Log in

A highly sensitive dual-readout assay based on gold nanoclusters for folic acid detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstracts

We describe a sensitive fluorometric and colorimetric dual-readout probe for folic acid (FA). It is based on the use of the gold nanoclusters (AuNCs) and cysteamine–modified gold nanoparticles (cyst-AuNPs). The bovine serum albumin stabilized AuNCs exhibit strong fluorescence emission at 652 nm. Upon addition of cyst-AuNPs, the fluorescence intensity of the AuNCs showed dramatic decrease due to the surface plasmon enhanced energy transfer process. This is due to an FA-induced aggregation of the cyst-AuNPs which shifts the absorption peaks from 530 to 670 nm. Thus, the surface plasmon enhanced energy transfer between cyst-AuNPs and AuNCs is weakened and the fluorescence intensity of AuNCs is recovered. The fluorescence intensity of the AuNCs/cyst-AuNPs system is proportional to the concentration of FA in the range from 0.11 to 2.27 μmol L−1. The dual-readout probe reported here was successfully applied to the determination of FA in spiked serum samples and folic acid tablets.

A novel sensitive and selective fluorometric and colorimetric dual functional probe is developed for folic acid detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Lermo A, Fabiano S, Hernández S, Galve R, Marco MP, Alegret S, Pividori MI (2009) Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensors. Biosens Bioelectron 24:2057

    Article  CAS  Google Scholar 

  2. Hoegger D, Morier P, Vollet C, Heini D, Reymond F, Rossier JS (2007) Disposable microfluidic ELISA for the rapid determination of folic acid content in food products. Anal Bioanal Chem 387:267

    Article  CAS  Google Scholar 

  3. Zhao SL, Yuan HY, **e C, **ao D (2006) Determination of folic acid by capillary electrophoresis with chemiluminescence detection. J Chromatogr A 1107:290

    Article  CAS  Google Scholar 

  4. Breithaupt DE (2001) Determination of folic acid by ion-pair RP-HPLC in vitamin-fortified fruit juices after solid-phase extraction. Food Chem 74:521

    Article  CAS  Google Scholar 

  5. Pawlosky RJ, Flanagan VP (2001) A quantitative stable-isotope LC-MS method for the determination of folic acid in fortified foods. J Agric Food Chem 49:1282

    Article  CAS  Google Scholar 

  6. Ren W, Fang YX, Wang E (2011) A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano 5:6425

    Article  CAS  Google Scholar 

  7. Kalimuthu P, Abraham John S (2009) Selective electrochemical sensor for folic acid at physiological pH using ultrathin electropolymerized film of functionalized thiadiazole modified glassy carbon electrode. Biosens Bioelectron 24:3575

    Article  CAS  Google Scholar 

  8. Chen ZG, Zhang GM, Chen X, Chen JH, Liu JB, Yuan HQ (2013) A fluorescence switch sensor for 6-mercaptopurine detection based on gold nanoparticles stabilized by biomacromolecule. Biosens Bioelectron 41:844

    Article  CAS  Google Scholar 

  9. Wang Y, Zheng JW, Zhang ZJ, Yuan CW, Fu DG (2009) CdTe nanocrystals as luminescent probes for detecting ATP, folic acid and l-cysteine in aqueous solution. Colloids Surf A Physicochem Eng Asp 324:102

    Google Scholar 

  10. Du J, Wu YZ, Hao XP, Zhao X (2011) Study on the interaction between CdTe quantum dots and folic acid by two-photon excited fluorescence spectroscopic techniques. J Mol Struct 1006:650

    Article  CAS  Google Scholar 

  11. Geszke-Moritz M, Clavier G, Lulek J, Schneider R (2012) Copper-or manganese-doped ZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media. J Lumin 132:987

    Article  CAS  Google Scholar 

  12. Liu SY, Hu JJ, Su XG (2012) Detection of ascorbic acid and folic acid based on water-soluble CuInS2 quantum dots. Analyst 137:4598

    Article  CAS  Google Scholar 

  13. Wu X, He XX, Wang KM, **e C, Zhou B, Qing ZH (2010) Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2:2244

    Article  CAS  Google Scholar 

  14. Cui ML, Zhao Y, Song QJ (2014) Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. Trends Anal Chem 57:73

    Article  CAS  Google Scholar 

  15. Liu YL, Ai KL, Cheng XL, Huo LH, Lu LH (2010) Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv Funct Mater 20:951

    Article  CAS  Google Scholar 

  16. Su L, Shu T, Wang ZW, Cheng JY, Xue F, Li CZ, Zhang XJ (2013) Immobilization of bovine serum albumin-protected gold nanoclusters by using polyelectrolytes of opposite charges for the development of the reusable fluorescent Cu2+-sensor. Biosens Bioelectron 44:16

    Article  CAS  Google Scholar 

  17. Park SK, Kim MI, Woo MA, Park HG (2013) A label-free method for detecting biological thiols based on blocking of Hg2+-quenching of fluorescent gold nanoclusters. Biosens Bioelectron 45:65

    Article  Google Scholar 

  18. Hu L, Han S, Parveen S, Yuan Y, Zhang L, Xu G (2012) Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens Bioelectron 32:297

    Article  CAS  Google Scholar 

  19. Chen CW, Wang CH, Wei CM, Hsieh CY, Chen YT, Chen YF, Lai CW, Liu CL, Hsieh CC, Chou PT (2009) Highly sensitive emission sensor based on surface plasmon enhanced energy transfer between gold nanoclusters and silver nanoparticles. J Phys Chem C 114:799

    Article  Google Scholar 

  20. Liu JM, Chen JT, Yan XP (2013) Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal Chem 85:3238

    Article  CAS  Google Scholar 

  21. **e JP, Zheng YG, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888

    Article  CAS  Google Scholar 

  22. Grabar KC, Brown KR, Keating CD, Stranick SJ, Tang SL, Natan MJ (1997) Nanoscale characterization of gold colloid monolayers: a comparison of four techniques. Anal Chem 69:471

    Article  CAS  Google Scholar 

  23. Zhao WA, Brook MA, Li YF (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9:2363

    Article  CAS  Google Scholar 

  24. Niidome T, Nakashima K, Takahashi H, Niidome Y (2004) Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem Commun 17:1978

    Article  Google Scholar 

  25. Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739

    Article  CAS  Google Scholar 

  26. Liu SY, Shi FP, Lu C, Su XG (2014) Albumin coated CuInS2 quantum dots as a near-infrared fluorescent probe for NADH, and their application to an assay for pyruvate. Microchim Acta 181:339

    Article  CAS  Google Scholar 

  27. Griffin J, Singh AK, Senapati D, Rhodes P, Mitchell K, Robinson B, Yu E, Ray PC (2009) Size-and distance-dependent Nanoparticle Surface-Energy Transfer (NSET) method for selective sensing of hepatitis C virus RNA. Chem A Eur J 15:342

    Article  CAS  Google Scholar 

  28. Guo JJ, Zhang Y, Luo YL, Shen F, Sun CY (2014) Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate. Talanta 125:385

    Article  CAS  Google Scholar 

  29. Guo LQ, Zhong JH, Wu JM, Fu FF, Chen GN, Zheng XY, Lin S (2010) Visual detection of melamine in milk products by label-free gold nanoparticles. Talanta 82:1654

    Article  CAS  Google Scholar 

  30. Beitollahi H, Ardakani MM, Ganjipour B, Naeimi H (2008) Novel 2,2′-[1,2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid. Biosens Bioelectron 24:362

    Article  CAS  Google Scholar 

  31. Mazloum-Ardakani M, Sheikh-Mohseni MA, Abdollahi-Alibeik M, Benvidi A (2012) Electrochemical sensor for simultaneous determination of norepinephrine, paracetamol and folic acid by a nanostructured mesoporous material. Sensors Actuators B 171–172:380

    Article  Google Scholar 

  32. Gudarzy F, Moghaddam AB, Mozaffari S, Ganjkhanlou Y, Kazemzad M, Zahed R, Bani F (2013) A lanthanide nanoparticle-based luminescent probe for folic acid. Microchim Acta 180:1257

    Article  CAS  Google Scholar 

  33. Wabaidur SM, Alamb SM, Lee SH, Alothman ZA, Eldesoky GE (2013) Chemiluminescence determination of folic acid by a flow injection analysis assembly. Spectrochim Acta A Mol Biomol Spectrosc 105:412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21075050, No. 21275063) and the Science and Technology Development Project of Jilin Province, China (No. 20110334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ngguang Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Li, H., Cao, B. et al. A highly sensitive dual-readout assay based on gold nanoclusters for folic acid detection. Microchim Acta 182, 1281–1288 (2015). https://doi.org/10.1007/s00604-014-1442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1442-z

Keywords

Navigation