Gold Nanoclusters as Emerging Theranostic Interventions for Biomedical Applications

  • Chapter
  • First Online:
BioSensing, Theranostics, and Medical Devices

Abstract

Photoluminescent gold nanoclusters (AuNCs) are an emerging class of nanotheranostic agents for biomedical applications due to their unique opto-electronic and physicochemical properties. Ultrasmall luminescent AuNCs are most biocompatible and high renal clearable alternatives to conventional biotracking agents such as organic fluorophores, quantum dots, or other organic dyes. The biofunctionalization of AuNCs helps in increasing the specificity and sensitivity of AuNCs when employed as biosensor systems. Moreover, the sensitization properties of AuNCs further aid their use in various fluorescence image guided therapeutics and image guided drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palekar-Shanbhag, P., Jog, S. V., Chogale, M. M., & Gaikwad, S. S. (2013). Theranostics for cancer therapy. Current Drug Delivery, 10, 357–362.

    Article  CAS  PubMed  Google Scholar 

  2. Purohit, B., Kumar, A., Mahato, K., & Chandra, P. (2020). Smartphone-assisted personalized diagnostic devices and wearable sensors. Current Opinion in Biomedical Engineering, 13, 42–50.

    Article  Google Scholar 

  3. Kulkarni, N. S., Guererro, Y., Gupta, N., Muth, A., & Gupta, V. (2019). Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. Journal of Drug Delivery Science and Technology, 49, 352–364.

    Article  CAS  Google Scholar 

  4. Varnavski, O., Ramakrishna, G., Kim, J., Lee, D., & Goodson, T. (2010). Critical size for the observation of quantum confinement in optically excited gold clusters. Journal of the American Chemical Society, 132, 16–17.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, L.-Y., Wang, C.-W., Yuan, Z., & Chang, H.-T. (2015). Fluorescent gold nanoclusters: Recent advances in sensing and imaging. Analytical Chemistry, 87, 216–229.

    Article  CAS  PubMed  Google Scholar 

  6. Shang, L., Dong, S., & Nienhaus, G. U. (2011). Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today, 6(4), 401–418.

    Article  CAS  Google Scholar 

  7. Zhang, L., & Wang, E. (2014). Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today, 9, 132–157.

    Article  CAS  Google Scholar 

  8. Palmal, S., & Jana, N. R. (2013). Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 6(1), 102–110.

    Article  PubMed  Google Scholar 

  9. Chen, H., Li, S., Li, B., Ren, X., Li, S., Mahounga, D. M., Cui, S., Gu, Y., & Achilefu, S. (2012). Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy. Nanoscale, 4, 6050–6064.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, T.-H., & Tseng, W.-L. (2012). (Lysozyme type VI)-stabilized Au8 clusters: Synthesis mechanism and application for sensing of glutathione in a single drop of blood. Small, 8, 1912–1919.

    Article  CAS  PubMed  Google Scholar 

  11. Shang, L., Dörlich, R. M., Brandholt, S., Schneider, R., Trouillet, V., Bruns, M., Gerthsen, D., & Nienhaus, G. U. (2011). Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale, 3, 2009–2014.

    Article  CAS  PubMed  Google Scholar 

  12. Shiang, Y.-C., Huang, C.-C., & Chang, H.-T. (2009). Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chemical Communications, 23, 3437–3439.

    Article  Google Scholar 

  13. Liang, G., **, X., Zhang, S., & **ng, D. (2017). RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials, 144, 95–104.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, P., Shang, L., Li, H., Cui, Y., Qin, Y., Wu, Y., Hiltunen, J. K., Chen, Z., & Shen, J. (2014). Synthesis of fluorescent α-chymotrypsin A-functionalized gold nanoclusters and their application to blot-based technology for Hg2+ detection. RSC Advances, 4, 31536–31543.

    Article  CAS  Google Scholar 

  15. Triulzi, R. C., Micic, M., Giordani, S., Serry, M., Chiou, W.-A., & Leblanc, R. M. (2006). Immunoasssay based on the antibody-conjugated PAMAM-dendrimer–gold quantum dot complex. Chemical Communications, 28, 5068–5070.

    Article  Google Scholar 

  16. **e, J., Zheng, Y., & Ying, J. Y. (2009). Protein-directed synthesis of highly fluorescent gold nanoclusters. Journal of the American Chemical Society, 131, 888–889.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, X., Zhu, S., Dou, Y., Zhuo, Y., Luo, Y., & Feng, Y. (2014). Novel and remarkable enhanced-fluorescence system based on gold nanoclusters for detection of tetracycline. Talanta, 122, 36–42.

    Article  CAS  PubMed  Google Scholar 

  18. Muhammed, M. A. H., Verma, P. K., Pal, S. K., Kumar, R. C. A., Paul, S., Omkumar, R. V., & Pradeep, T. (2009). Bright, NIR-emitting Au23 from Au25: Characterization and applications including biolabeling. Chemistry – A European Journal, 15, 10110–10120.

    Article  CAS  Google Scholar 

  19. Zheng, J., Zhang, C., & Dickson, R. M. (2004). Highly fluorescent, water-soluble, size-tunable gold quantum dots. Physical Review Letters, 93, 77402.

    Article  Google Scholar 

  20. Habeeb Muhammed, M. A., Verma, P. K., Pal, S. K., Retnakumari, A., Koyakutty, M., Nair, S., & Pradeep, T. (2010). Luminescent quantum clusters of gold in bulk by albumin-induced core etching of nanoparticles: Metal ion sensing, metal-enhanced luminescence, and biolabeling. Chemistry – A European Journal, 16, 10103–10112.

    Article  CAS  Google Scholar 

  21. Leung, N. L. C., **e, N., Yuan, W., Liu, Y., Wu, Q., Peng, Q., Miao, Q., Lam, J. W. Y., & Tang, B. Z. (2014). Restriction of intramolecular motions: The general mechanism behind aggregation-induced emission. Chemistry – A European Journal, 20, 15349–15353.

    Article  CAS  Google Scholar 

  22. Mei, J., Hong, Y., Lam, J. W. Y., Qin, A., Tang, Y., & Tang, B. Z. (2014). Aggregation-induced emission: The whole is more brilliant than the parts. Advanced Materials, 26, 5429–5479.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, G., Feng, D.-Q., Hua, D., Liu, T., Qi, G., & Wang, W. (2017). Fluorescence enhancement of terminal amine assembled on gold nanoclusters and its application to ratiometric lysine detection. Langmuir, 33, 14643–14648.

    Article  CAS  PubMed  Google Scholar 

  24. Ma, L., Zhang, M., Yang, A., Wang, Q., Qu, F., Qu, F., & Kong, R.-M. (2018). Sensitive fluorescence detection of heparin based on self-assembly of mesoporous silica nanoparticle–gold nanoclusters with emission enhancement characteristics. Analyst, 143, 5388–5394.

    Article  CAS  PubMed  Google Scholar 

  25. Wu, Z., & **, R. (2010). On the Ligand’s role in the fluorescence of gold nanoclusters. Nano Letters, 10, 2568–2573.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, T. Q., Peng, B., Shan, B. Q., Zong, Y. X., Jiang, J. G., Wu, P., & Zhang, K. (2020). Origin of the photoluminescence of metal nanoclusters: From metal-centered emission to ligand-centered emission. Nanomaterials, 10, 261.

    Article  PubMed Central  Google Scholar 

  27. Kumar, A., Purohit, B., Mahato, K., Mahapatra, S., Srivastava, A., & Chandra, P. (2020). Bio-nano-interface engineering strategies of AuNPs passivation for next-generation biomedical applications. In P. Chandra & L. M. Pandey (Eds.), BT - Biointerface engineering: Prospects in medical diagnostics and drug delivery (pp. 215–231). Singapore: Springer Singapore.

    Chapter  Google Scholar 

  28. Purohit, B., Vernekar, P. R., Shetti, N. P., & Chandra, P. (2020). Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors International, 1, 100040.

    Article  Google Scholar 

  29. Song, X.-R., Goswami, N., Yang, H.-H., & **e, J. (2016). Functionalization of metal nanoclusters for biomedical applications. Analyst, 141, 3126–3140.

    Article  CAS  PubMed  Google Scholar 

  30. Huang, C.-C., Chiang, C.-K., Lin, Z.-H., Lee, K.-H., & Chang, H.-T. (2008). Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching. Analytical Chemistry, 80, 1497–1504.

    Article  CAS  PubMed  Google Scholar 

  31. Fan, Y., Chen, S., Wei, S., Guo, J., & Li, Y. (2020). A simple “on–off–on” ECL sensor for glucose determination based on Pd nanowires and Ag doped g-C3N4 nanosheets. Analytical Methods, 12, 8–17.

    Article  CAS  Google Scholar 

  32. **a, N., Wang, X., Zhou, B., Wu, Y., Mao, W., & Liu, L. (2016). Electrochemical detection of amyloid-β oligomers based on the signal amplification of a network of silver nanoparticles. ACS Applied Materials & Interfaces, 8, 19303–19311.

    Article  CAS  Google Scholar 

  33. Cheng, Y., Lei, J., Chen, Y., & Ju, H. (2014). Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Biosensors and Bioelectronics, 51, 431–436.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, Q., Huang, H., Zhang, L., Wang, L., Zeng, Y., **a, X., Liu, F., & Chen, Y. (2016). Strategy to fabricate naked-eye readout ultrasensitive plasmonic nanosensor based on enzyme mimetic gold nanoclusters. Analytical Chemistry, 88, 1412–1418.

    Article  CAS  PubMed  Google Scholar 

  35. Feng, J., Huang, P., Shi, S., Deng, K.-Y., & Wu, F.-Y. (2017). Colorimetric detection of glutathione in cells based on peroxidase-like activity of gold nanoclusters: A promising powerful tool for identifying cancer cells. Analytica Chimica Acta, 967, 64–69.

    Article  CAS  PubMed  Google Scholar 

  36. He, W., Zhou, Y.-T., Wamer, W. G., Hu, X., Wu, X., Zheng, Z., Boudreau, M. D., & Yin, J.-J. (2013). Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials, 34, 765–773.

    Article  CAS  PubMed  Google Scholar 

  37. **a, X., Long, Y., & Wang, J. (2013). Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose. Analytica Chimica Acta, 772, 81–86.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Y., Bai, X., Wen, W., Zhang, X., & Wang, S. (2015). Ultrasensitive electrochemical biosensor for HIV gene detection based on graphene stabilized gold nanoclusters with exonuclease amplification. ACS Applied Materials & Interfaces, 7, 18872–18879.

    Article  CAS  Google Scholar 

  39. Li, Z.-Y., Wu, Y.-T., & Tseng, W.-L. (2015). UV-light-induced improvement of fluorescence quantum yield of DNA-templated gold nanoclusters: Application to ratiometric fluorescent sensing of nucleic acids. ACS Applied Materials & Interfaces, 7, 23708–23716.

    Article  CAS  Google Scholar 

  40. Zhou, Y., Tang, L., Zeng, G., Chen, J., Wang, J., Fan, C., Yang, G., Zhang, Y., & **e, X. (2015). Amplified and selective detection of manganese peroxidase genes based on enzyme-scaffolded-gold nanoclusters and mesoporous carbon nitride. Biosensors and Bioelectronics, 65, 382–389.

    Article  CAS  PubMed  Google Scholar 

  41. Song, W., Liang, R.-P., Wang, Y., Zhang, L., & Qiu, J.-D. (2015). Green synthesis of peptide-templated gold nanoclusters as novel fluorescence probes for detecting protein kinase activity. Chemical Communications, 51, 10006–10009.

    Article  CAS  PubMed  Google Scholar 

  42. Song, W., Wang, Y., Liang, R.-P., Zhang, L., & Qiu, J.-D. (2015). Label-free fluorescence assay for protein kinase based on peptide biomineralized gold nanoclusters as signal sensing probe. Biosensors and Bioelectronics, 64, 234–240.

    Article  CAS  PubMed  Google Scholar 

  43. Hu, L., Han, S., Parveen, S., Yuan, Y., Zhang, L., & Xu, G. (2012). Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosensors and Bioelectronics, 32, 297–299.

    Article  CAS  PubMed  Google Scholar 

  44. Yang, G.-H., Shi, J.-J., Wang, S., **ong, W.-W., Jiang, L.-P., Burda, C., & Zhu, J.-J. (2013). Fabrication of a boron nitride–gold nanocluster composite and its versatile application for immunoassays. Chemical Communications, 49, 10757–10759.

    Article  CAS  PubMed  Google Scholar 

  45. Alonso, M. C., Trapiella-Alfonso, L., Fernández, J. M. C., Pereiro, R., & Sanz-Medel, A. (2016). Functionalized gold nanoclusters as fluorescent labels for immunoassays: Application to human serum immunoglobulin E determination. Biosensors and Bioelectronics, 77, 1055–1061.

    Article  CAS  PubMed  Google Scholar 

  46. Qin, L., He, X., Chen, L., & Zhang, Y. (2015). Turn-on fluorescent sensing of glutathione S-transferase at near-infrared region based on FRET between gold nanoclusters and gold nanorods. ACS Applied Materials & Interfaces, 7, 5965–5971.

    Article  CAS  Google Scholar 

  47. Zhang, J., Sajid, M., Na, N., Huang, L., He, D., & Ouyang, J. (2012). The application of au nanoclusters in the fluorescence imaging of human serum proteins after native PAGE: Enhancing detection by low-temperature plasma treatment. Biosensors and Bioelectronics, 35, 313–318.

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen, P.-D., Cong, V. T., Baek, C., & Min, J. (2017). Fabrication of peptide stabilized fluorescent gold nanocluster/graphene oxide nanocomplex and its application in turn-on detection of metalloproteinase-9. Biosensors and Bioelectronics, 89, 666–672.

    Article  CAS  PubMed  Google Scholar 

  49. Deng, H.-H., Deng, Q., Li, K.-L., Zhuang, Q.-Q., Zhuang, Y.-B., Peng, H.-P., **a, X.-H., & Chen, W. (2020). Fluorescent gold nanocluster-based sensor for detection of alkaline phosphatase in human osteosarcoma cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 229, 117875.

    Article  CAS  Google Scholar 

  50. Chen, L.-Y., Huang, C.-C., Chen, W.-Y., Lin, H.-J., & Chang, H.-T. (2013). Using photoluminescent gold nanodots to detect hemoglobin in diluted blood samples. Biosensors and Bioelectronics, 43, 38–44.

    Article  PubMed  Google Scholar 

  51. Selvaprakash, K., & Chen, Y.-C. (2017). Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes. Biosensors & Bioelectronics, 92, 410–416.

    Article  CAS  Google Scholar 

  52. Yu, H., Liu, Y., Wang, J., Liang, Q., Liu, H., Xu, J., & Shao, S. (2017). A gold nanocluster-based ratiometric fluorescent probe for cysteine and homocysteine detection in living cells. New Journal of Chemistry, 41, 4416–4423.

    Article  CAS  Google Scholar 

  53. Wang, M., Mei, Q., Zhang, K., & Zhang, Z. (2012). Protein-gold nanoclusters for identification of amino acids by metal ions modulated ratiometric fluorescence. Analyst, 137, 1618–1623.

    Article  CAS  PubMed  Google Scholar 

  54. Liu, Y., Ding, D., Zhen, Y., & Guo, R. (2017). Amino acid-mediated “turn-off/turn-on” nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosensors & Bioelectronics, 92, 140–146.

    Article  CAS  Google Scholar 

  55. Wen, F., Dong, Y., Feng, L., Wang, S., Zhang, S., & Zhang, X. (2011). Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Analytical Chemistry, 83, 1193–1196.

    Article  CAS  PubMed  Google Scholar 

  56. **, L., Shang, L., Guo, S., Fang, Y., Wen, D., Wang, L., Yin, J., & Dong, S. (2011). Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosensors & Bioelectronics, 26, 1965–1969.

    Article  CAS  Google Scholar 

  57. Deng, H.-H., Wu, G.-W., He, D., Peng, H.-P., Liu, A.-L., **a, X.-H., & Chen, W. (2015). Fenton reaction-mediated fluorescence quenching of N-acetyl-l-cysteine-protected gold nanoclusters: Analytical applications of hydrogen peroxide, glucose, and catalase detection. Analyst, 140, 7650–7656.

    Article  CAS  PubMed  Google Scholar 

  58. Tao, Y., Lin, Y., Ren, J., & Qu, X. (2013). A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized aunanoclusters. Biosensors and Bioelectronics, 42, 41–46.

    Article  CAS  PubMed  Google Scholar 

  59. Aswathy, B., & Sony, G. (2014). Cu2+ modulated BSA–Au nanoclusters: A versatile fluorescence turn-on sensor for dopamine. Microchemical Journal, 116, 151–156.

    Article  CAS  Google Scholar 

  60. Govindaraju, S., Ankireddy, S. R., Viswanath, B., Kim, J., & Yun, K. (2017). Fluorescent gold nanoclusters for selective detection of dopamine in cerebrospinal fluid. Scientific Reports, 7, 40298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, L., Liu, H., Shen, Y., Zhang, J., & Zhu, J.-J. (2011). Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine. Analytical Chemistry, 83, 661–665.

    Article  CAS  PubMed  Google Scholar 

  62. Hemmateenejad, B., Shakerizadeh-shirazi, F., & Samari, F. (2014). BSA-modified gold nanoclusters for sensing of folic acid. Sensors and Actuators B: Chemical, 199, 42–46.

    Article  CAS  Google Scholar 

  63. Yan, X., Li, H., Cao, B., Ding, Z., & Su, X. (2015). A highly sensitive dual-readout assay based on gold nanoclusters for folic acid detection. Microchimica Acta, 182, 1281–1288.

    Article  CAS  Google Scholar 

  64. Peng, H.-P., Jian, M.-L., Huang, Z.-N., Wang, W.-J., Deng, H.-H., Wu, W.-H., Liu, A.-L., **a, X.-H., & Chen, W. (2018). Facile electrochemiluminescence sensing platform based on high-quantum-yield gold nanocluster probe for ultrasensitive glutathione detection. Biosensors and Bioelectronics, 105, 71–76.

    Article  CAS  PubMed  Google Scholar 

  65. Tian, D., Qian, Z., **a, Y., & Zhu, C. (2012). Gold nanocluster-based fluorescent probes for near-infrared and turn-on sensing of glutathione in living cells. Langmuir, 28, 3945–3951.

    Article  CAS  PubMed  Google Scholar 

  66. Nair, L. V., Philips, D. S., Jayasree, R. S., & Ajayaghosh, A. (2013). A near-infrared fluorescent nanosensor (AuC@urease) for the selective detection of blood urea. Small, 9, 2673–2677.

    Article  CAS  PubMed  Google Scholar 

  67. Liu, Y., Li, H., Guo, B., Wei, L., Chen, B., & Zhang, Y. (2017). Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosensors and Bioelectronics, 91, 734–740.

    Article  CAS  PubMed  Google Scholar 

  68. Li, P.-H., Lin, J.-Y., Chen, C.-T., Ciou, W.-R., Chan, P.-H., Luo, L., Hsu, H.-Y., Diau, E. W.-G., & Chen, Y.-C. (2012). Using gold nanoclusters as selective luminescent probes for phosphate-containing metabolites. Analytical Chemistry, 84, 5484–5488.

    Article  CAS  PubMed  Google Scholar 

  69. Selvaprakash, K., & Chen, Y.-C. (2014). Using protein-encapsulated gold nanoclusters as photoluminescent sensing probes for biomolecules. Biosensors and Bioelectronics, 61, 88–94.

    Article  CAS  PubMed  Google Scholar 

  70. Chang, H.-C., & Ho, J. A. (2015). Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles. Analytical Chemistry, 87, 10362–10367.

    Article  CAS  PubMed  Google Scholar 

  71. Chen, X., & Baker, G. A. (2013). Cholesterol determination using protein-templated fluorescent gold nanocluster probes. Analyst, 138, 7299–7302.

    Article  CAS  PubMed  Google Scholar 

  72. Liu, J.-M., Chen, J.-T., & Yan, X.-P. (2013). Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Analytical Chemistry, 85, 3238–3245.

    Article  CAS  PubMed  Google Scholar 

  73. Samari, F., Hemmateenejad, B., Rezaei, Z., & Shamsipur, M. (2012). A novel approach for rapid determination of vitamin B12 in pharmaceutical preparations using BSA-modified gold nanoclusters. Analytical Methods, 4, 4155–4160.

    Article  CAS  Google Scholar 

  74. Chen, Z., Qian, S., Chen, X., Gao, W., & Lin, Y. (2012). Protein-templated gold nanoclusters as fluorescence probes for the detection of methotrexate. Analyst, 137, 4356–4361.

    Article  CAS  PubMed  Google Scholar 

  75. Chen, Z., Qian, S., Chen, J., Cai, J., Wu, S., & Cai, Z. (2012). Protein-templated gold nanoclusters based sensor for off-on detection of ciprofloxacin with a high selectivity. Talanta, 94, 240–245.

    Article  CAS  PubMed  Google Scholar 

  76. Yu, Y., New, S. Y., **e, J., Su, X., & Tan, Y. N. (2014). Protein-based fluorescent metal nanoclusters for small molecular drug screening. Chemical Communications, 50, 13805–13808.

    Article  CAS  PubMed  Google Scholar 

  77. **e, J., Zheng, Y., & Ying, J. Y. (2010). Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chemical Communications, 46, 961–963.

    Article  CAS  PubMed  Google Scholar 

  78. Lin, Y.-H., & Tseng, W.-L. (2010). Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Analytical Chemistry, 82, 9194–9200.

    Article  CAS  PubMed  Google Scholar 

  79. Li, Y., Yuan, M., Khan, A. J., Wang, L., & Zhang, F. (2019). Peptide-gold nanocluster synthesis and intracellular Hg2+ sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, 123666.

    Article  CAS  Google Scholar 

  80. Shang, L., Yang, L., Stockmar, F., Popescu, R., Trouillet, V., Bruns, M., Gerthsen, D., & Nienhaus, G. U. (2012). Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale, 4, 4155–4160.

    Article  CAS  PubMed  Google Scholar 

  81. Zang, J., Li, C., Zhou, K., Dong, H., Chen, B., Wang, F., & Zhao, G. (2016). Nanomolar Hg2+ detection using β-lactoglobulin-stabilized fluorescent gold nanoclusters in beverage and biological media. Analytical Chemistry, 88, 10275–10283.

    Article  CAS  PubMed  Google Scholar 

  82. Thakur, N. S., Mandal, N., & Banerjee, U. C. (2018). Esterase-mediated highly fluorescent gold nanoclusters and their use in ultrasensitive detection of mercury: Synthetic and mechanistic aspects. ACS Omega, 3, 18553–18562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. He, Y., Du, E., Zhou, X., Zhou, J., He, Y., Ye, Y., Wang, J., Tang, B., & Wang, X. (2020). Wet-spinning of fluorescent fibers based on gold nanoclusters-loaded alginate for sensing of heavy metal ions and anti-counterfeiting. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 230, 118031.

    Article  CAS  Google Scholar 

  84. Xu, S., Li, X., Mao, Y., Gao, T., Feng, X., & Luo, X. (2016). Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg2+ and oxytetracycline. Analytical and Bioanalytical Chemistry, 408, 2955–2962.

    Article  CAS  PubMed  Google Scholar 

  85. Yang, X., Yang, L., Dou, Y., & Zhu, S. (2013). Synthesis of highly fluorescent lysine-stabilized Au nanoclusters for sensitive and selective detection of Cu2+ ion. Journal of Materials Chemistry C, 1, 6748–6751.

    Article  CAS  Google Scholar 

  86. Shamsipur, M., Molaabasi, F., Shanehsaz, M., & Moosavi-Movahedi, A. A. (2015). Novel blue-emitting gold nanoclusters confined in human hemoglobin, and their use as fluorescent probes for copper(II) and histidine. Microchimica Acta, 182, 1131–1141.

    Article  CAS  Google Scholar 

  87. Durgadas, C. V., Sharma, C. P., & Sreenivasan, K. (2011). Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst, 136, 933–940.

    Article  CAS  PubMed  Google Scholar 

  88. Bain, D., Maity, S., Paramanik, B., & Patra, A. (2018). Core-size dependent fluorescent gold nanoclusters and ultrasensitive detection of Pb2+ ion. ACS Sustainable Chemistry & Engineering, 6, 2334–2343.

    Article  CAS  Google Scholar 

  89. Peng, Y., Wang, M., **aoxia, W., Wang, F., & Liu, L. (2018). Methionine-capped gold nanoclusters as a fluorescence-enhanced probe for cadmium(II) sensing. Sensors, 18, 658.

    Article  PubMed Central  Google Scholar 

  90. Huang, P., Li, S., Gao, N., & Wu, F. (2015). Toward selective, sensitive, and discriminative detection of Hg2+ and Cd2+via pH-modulated surface chemistry of glutathione-capped gold nanoclusters. Analyst, 140, 7313–7321.

    Article  CAS  PubMed  Google Scholar 

  91. Akshath, U. S., Bhatt, P., & Singh, S. A. (2020). Differential interaction of metal ions with gold nanoclusters and application in detection of cobalt and cadmium. Journal of Fluorescence, 30, 537–545.

    Article  CAS  PubMed  Google Scholar 

  92. Yu, M., Zhu, Z., Wang, H., Li, L., Fu, F., Song, Y., & Song, E. (2017). Antibiotics mediated facile one-pot synthesis of gold nanoclusters as fluorescent sensor for ferric ions. Biosensors and Bioelectronics, 91, 143–148.

    Article  CAS  PubMed  Google Scholar 

  93. Liu, Y., Ai, K., Cheng, X., Huo, L., & Lu, L. (2010). Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Advanced Functional Materials, 20, 951–956.

    Article  CAS  Google Scholar 

  94. Chen, T., Hu, Y., Cen, Y., Chu, X., & Lu, Y. (2013). A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. Journal of the American Chemical Society, 135, 11595–11602.

    Article  CAS  PubMed  Google Scholar 

  95. Zhuang, M., Ding, C., Zhu, A., & Tian, Y. (2014). Ratiometric fluorescence probe for monitoring hydroxyl radical in live cells based on gold nanoclusters. Analytical Chemistry, 86, 1829–1836.

    Article  CAS  PubMed  Google Scholar 

  96. Cui, M.-L., Liu, J.-M., Wang, X.-X., Lin, L.-P., Jiao, L., Zheng, Z.-Y., Zhang, L.-H., & Jiang, S.-L. (2013) A promising gold nanocluster fluorescent sensor for the highly sensitive and selective detection of S2-. Sensors and Actuators B: Chemical 188, 53–58

    Google Scholar 

  97. Yuan, Z., Peng, M., Shi, L., Du, Y., Cai, N., He, Y., Chang, H.-T., & Yeung, E. S. (2013). Disassembly mediated fluorescence recovery of gold nanodots for selective sulfide sensing. Nanoscale, 5, 4683–4686.

    Article  CAS  PubMed  Google Scholar 

  98. Liu, H., Yang, G., Abdel-Halim, E. S., & Zhu, J.-J. (2013). Highly selective and ultrasensitive detection of nitrite based on fluorescent gold nanoclusters. Talanta, 104, 135–139.

    Article  PubMed  Google Scholar 

  99. Unnikrishnan, B., Wei, S.-C., Chiu, W.-J., Cang, J., Hsu, P.-H., & Huang, C.-C. (2014). Nitrite ion-induced fluorescence quenching of luminescent BSA-Au25 nanoclusters: Mechanism and application. Analyst, 139, 2221–2228.

    Article  CAS  PubMed  Google Scholar 

  100. Yu, M., Zhou, C., Liu, J., Hankins, J. D., & Zheng, J. (2011). Luminescent gold nanoparticles with pH-dependent membrane adsorption. Journal of the American Chemical Society, 133, 11014–11017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ding, C., & Tian, Y. (2015). Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosensors and Bioelectronics, 65, 183–190.

    Article  CAS  PubMed  Google Scholar 

  102. Shang, L., Stockmar, F., Azadfar, N., & Nienhaus, G. U. (2013). Intracellular thermometry by using fluorescent gold nanoclusters. Angewandte Chemie International Edition, 52, 11154–11157.

    Article  CAS  PubMed  Google Scholar 

  103. Kong, L., Chu, X., Ling, X., Ma, G., Yao, Y., Meng, Y., & Liu, W. (2016). Biocompatible glutathione-capped gold nanoclusters for dual fluorescent sensing and imaging of copper(II) and temperature in human cells and bacterial cells. Microchimica Acta, 183, 2185–2195.

    Article  CAS  Google Scholar 

  104. Gu, W., Zhang, Q., Zhang, T., Li, Y., **ang, J., Peng, R., & Liu, J. (2016). Hybrid polymeric nano-capsules loaded with gold nanoclusters and indocyanine green for dual-modal imaging and photothermal therapy. Journal of Materials Chemistry B, 4, 910–919.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, Y., Li, J., Jiang, H., Zhao, C., & Wang, X. (2016). Rapid tumor bioimaging and photothermal treatment based on GSH-capped red fluorescent gold nanoclusters. RSC Advances, 6, 63331–63337.

    Article  CAS  Google Scholar 

  106. Lee, S., Lee, C., Park, S., Lim, K., Kim, S. S., Kim, J. O., Lee, E. S., Oh, K. T., Choi, H.-G., & Youn, Y. S. (2018). Facile fabrication of highly photothermal-effective albumin-assisted gold nanoclusters for treating breast cancer. International Journal of Pharmaceutics, 553, 363–374.

    Article  CAS  PubMed  Google Scholar 

  107. Nair, L. V., Nazeer, S. S., Jayasree, R. S., & Ajayaghosh, A. (2015). Fluorescence imaging assisted photodynamic therapy using photosensitizer-linked gold quantum clusters. ACS Nano, 9, 5825–5832.

    Article  CAS  PubMed  Google Scholar 

  108. Huang, P., Lin, J., Wang, S., Zhou, Z., Li, Z., Wang, Z., Zhang, C., Yue, X., Niu, G., Yang, M., Cui, D., & Chen, X. (2013). Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials, 34, 4643–4654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, C., Li, C., Liu, Y., Zhang, J., Bao, C., Liang, S., Wang, Q., Yang, Y., Fu, H., Wang, K., & Cui, D. (2015). Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors. Advanced Functional Materials, 25, 1314–1325.

    Article  CAS  Google Scholar 

  110. Vankayala, R., Kuo, C.-L., Nuthalapati, K., Chiang, C.-S., & Hwang, K. C. (2015). Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-light activated photodynamic therapy. Advanced Functional Materials, 25, 5934–5945.

    Article  CAS  Google Scholar 

  111. Han, R., Zhao, M., Wang, Z., Liu, H., Zhu, S., Huang, L., Wang, Y., Wang, L., Hong, Y., Sha, Y., & Jiang, Y. (2019). Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer. ACS Nano. https://doi.org/10.1021/acsnano.9b05169.

  112. Zhang, X.-D., Chen, J., Luo, Z., Wu, D., Shen, X., Song, S.-S., Sun, Y.-M., Liu, P.-X., Zhao, J., Huo, S., Fan, S., Fan, F., Liang, X.-J., & **e, J. (2014). Enhanced tumor accumulation of Sub-2 nm gold nanoclusters for Cancer radiation therapy. Advanced Healthcare Materials, 3, 133–141.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, X.-D., Luo, Z., Chen, J., Shen, X., Song, S., Sun, Y., Fan, S., Fan, F., Leong, D. T., & **e, J. (2014). Ultrasmall Au10−12(SG)10−12 nanomolecules for high tumor specificity and cancer radiotherapy. Advanced Materials, 26, 4565–4568.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, X.-D., Luo, Z., Chen, J., Song, S., Yuan, X., Shen, X., Wang, H., Sun, Y., Gao, K., Zhang, L., Fan, S., Leong, D. T., Guo, M., & **e, J. (2015). Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Scientific Reports, 5, 8669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, J.-Y., Chen, J., Yang, J., Wang, H., Shen, X., Sun, Y.-M., Guo, M., & Zhang, X.-D. (2016). Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. International Journal of Nanomedicine, 11, 3475–3485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cifuentes-Rius, A., Ivask, A., Das, S., Penya-Auladell, N., Fabregas, L., Fletcher, N. L., Houston, Z. H., Thurecht, K. J., & Voelcker, N. H. (2017). Gold nanocluster-mediated cellular death under electromagnetic radiation. ACS Applied Materials & Interfaces, 9, 41159–41167.

    Article  CAS  Google Scholar 

  117. Amini, S. M., Kharrazi, S., & Jaafari, M. R. (2017). Radio frequency hyperthermia of cancerous cells with gold nanoclusters: An in vitro investigation. Gold Bulletin, 50, 43–50.

    Article  CAS  Google Scholar 

  118. Gao, G., Chen, R., He, M., Li, J., Li, J., Wang, L., & Sun, T. (2019). Gold nanoclusters for Parkinson’s disease treatment. Biomaterials, 194, 36–46.

    Article  CAS  PubMed  Google Scholar 

  119. Hu, J., Gao, G., He, M., Yin, Q., Gao, X., Xu, H., & Sun, T. (2020). Optimal route of gold nanoclusters administration in mice targeting Parkinson’s disease. Nanomedicine, 15, 563–580.

    Article  CAS  PubMed  Google Scholar 

  120. Gao, G., Zhang, M., Gong, D., Chen, R., Hu, X., & Sun, T. (2017). The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-β fibrillation. Nanoscale, 9, 4107–4113.

    Article  CAS  PubMed  Google Scholar 

  121. **ao, L., Wei, F., Zhou, Y., Anderson, G. J., Frazer, D. M., Lim, Y. C., Liu, T., & **ao, Y. (2020). Dihydrolipoic acid–gold nanoclusters regulate microglial polarization and have the potential to alter neurogenesis. Nano Letters, 20, 478–495.

    Article  CAS  PubMed  Google Scholar 

  122. Chattoraj, S., Amin, A., Jana, B., Mohapatra, S., Ghosh, S., & Bhattacharyya, K. (2016). Selective killing of breast cancer cells by doxorubicin-loaded fluorescent gold nanoclusters: Confocal microscopy and FRET. ChemPhysChem, 17, 253–259.

    Article  CAS  PubMed  Google Scholar 

  123. Khandelia, R., Bhandari, S., Pan, U. N., Ghosh, S. S., & Chattopadhyay, A. (2015). Gold nanocluster embedded albumin nanoparticles for two-photon imaging of cancer cells accompanying drug delivery. Small, 11, 4075–4081.

    Article  CAS  PubMed  Google Scholar 

  124. Li, L., Zhang, L., Wang, T., Wu, X., Ren, H., Wang, C., & Su, Z. (2015). Facile and scalable synthesis of novel spherical au nanocluster assemblies@polyacrylic acid/calcium phosphate nanoparticles for dual-modal imaging-guided cancer chemotherapy. Small, 11, 3162–3173.

    Article  CAS  PubMed  Google Scholar 

  125. Li, Q., Pan, Y., Chen, T., Du, Y., Ge, H., Zhang, B., **e, J., Yu, H., & Zhu, M. (2018). Design and mechanistic study of a novel gold nanocluster-based drug delivery system. Nanoscale, 10, 10166–10172.

    Article  CAS  PubMed  Google Scholar 

  126. Zhou, F., Feng, B., Yu, H., Wang, D., Wang, T., Liu, J., Meng, Q., Wang, S., Zhang, P., Zhang, Z., & Li, Y. (2016). Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer. Theranostics, 6, 679–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, D., Luo, Z., Li, N., Lee, J. Y., **e, J., & Lu, J. (2013). Amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release. Advanced Functional Materials, 23, 4324–4331.

    Article  Google Scholar 

  128. Tao, Y., Li, Z., Ju, E., Ren, J., & Qu, X. (2013). Polycations-functionalized water-soluble gold nanoclusters: A potential platform for simultaneous enhanced gene delivery and cell imaging. Nanoscale, 5, 6154–6160.

    Article  CAS  PubMed  Google Scholar 

  129. Wang, P., Lin, L., Guo, Z., Chen, J., Tian, H., Chen, X., & Yang, H. (2016). Highly fluorescent gene carrier based on Ag–Au alloy nanoclusters. Macromolecular Bioscience, 16, 160–167.

    Article  CAS  PubMed  Google Scholar 

  130. Dutta, D., Chattopadhyay, A., & Ghosh, S. S. (2016). Cationic BSA templated Au–Ag bimetallic nanoclusters as a theranostic gene delivery vector for HeLa cancer cells. ACS Biomaterials Science & Engineering, 2, 2090–2098.

    Article  CAS  Google Scholar 

  131. Lei, Y., Tang, L., **e, Y., **anyu, Y., Zhang, L., Wang, P., Hamada, Y., Jiang, K., Zheng, W., & Jiang, X. (2017). Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nature Communications, 8, 15130.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asifkhan Shanavas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sood, K., Shanavas, A. (2022). Gold Nanoclusters as Emerging Theranostic Interventions for Biomedical Applications. In: Borse, V., Chandra, P., Srivastava, R. (eds) BioSensing, Theranostics, and Medical Devices. Springer, Singapore. https://doi.org/10.1007/978-981-16-2782-8_1

Download citation

Publish with us

Policies and ethics

Navigation