cardiovascular Function

  • Chapter
  • First Online:
Ion Channels in Biophysics and Physiology

Abstract

Calcium ions serve as an important intracellular messenger in many diverse pathways, ranging from excitation coupling in muscles to neurotransmitter release in neurons. Physiologically, the concentration of free intracellular Ca2+ is up to 10,000 times less than that of the extracellular concentration, and increases of 10- to 100-fold in intracellular Ca2+ are observed during signaling events. Voltage-gated calcium channels (VGCCs) located on the plasma membrane serve as one of the main ways in which Ca2+ is able to enter the cell. Given that Ca2+ functions as a ubiquitous intracellular messenger, it is imperative that VGCCs are under tight regulation to ensure that intracellular Ca2+ concentration remains within the physiological range. In this chapter, we explore VGCCs’ inherent control of Ca2+ entry as well as the effects of alternative splicing in CaV2.1 and posttranslational modifications of CaV1.2/CaV1.3 such as phosphorylation and ubiquitination. Deviation from this physiological range will result in deleterious effects known as calcium channelopathies, some of which will be explored in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jeftinija DM et al (2007) The Ca(V) 1.2 Ca(2+) channel is expressed in sarcolemma of type I and IIa myofibers of adult skeletal muscle. Muscle Nerve 36:482–490. https://doi.org/10.1002/mus.20842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci U S A 84:5478–5482. https://doi.org/10.1073/pnas.84.15.5478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gez LS, Hagalili Y, Shainberg A, Atlas D (2012) Voltage-driven Ca(2+) binding at the L-type Ca(2+) channel triggers cardiac excitation-contraction coupling prior to Ca(2+) influx. Biochemistry 51:9658–9666. https://doi.org/10.1021/bi301124a

    Article  CAS  PubMed  Google Scholar 

  4. Buraei Z, Yang J (2013) Structure and function of the β subunit of voltage-gated Ca2+ channels. Biochim Biophys Acta (BBA) – Biomembr 1828:1530–1540. https://doi.org/10.1016/j.bbamem.2012.08.028

    Article  CAS  Google Scholar 

  5. Hidalgo P, Gonzalez-Gutierrez G, Garcia-Olivares J, Neely A (2006) The alpha1-beta-subunit interaction that modulates calcium channel activity is reversible and requires a competent alpha-interaction domain. J Biol Chem 281:24104–24110. https://doi.org/10.1074/jbc.M605930200

    Article  CAS  PubMed  Google Scholar 

  6. Hu Z et al (2018) Regulation of blood pressure by targeting CaV1.2-Galectin-1 protein interaction. Circulation 138:1431–1445. https://doi.org/10.1161/circulationaha.117.031231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mangoni ME et al (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100:5543–5548. https://doi.org/10.1073/pnas.0935295100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barrett CF, Tsien RW (2008) The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 L-type calcium channels. Proc Natl Acad Sci U S A 105:2157–2162. https://doi.org/10.1073/pnas.0710501105

    Article  PubMed  PubMed Central  Google Scholar 

  9. Splawski I et al (2005) Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A 102:8089–8096.; discussion 8086-8088. https://doi.org/10.1073/pnas.0502506102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Antzelevitch C et al (2007) Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115:442–449. https://doi.org/10.1161/circulationaha.106.668392

    Article  PubMed  PubMed Central  Google Scholar 

  11. Simms BA, Zamponi GW (2012) The Brugada syndrome mutation A39V does not affect surface expression of neuronal rat Cav1.2 channels. Mol Brain 5:9. https://doi.org/10.1186/1756-6606-5-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baig SM et al (2011) Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci 14:77–84. https://doi.org/10.1038/nn.2694

    Article  CAS  PubMed  Google Scholar 

  13. Loh KWZ, Liang MC, Soong TW, Hu Z (2020) Regulation of cardiovascular calcium channel activity by post-translational modifications or interacting proteins. Pflügers Arch: Eur J Physiol. https://doi.org/10.1007/s00424-020-02398-x

  14. Patriarchi T et al (2016) Phosphorylation of Cav1.2 on S1928 uncouples the L-type Ca2+ channel from the β2 adrenergic receptor. EMBO J 35:1330–1345. https://doi.org/10.15252/embj.201593409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lerner M et al (2007) The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiquitin ligase involved in ERAD. Mol Biol Cell 18:1670–1682. https://doi.org/10.1091/mbc.e06-03-0248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mori Y et al (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:398–402. https://doi.org/10.1038/350398a0

    Article  CAS  PubMed  Google Scholar 

  17. Dubel SJ et al (1992) Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. Proc Natl Acad Sci U S A 89:5058–5062. https://doi.org/10.1073/pnas.89.11.5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Williams ME et al (1992) Structure and functional expression of alpha 1, alpha 2, and beta subunits of a novel human neuronal calcium channel subtype. Neuron 8:71–84. https://doi.org/10.1016/0896-6273(92)90109-q

    Article  CAS  PubMed  Google Scholar 

  19. Llinas R, Sugimori M, Lin JW, Cherksey B (1989) Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc Natl Acad Sci U S A 86:1689–1693. https://doi.org/10.1073/pnas.86.5.1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Llinas RR, Sugimori M, Cherksey B (1989) Voltage-dependent calcium conductances in mammalian neurons. The P channel. Ann N Y Acad Sci 560:103–111. https://doi.org/10.1111/j.1749-6632.1989.tb24084.x

    Article  CAS  PubMed  Google Scholar 

  21. Randall A, Tsien RW (1995) Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci 15:2995–3012

    Article  CAS  Google Scholar 

  22. Wheeler DB, Randall A, Tsien RW (1994) Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264:107–111. https://doi.org/10.1126/science.7832825

    Article  CAS  PubMed  Google Scholar 

  23. Hillman D et al (1991) Localization of P-type calcium channels in the central nervous system. Proc Natl Acad Sci U S A 88:7076–7080. https://doi.org/10.1073/pnas.88.16.7076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mintz IM et al (1992) P-type calcium channels blocked by the spider toxin omega-Aga-IVA. Nature 355:827–829. https://doi.org/10.1038/355827a0

    Article  CAS  PubMed  Google Scholar 

  25. Usowicz MM, Sugimori M, Cherksey B, Llinas R (1992) P-type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells. Neuron 9:1185–1199. https://doi.org/10.1016/0896-6273(92)90076-p

    Article  CAS  PubMed  Google Scholar 

  26. Starr TV, Prystay W, Snutch TP (1991) Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci U S A 88:5621–5625. https://doi.org/10.1073/pnas.88.13.5621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stea A et al (1994) Localization and functional properties of a rat brain alpha 1A calcium channel reflect similarities to neuronal Q- and P-type channels. Proc Natl Acad Sci U S A 91:10576–10580. https://doi.org/10.1073/pnas.91.22.10576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Snutch TP, Reiner PB (1992) Ca2+ channels: diversity of form and function. Curr Opin Neurobiol 2:247–253. https://doi.org/10.1016/0959-4388(92)90111-w

    Article  CAS  PubMed  Google Scholar 

  29. Tsien RW, Ellinor PT, Horne WA (1991) Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol Sci 12:349–354. https://doi.org/10.1016/0165-6147(91)90595-j

    Article  CAS  PubMed  Google Scholar 

  30. Mermelstein PG et al (1999) Properties of Q-type calcium channels in neostriatal and cortical neurons are correlated with beta subunit expression. J Neurosci 19:7268–7277

    Article  CAS  Google Scholar 

  31. Bourinet E et al (1999) Splicing of alpha 1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat Neurosci 2:407–415. https://doi.org/10.1038/8070

    Article  CAS  PubMed  Google Scholar 

  32. Kanumilli S et al (2006) Alternative splicing generates a smaller assortment of CaV2.1 transcripts in cerebellar Purkinje cells than in the cerebellum. Physiol Genomics 24:86–96. https://doi.org/10.1152/physiolgenomics.00149.2005

    Article  CAS  PubMed  Google Scholar 

  33. Soong TW et al (2002) Systematic identification of splice variants in human P/Q-type channel alpha1(2.1) subunits: implications for current density and Ca2+-dependent inactivation. J Neurosci 22:10142–10152

    Article  CAS  Google Scholar 

  34. Hans M et al (1999) Structural elements in domain IV that influence biophysical and pharmacological properties of human alpha1A-containing high-voltage-activated calcium channels. Biophys J 76:1384–1400. https://doi.org/10.1016/S0006-3495(99)77300-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harvey RJ, Napper RM (1988) Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat. J Comp Neurol 274:151–157. https://doi.org/10.1002/cne.902740202

    Article  CAS  PubMed  Google Scholar 

  36. Wetts R, Herrup K (1983) Direct correlation between Purkinje and granule cell number in the cerebella of lurcher chimeras and wild-type mice. Brain Res 312:41–47. https://doi.org/10.1016/0165-3806(83)90119-0

    Article  CAS  PubMed  Google Scholar 

  37. Kretsinger RH (1976) Calcium-binding proteins. Ann Rev Biochem 45:239–266. https://doi.org/10.1146/annurev.bi.45.070176.001323

    Article  CAS  PubMed  Google Scholar 

  38. Babitch J (1990) Channel hands. Nature 346:321–322. https://doi.org/10.1038/346321b0

    Article  CAS  PubMed  Google Scholar 

  39. Kretsinger RH (2013) In: William J. Lennarz & M. Daniel Lane (Eds.), Encyclopedia of biological chemistry, 2nd ed., Academic Press, pp. 316–321.

    Google Scholar 

  40. Chaudhuri D et al (2004) Alternative splicing as a molecular switch for Ca2+/calmodulin-dependent facilitation of P/Q-type Ca2+ channels. J Neurosci 24:6334–6342. https://doi.org/10.1523/JNEUROSCI.1712-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chaudhuri D, Issa JB, Yue DT (2007) Elementary mechanisms producing facilitation of Cav2.1 (P/Q-type) channels. J Gen Physiol 129:385–401. https://doi.org/10.1085/jgp.200709749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thomas JR, Hagen J (2018) Soh, D. & Lee, A. Molecular moieties masking Ca(2+)-dependent facilitation of voltage-gated Cav2.2 Ca(2+) channels. J Gen Physiol 150:83–94. https://doi.org/10.1085/jgp.201711841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mori MX, Vander Kooi CW, Leahy DJ, Yue DT (2008) Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+. Structure 16:607–620. https://doi.org/10.1016/j.str.2008.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chaudhuri D, Alseikhan BA, Chang SY, Soong TW, Yue DT (2005) Developmental activation of calmodulin-dependent facilitation of cerebellar P-type Ca2+ current. J Neurosci 25:8282–8294. https://doi.org/10.1523/JNEUROSCI.2253-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang SY et al (2007) Age and gender-dependent alternative splicing of P/Q-type calcium channel EF-hand. Neuroscience 145:1026–1036. https://doi.org/10.1016/j.neuroscience.2006.12.054

    Article  CAS  PubMed  Google Scholar 

  46. Kano M, Watanabe T, Uesaka N, Watanabe M (2018) Multiple phases of climbing fiber synapse elimination in the develo** cerebellum. Cerebellum 17:722–734. https://doi.org/10.1007/s12311-018-0964-z

    Article  PubMed  Google Scholar 

  47. Thalhammer A et al (2017) Alternative Splicing of P/Q-Type Ca(2+) Channels Shapes Presynaptic Plasticity. Cell Rep 20:333–343. https://doi.org/10.1016/j.celrep.2017.06.055

    Article  CAS  PubMed  Google Scholar 

  48. Hirano M et al (2017) C-terminal splice variants of P/Q-type Ca(2+) channel CaV2.1 alpha1 subunits are differentially regulated by Rab3-interacting molecule proteins. J Biol Chem 292:9365–9381. https://doi.org/10.1074/jbc.M117.778829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhuchenko O et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62–69. https://doi.org/10.1038/ng0197-62

    Article  CAS  PubMed  Google Scholar 

  50. Watase K et al (2008) Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci U S A 105:11987–11992. https://doi.org/10.1073/pnas.0804350105

    Article  PubMed  PubMed Central  Google Scholar 

  51. Aikawa T et al (2017) Alternative splicing in the C-terminal tail of Cav2.1 is essential for preventing a neurological disease in mice. Hum Mol Genet 26:3094–3104. https://doi.org/10.1093/hmg/ddx193

    Article  CAS  PubMed  Google Scholar 

  52. Saegusa H et al (2007) Properties of human Cav2.1 channel with a spinocerebellar ataxia type 6 mutation expressed in Purkinje cells. Mol Cell Neurosci 34:261–270. https://doi.org/10.1016/j.mcn.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  53. Matsuyama Z et al (1999) Direct alteration of the P/Q-type Ca2+ channel property by polyglutamine expansion in spinocerebellar ataxia 6. J Neurosci 19:RC14

    Article  CAS  Google Scholar 

  54. Piedras-Renteria ES et al (2001) Increased expression of alpha 1A Ca2+ channel currents arising from expanded trinucleotide repeats in spinocerebellar ataxia type 6. J Neurosci 21:9185–9193

    Article  CAS  Google Scholar 

  55. Toru S et al (2000) Spinocerebellar ataxia type 6 mutation alters P-type calcium channel function. J Biol Chem 275:10893–10898. https://doi.org/10.1074/jbc.275.15.10893

    Article  CAS  PubMed  Google Scholar 

  56. Lacerda AE et al (1991) Normalization of current kinetics by interaction between the alpha 1 and beta subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature 352:527–530. https://doi.org/10.1038/352527a0

    Article  CAS  PubMed  Google Scholar 

  57. Varadi G, Lory P, Schultz D, Varadi M, Schwartz A (1991) Acceleration of activation and inactivation by the beta subunit of the skeletal muscle calcium channel. Nature 352:159–162. https://doi.org/10.1038/352159a0

    Article  CAS  PubMed  Google Scholar 

  58. Sokolov S, Weiss RG, Timin EN, Hering S (2000) Modulation of slow inactivation in class A Ca2+ channels by beta-subunits. J Physiol 527(Pt 3):445–454. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00445.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shi C, Soldatov NM (2002) Molecular determinants of voltage-dependent slow inactivation of the Ca2+ channel. J Biol Chem 277:6813–6821. https://doi.org/10.1074/jbc.M110524200

    Article  CAS  PubMed  Google Scholar 

  60. Isom LL, De Jongh KS, Catterall WA (1994) Auxiliary subunits of voltage-gated ion channels. Neuron 12:1183–1194. https://doi.org/10.1016/0896-6273(94)90436-7

    Article  CAS  PubMed  Google Scholar 

  61. Eckert R, Chad JE (1984) Inactivation of Ca channels. Prog Biophys Mol Biol 44:215–267. https://doi.org/10.1016/0079-6107(84)90009-9

    Article  CAS  PubMed  Google Scholar 

  62. Zhang JF, Ellinor PT, Aldrich RW, Tsien RW (1994) Molecular determinants of voltage-dependent inactivation in calcium channels. Nature 372:97–100. https://doi.org/10.1038/372097a0

    Article  CAS  PubMed  Google Scholar 

  63. Stotz SC, Hamid J, Spaetgens RL, Jarvis SE, Zamponi GW (2000) Fast inactivation of voltage-dependent calcium channels. A hinged-lid mechanism? J Biol Chem 275:24575–24582. https://doi.org/10.1074/jbc.M000399200

    Article  CAS  PubMed  Google Scholar 

  64. Kraus RL, Sinnegger MJ, Glossmann H, Hering S, Striessnig J (1998) Familial hemiplegic migraine mutations change alpha1A Ca2+ channel kinetics. J Biol Chem 273:5586–5590. https://doi.org/10.1074/jbc.273.10.5586

    Article  CAS  PubMed  Google Scholar 

  65. Kraus RL et al (2000) Three new familial hemiplegic migraine mutants affect P/Q-type Ca(2+) channel kinetics. J Biol Chem 275:9239–9243. https://doi.org/10.1074/jbc.275.13.9239

    Article  CAS  PubMed  Google Scholar 

  66. Hering S et al (1996) Transfer of high sensitivity for benzothiazepines from L-type to class A (BI) calcium channels. J Biol Chem 271:24471–24475. https://doi.org/10.1074/jbc.271.40.24471

    Article  CAS  PubMed  Google Scholar 

  67. Hering S, Berjukow S, Aczel S, Timin EN (1998) Ca2+ channel block and inactivation: common molecular determinants. Trends Pharmacol Sci 19:439–443. https://doi.org/10.1016/s0165-6147(98)01258-9

    Article  CAS  PubMed  Google Scholar 

  68. Stotz SC, Zamponi GW (2001) Identification of inactivation determinants in the domain IIS6 region of high voltage-activated calcium channels. J Biol Chem 276:33001–33010. https://doi.org/10.1074/jbc.M104387200

    Article  CAS  PubMed  Google Scholar 

  69. Splawski I et al (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31. https://doi.org/10.1016/j.cell.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  70. Berrou L, Bernatchez G, Parent L (2001) Molecular determinants of inactivation within the I-II linker of alpha1E (CaV2.3) calcium channels. Biophys J 80:215–228. https://doi.org/10.1016/S0006-3495(01)76008-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Herlitze S, Hockerman GH, Scheuer T, Catterall WA (1997) Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel alpha1A subunit. Proc Natl Acad Sci U S A 94:1512–1516. https://doi.org/10.1073/pnas.94.4.1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stotz SC, Jarvis SE, Zamponi GW (2004) Functional roles of cytoplasmic loops and pore lining transmembrane helices in the voltage-dependent inactivation of HVA calcium channels. J Physiol 554:263–273. https://doi.org/10.1113/jphysiol.2003.047068

    Article  CAS  PubMed  Google Scholar 

  73. Beyl S et al (2009) Different pathways for activation and deactivation in CaV1.2: a minimal gating model. J Gen Physiol 134:231–241.; S231–232. https://doi.org/10.1085/jgp.200910272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hering S et al (2018) Calcium channel gating. Pflugers Arch 470:1291–1309. https://doi.org/10.1007/s00424-018-2163-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu J et al (2016) Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 A resolution. Nature 537:191–196. https://doi.org/10.1038/nature19321

    Article  CAS  PubMed  Google Scholar 

  76. Wu J et al (2015) Structure of the voltage-gated calcium channel Cav1.1 complex. Science 350:aad2395. https://doi.org/10.1126/science.aad2395

    Article  CAS  PubMed  Google Scholar 

  77. Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channel in paramecium. Science 202:1203–1206. https://doi.org/10.1126/science.103199

    Article  CAS  PubMed  Google Scholar 

  78. Brehm P, Dunlap K, Eckert R (1978) Calcium-dependent repolarization in paramecium. J Physiol 274:639–654. https://doi.org/10.1113/jphysiol.1978.sp012171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Eckert R, Tillotson DL (1981) Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurones of Aplysia californica. J Physiol 314:265–280. https://doi.org/10.1113/jphysiol.1981.sp013706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Imredy JP, Yue DT (1994) Mechanism of Ca(2+)-sensitive inactivation of L-type Ca2+ channels. Neuron 12:1301–1318. https://doi.org/10.1016/0896-6273(94)90446-4

    Article  CAS  PubMed  Google Scholar 

  81. DeMaria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT (2001) Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411:484–489. https://doi.org/10.1038/35078091

    Article  CAS  PubMed  Google Scholar 

  82. Kass RS, Sanguinetti MC (1984) Inactivation of calcium channel current in the calf cardiac Purkinje fiber. Evidence for voltage- and calcium-mediated mechanisms. J Gen Physiol 84:705–726. https://doi.org/10.1085/jgp.84.5.705

    Article  CAS  PubMed  Google Scholar 

  83. Mentrard D, Vassort G, Fischmeister R (1984) Calcium-mediated inactivation of the calcium conductance in cesium-loaded frog heart cells. J Gen Physiol 83:105–131. https://doi.org/10.1085/jgp.83.1.105

    Article  CAS  PubMed  Google Scholar 

  84. Lee KS, Marban E, Tsien RW (1985) Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol 364:395–411. https://doi.org/10.1113/jphysiol.1985.sp015752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. de Leon M et al (1995) Essential Ca(2+)-binding motif for Ca(2+)-sensitive inactivation of L-type Ca2+ channels. Science 270:1502–1506. https://doi.org/10.1126/science.270.5241.1502

    Article  PubMed  Google Scholar 

  86. Zhou J et al (1997) Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+ -binding function of a motif with similarity to Ca2+ -binding domains. Proc Natl Acad Sci U S A 94:2301–2305. https://doi.org/10.1073/pnas.94.6.2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bernatchez G, Talwar D, Parent L (1998) Mutations in the EF-hand motif impair the inactivation of barium currents of the cardiac alpha1C channel. Biophys J 75:1727–1739. https://doi.org/10.1016/S0006-3495(98)77614-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zuhlke RD, Reuter H (1998) Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the alpha1C subunit. Proc Natl Acad Sci U S A 95:3287–3294. https://doi.org/10.1073/pnas.95.6.3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Peterson BZ, DeMaria CD, Adelman JP, Yue DT (1999) Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron 22:549–558. https://doi.org/10.1016/s0896-6273(00)80709-6

    Article  CAS  PubMed  Google Scholar 

  90. Erickson MG, Alseikhan BA, Peterson BZ, Yue DT (2001) Preassociation of calmodulin with voltage-gated Ca(2+) channels revealed by FRET in single living cells. Neuron 31:973–985. https://doi.org/10.1016/s0896-6273(01)00438-x

    Article  CAS  PubMed  Google Scholar 

  91. Erickson MG, Liang H, Mori MX, Yue DT (2003) FRET two-hybrid map** reveals function and location of L-type Ca2+ channel CaM preassociation. Neuron 39:97–107. https://doi.org/10.1016/s0896-6273(03)00395-7

    Article  CAS  PubMed  Google Scholar 

  92. Pitt GS et al (2001) Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J Biol Chem 276:30794–30802. https://doi.org/10.1074/jbc.M104959200

    Article  CAS  PubMed  Google Scholar 

  93. Lee A et al (1999) Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399:155–159. https://doi.org/10.1038/20194

    Article  CAS  PubMed  Google Scholar 

  94. Lee A, Scheuer T, Catterall WA (2000) Ca2+/calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. J Neurosci 20:6830–6838

    Article  CAS  Google Scholar 

  95. Liang H et al (2003) Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39:951–960. https://doi.org/10.1016/s0896-6273(03)00560-9

    Article  CAS  PubMed  Google Scholar 

  96. Yue DT, Backx PH, Imredy JP (1990) Calcium-sensitive inactivation in the gating of single calcium channels. Science 250:1735–1738. https://doi.org/10.1126/science.2176745

    Article  CAS  PubMed  Google Scholar 

  97. Lee A, Zhou H, Scheuer T, Catterall WA (2003) Molecular determinants of Ca(2+)/calmodulin-dependent regulation of Ca(v)2.1 channels. Proc Natl Acad Sci U S A 100:16059–16064. https://doi.org/10.1073/pnas.2237000100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim EY et al (2008) Structures of CaV2 Ca2+/CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation. Structure 16:1455–1467. https://doi.org/10.1016/j.str.2008.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dunlap K (2007) Calcium channels are models of self-control. J Gen Physiol 129:379–383. https://doi.org/10.1085/jgp.200709786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dick IE et al (2008) A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 451:830–834. https://doi.org/10.1038/nature06529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zuhlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399:159–162. https://doi.org/10.1038/20200

    Article  CAS  PubMed  Google Scholar 

  102. Dzhura I, Wu Y, Colbran RJ, Balser JR, Anderson ME (2000) Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat Cell Biol 2:173–177. https://doi.org/10.1038/35004052

    Article  CAS  PubMed  Google Scholar 

  103. Hudmon A et al (2005) CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 171:537–547. https://doi.org/10.1083/jcb.200505155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee TS et al (2006) Calmodulin kinase II is involved in voltage-dependent facilitation of the L-type Cav1.2 calcium channel: Identification of the phosphorylation sites. J Biol Chem 281:25560–25567. https://doi.org/10.1074/jbc.M508661200

    Article  CAS  PubMed  Google Scholar 

  105. Abiria SA, Colbran RJ (2010) CaMKII associates with CaV1.2 L-type calcium channels via selected beta subunits to enhance regulatory phosphorylation. J Neurochem 112:150–161. https://doi.org/10.1111/j.1471-4159.2009.06436.x

    Article  CAS  PubMed  Google Scholar 

  106. Koval OM et al (2010) CaV1.2 beta-subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations. Proc Natl Acad Sci U S A 107:4996–5000. https://doi.org/10.1073/pnas.0913760107

    Article  PubMed  PubMed Central  Google Scholar 

  107. Grueter CE, Abiria SA, Wu Y, Anderson ME, Colbran RJ (2008) Differential regulated interactions of calcium/calmodulin-dependent protein kinase II with isoforms of voltage-gated calcium channel beta subunits. Biochemistry 47:1760–1767. https://doi.org/10.1021/bi701755q

    Article  CAS  PubMed  Google Scholar 

  108. Walikonis RS et al (2001) Densin-180 forms a ternary complex with the (alpha)-subunit of Ca2+/calmodulin-dependent protein kinase II and (alpha)-actinin. J Neurosci 21:423–433

    Article  CAS  Google Scholar 

  109. Strack S, Robison AJ, Bass MA, Colbran RJ (2000) Association of calcium/calmodulin-dependent kinase II with developmentally regulated splice variants of the postsynaptic density protein densin-180. J Biol Chem 275:25061–25064. https://doi.org/10.1074/jbc.C000319200

    Article  CAS  PubMed  Google Scholar 

  110. Sahu G, Asmara H, Zhang FX, Zamponi GW, Turner RW (2017) Activity-dependent facilitation of CaV1.3 calcium channels promotes KCa3.1 activation in hippocampal neurons. J Neurosci 37:11255–11270. https://doi.org/10.1523/JNEUROSCI.0967-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Forsythe ID, Tsujimoto T, Barnes-Davies M, Cuttle MF, Takahashi T (1998) Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20:797–807. https://doi.org/10.1016/s0896-6273(00)81017-x

    Article  CAS  PubMed  Google Scholar 

  112. Borst JG, Sakmann B (1998) Facilitation of presynaptic calcium currents in the rat brainstem. J Physiol 513(Pt 1):149–155. https://doi.org/10.1111/j.1469-7793.1998.149by.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ophoff RA et al (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552. https://doi.org/10.1016/s0092-8674(00)81373-2

    Article  CAS  PubMed  Google Scholar 

  114. Gandal MJ et al (2018) Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science:362. https://doi.org/10.1126/science.aat8127

  115. Andrade A et al (2019) Genetic associations between voltage-gated calcium channels and psychiatric disorders. Int J Mol Sci:20. https://doi.org/10.3390/ijms20143537

  116. Yue Q, Jen JC, Nelson SF, Baloh RW (1997) Progressive ataxia due to a missense mutation in a calcium-channel gene. Am J Hum Genet 61:1078–1087. https://doi.org/10.1086/301613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jen J, Kim GW, Baloh RW (2004) Clinical spectrum of episodic ataxia type 2. Neurology 62:17–22. https://doi.org/10.1212/01.wnl.0000101675.61074.50

    Article  CAS  PubMed  Google Scholar 

  118. Jen JC et al (2007) Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 130:2484–2493. https://doi.org/10.1093/brain/awm126

    Article  CAS  PubMed  Google Scholar 

  119. Ducros A et al (2001) The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med 345:17–24. https://doi.org/10.1056/NEJM200107053450103

    Article  CAS  PubMed  Google Scholar 

  120. Haan J et al (2005) Migraine genetics: An update. Curr Pain Headache Rep 9:213–220. https://doi.org/10.1007/s11916-005-0065-9

    Article  CAS  PubMed  Google Scholar 

  121. Pietrobon D (2010) CaV2.1 channelopathies. Pflugers Arch 460:375–393. https://doi.org/10.1007/s00424-010-0802-8

    Article  CAS  PubMed  Google Scholar 

  122. Russell MB, Ducros A (2011) Sporadic and familial hemiplegic migraine: pathophysiological mechanisms, clinical characteristics, diagnosis, and management. Lancet Neurol 10:457–470. https://doi.org/10.1016/S1474-4422(11)70048-5

    Article  PubMed  Google Scholar 

  123. Tottene A et al (2002) Familial hemiplegic migraine mutations increase Ca(2+) influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons. Proc Natl Acad Sci U S A 99:13284–13289. https://doi.org/10.1073/pnas.192242399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hans M et al (1999) Functional consequences of mutations in the human alpha1A calcium channel subunit linked to familial hemiplegic migraine. J Neurosci 19:1610–1619

    Article  CAS  Google Scholar 

  125. Tottene A et al (2005) Specific kinetic alterations of human CaV2.1 calcium channels produced by mutation S218L causing familial hemiplegic migraine and delayed cerebral edema and coma after minor head trauma. J Biol Chem 280:17678–17686. https://doi.org/10.1074/jbc.M501110200

    Article  CAS  PubMed  Google Scholar 

  126. van den Maagdenberg AM et al (2010) High cortical spreading depression susceptibility and migraine-associated symptoms in Ca(v)2.1 S218L mice. Ann Neurol 67:85–98. https://doi.org/10.1002/ana.21815

    Article  CAS  PubMed  Google Scholar 

  127. van den Maagdenberg AM et al (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41:701–710. https://doi.org/10.1016/s0896-6273(04)00085-6

    Article  PubMed  Google Scholar 

  128. Adams PJ et al (2009) Ca(V)2.1 P/Q-type calcium channel alternative splicing affects the functional impact of familial hemiplegic migraine mutations: implications for calcium channelopathies. Channels (Austin) 3:110–121. https://doi.org/10.4161/chan.3.2.7932

    Article  CAS  Google Scholar 

  129. Ishikawa K et al (1997) Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1. Am J Hum Genet 61:336–346. https://doi.org/10.1086/514867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang Q et al (2000) Morphological Purkinje cell changes in spinocerebellar ataxia type 6. Acta Neuropathol 100:371–376. https://doi.org/10.1007/s004010000201

    Article  CAS  PubMed  Google Scholar 

  131. Ishikawa K et al (1999) Abundant expression and cytoplasmic aggregations of [alpha]1A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6. Hum Mol Genet 8:1185–1193. https://doi.org/10.1093/hmg/8.7.1185

    Article  CAS  PubMed  Google Scholar 

  132. Ishiguro T et al (2010) The carboxy-terminal fragment of alpha(1A) calcium channel preferentially aggregates in the cytoplasm of human spinocerebellar ataxia type 6 Purkinje cells. Acta Neuropathol 119:447–464. https://doi.org/10.1007/s00401-009-0630-0

    Article  CAS  PubMed  Google Scholar 

  133. Takahashi M et al (2013) Cytoplasmic location of alpha1A voltage-gated calcium channel C-terminal fragment (Cav2.1-CTF) aggregate is sufficient to cause cell death. PLoS One 8:e50121. https://doi.org/10.1371/journal.pone.0050121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gomez-Ospina N, Tsuruta F, Barreto-Chang O (2006) Hu, L. & Dolmetsch, R. The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127:591–606. https://doi.org/10.1016/j.cell.2006.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kordasiewicz HB, Thompson RM, Clark HB, Gomez CM (2006) C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. Hum Mol Genet 15:1587–1599. https://doi.org/10.1093/hmg/ddl080

    Article  CAS  PubMed  Google Scholar 

  136. Du X et al (2013) Second cistron in CACNA1A gene encodes a transcription factor mediating cerebellar development and SCA6. Cell 154:118–133. https://doi.org/10.1016/j.cell.2013.05.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hamshere ML et al (2013) Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatry 18:708–712. https://doi.org/10.1038/mp.2012.67

    Article  CAS  PubMed  Google Scholar 

  138. Moskvina V et al (2009) Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry 14:252–260. https://doi.org/10.1038/mp.2008.133

    Article  CAS  PubMed  Google Scholar 

  139. Ripke S et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45:1150–1159. https://doi.org/10.1038/ng.2742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cross-Disorder Group of the Psychiatric Genomics, C (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–1379. https://doi.org/10.1016/S0140-6736(12)62129-1

    Article  CAS  Google Scholar 

  141. Green EK et al (2010) The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 15:1016–1022. https://doi.org/10.1038/mp.2009.49

    Article  CAS  PubMed  Google Scholar 

  142. Indelicato E et al (2019) The neuropsychiatric phenotype in CACNA1A mutations: a retrospective single center study and review of the literature. Eur J Neurol 26:66–e67. https://doi.org/10.1111/ene.13765

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuck Wah Soong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yeow, S.Q.Z., Loh, K.W.Z., Soong, T.W. (2021). Calcium Channel Splice Variants and Their Effects in Brain and Cardiovascular Function. In: Zhou, L. (eds) Ion Channels in Biophysics and Physiology. Advances in Experimental Medicine and Biology, vol 1349. Springer, Singapore. https://doi.org/10.1007/978-981-16-4254-8_5

Download citation

Publish with us

Policies and ethics

Navigation