Use of Flue Gas as a Carbon Source for Algal Cultivation

  • Chapter
  • First Online:
Emerging Treatment Technologies for Waste Management

Abstract

The carbon dioxide (CO2) concentration in atmosphere, the main greenhouse gas has increased since industrial revolution. The CO2 fixation by microalgae is a technology based on the use of solar energy through photosynthesis to capture and use this carbon source mainly from industrial combustion flue gases. This carbon dioxide mitigation technology enables microalgal cultivation using an alternative source of carbon and the operation of issuing industries making power generation process which is more sustainable and environment friendly. This chapter aimed to approach the implementation of flue gas as a carbon source in microalgal cultures as well as the metabolism of CO2 fixation and their bioproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez R, Lide G (2009) Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production. Biomass Bioenergy 33(3):527–533

    Article  CAS  Google Scholar 

  • Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure – influence of biomass composition on the methane yield of biomass composition on the methane yield. Agric Ecosyst Environ 118:173–182

    Article  CAS  Google Scholar 

  • Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G (2013) Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour Technol 139:149–154

    Article  CAS  PubMed  Google Scholar 

  • Ashby RD, Solaiman DKY, Strahan GD, Zhu C, Tappel RC, Nomura CT (2012) Glycerine and levulinic acid: renewable co-substrates for the fermentative synthesis of short-chain poly(hydroxyalkanoate) biopolymers. Bioresour Technol 118:272–280

    Article  CAS  PubMed  Google Scholar 

  • Balaji S, Gopi K, Muthuvelan B (2013) A review on production of poly-β-hydroxybutyrates from cyanobacteria for the production of bioplastics. Algal Res 2(2):278–285

    Article  Google Scholar 

  • Barbosa MJGV (2003) Microalgal photobioreactors: scale-up and optimization. Wageningen University, The Netherlands, p 168. https://edepot.wur.nl/121438

    Google Scholar 

  • Barbosa MJ, Zijffers JW, Nisworo A, Vaes W, van Schoonhoven J, Wijffels RH (2005) Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-panel reactor using the A-stat technique. Biotechnol Bioeng 89(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Becker EW (1994) Microalgae: Biotechnology and Microbiology. Cambridge University Press

    Google Scholar 

  • Benavente-Valdés JR, Aguilar C, Contreras-Esquivel JC, Méndez-Zavala A, Montañez J (2016) Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnol Reports 10:117–125

    Article  Google Scholar 

  • Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrogen Energy 22:979–987

    Article  CAS  Google Scholar 

  • Benis K, Ferrão P (2017) Potential mitigation of the environmental impacts of food systems through urban and peri-urban agriculture (UPA) e a life cycle assessment approach. J Clean Prod:784–795

    Google Scholar 

  • Bhati R, Mallick N (2012) Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum Agardh. J Chem Technol Biotechnol 87(4):505–512

    Article  CAS  Google Scholar 

  • Bonura G, Arena F, Mezzatesta G, Cannilla C, Spadaro L, Frusteri F (2011) Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction. Catal Today 171:251–256

    Article  CAS  Google Scholar 

  • Borges JA, Rosa GM, Meza LHR, Henrard AA, Souza M d RAZ, Costa JAV (2013) Spirulina sp. LEB-18 culture using effluent from the anaerobic digestion. Brazilian J Chem Eng 30(2):277–287

    Article  CAS  Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1987) Vitamins and fine chemicals from micro-algae. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Calvin M (1989) Forty years of photosynthesis and related activities. Photosynth Res 21:3–16

    Article  CAS  PubMed  Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102(1):50–56

    Article  CAS  PubMed  Google Scholar 

  • Campos MI, Figueiredo TVB, Sousa LS, Druzian JI (2014) The influence of crude glycerin and nitrogen concentrations on the production of PHA by Cupriavidus necator using a response surface methodology and its characterizations. Ind Crop Prod 52:338–346

    Article  CAS  Google Scholar 

  • Cardoso AS, Vieira GEG, Marques AK (2011) O uso de microalgas para a obtenção de biocombustíveis. Rev Bras Biociências 9(4):542–549. (in Portuguese)

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AP, Silva SO, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89:1275–1288

    Article  CAS  PubMed  Google Scholar 

  • Cerón-García MC, Macías-Sánchez MD, Sánchez-Mirón A, García-Camacho F, Molina-Grima E (2013) A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Appl Energy 103:341–349

    Article  CAS  Google Scholar 

  • Červený J, Šetlík I, Trtílek M, Nedbal L (2009) Photobioreactor for cultivation and real-time, in-situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms. Eng Life Sci 9(3):247–253

    Article  CAS  Google Scholar 

  • Chai X, Zhao X (2012) Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank. Bioresour Technol 116:360–365

    Article  CAS  PubMed  Google Scholar 

  • Chai X, Zhao Z, Baoying W (2012) Biofixation of carbon dioxide by Chlorococcum sp. in a photobioreactor with polytetrafluoroethene membrane sparger. Afr J Biotechnol 11(29):7445–7453

    CAS  Google Scholar 

  • Cheah WY, Show PL, Chang J-S, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol 184:190–201

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Kao P, Tsai C, Lee D, Chang J (2013) Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresour Technol 145:307–312

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99(9):3389–3396

    Article  CAS  PubMed  Google Scholar 

  • Chiu SY, Kao CY, Huang TT, Lin CJ, Ong SC, Chen CD, Chang JS, Lin CS (2011) Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour Technol 102(19):9135–9142

    Article  CAS  PubMed  Google Scholar 

  • Coelho VC, Silva C d SK, Terra AL, Costa JAV, de Morais MG (2015) Polyhydroxybutyrate production by Spirulina sp. LEB 18 grown under different nutrient concentrations. Afr J Microbiol Res 9(24):1586–1594

    Article  CAS  Google Scholar 

  • Costa JAV, Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102(1):2–9

    Article  CAS  PubMed  Google Scholar 

  • Costa JC, Gonçalves PR, Nobre A, Alves MM (2012) Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge. Bioresour Technol 114:320–326

    Article  CAS  PubMed  Google Scholar 

  • Costa JAV, Morais MG, Radmann EM, Santana FB, Camerini FV, Souza M d RAZ, Henrard AA, da Rosa APC, Brusch LRF (2015) Biofixation of carbon dioxide from coal station flue gas using Spirulina sp. LEB 18 and Scenedesmus obliquus LEB 22. Afr J Microbiol Res 9(44):2202–2208

    Article  CAS  Google Scholar 

  • Damartzis T, Zabaniotou A (2011) Thermochemical conversion of biomass to second generation biofuels through integrated process design – a review. Renew Sustain Energy Rev 15:366–378

    Article  CAS  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88(10):3524–3531

    Article  Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A (2009a) Production of biodiesel from algae oils. Energy Source 31:163–168

    Article  CAS  Google Scholar 

  • Demirbas MF (2009b) Biorefineries for biofuel upgrading: a critical review. Appl Energy 86:151–161

    Article  CAS  Google Scholar 

  • Demirbas A (2009c) Biofuels securing the planet’s future energy needs. Energ Conver Manage 50:2239–2249

    Article  CAS  Google Scholar 

  • Demirbas A (2011) Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: a solution to pollution problems. Appl Energy 88(2):3541–3547

    Article  CAS  Google Scholar 

  • Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    Article  CAS  PubMed  Google Scholar 

  • Drosg B, Fritz I, Gattermayr F, Silvestrini L (2015) Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria. Chem Biochem Eng Q 29(2):145–156

    Article  CAS  Google Scholar 

  • Duarte JH, Fanka LS, Costa JAV (2016) Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresour Technol 214:159–165

    Article  CAS  PubMed  Google Scholar 

  • Duarte-Santos T, Mendoza-Martín JL, Fernández FGA, Molina E, Costa JAV (2016) Optimization of carbon dioxide supply in raceway reactors: influence of carbon dioxide molar fraction and gas flow rate. Bioresour Technol 212:72–81

    Article  CAS  PubMed  Google Scholar 

  • Esteban R, Moran JF, Becerril JM, García-Plazaola JI (2015) Versatility of carotenoids: an integrated view on diversity, evolution, functional roles and environmental interactions. Environ Exp Bot 119:63–75

    Article  CAS  Google Scholar 

  • Fan L, Zhang Y, Cheng L, Zhang L, Tang D, Chen H (2007) Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor. Chem Eng Technol 30(8):1094–1099

    Article  CAS  Google Scholar 

  • Fan LH, Zhang YT, Zhang L, Chen HL (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci 325(1):336–345

    Article  CAS  Google Scholar 

  • Figueira FS, Gettens JG, Costa JAV, de Morais MG, Moraes CC, Kalil SJ (2016) Production of nanofibers containing the bioactive compound C-phycocyanin. J Nanosci Nanotechnol 16:944–949

    Article  CAS  Google Scholar 

  • Fu X, Li D, Chen J, Zhang Y, Huang W, Zhu Y, Yang J, Zhang C (2013) A microalgae residue based carbon solid catalyst for biodiesel production. Bioresour Technol 146:767–770

    Article  CAS  PubMed  Google Scholar 

  • Gantar M, Simović D, Djilas S, Gonzalez WW, Miksovska J (2012) Isolation, characterization and antioxidative activity of C-phycocyanin from Limnothrix sp. strain 37-2-1. J Biotechnol 159:21–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves AL, Simões M, Pires JCM (2014) The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater. Energ Conver Manage 85:530–536

    Article  CAS  Google Scholar 

  • Guo H, Daroch M, Liu L, Qiu G, Geng S, Wang G (2013) Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresour Technol 127:422–428

    Article  CAS  PubMed  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  PubMed  Google Scholar 

  • Harun R, Danquah K, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    CAS  Google Scholar 

  • Harun R, Davidson M, Doyle M, Gopiraj R, Danquah M, Forde G (2011) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenergy 35:741–747

    Article  CAS  Google Scholar 

  • Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404

    Article  CAS  Google Scholar 

  • Hirata S, Taya M, Tone S (1996) Characterization of chlorella cell cultures in batch and continuous operations under a photoautotrophic condition. J Chem Eng Japan 29(6):953–959. https://doi.org/10.1252/jcej.29.953

    Article  CAS  Google Scholar 

  • Ho S, Chen C, Lee D, Chang J (2011) Perspectives on microalgal CO2 -emission mitigation systems – a review. Biotechnol Adv 29(2):189–198

    Article  CAS  PubMed  Google Scholar 

  • Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

    Article  CAS  PubMed  Google Scholar 

  • Ho S-H, Kondo A, Hasunuma T, Chang J-S (2013) Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresour Technol 143:163–171

    Article  CAS  PubMed  Google Scholar 

  • Houghton J (2005) Global warming. Rep Prog Phys 68:1343–1403

    Article  Google Scholar 

  • Hsueh HT, Li WJ, Chen HH, Chu H (2009) Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. J Photochem Photobiol B Biol 95(1):33–39

    Article  CAS  Google Scholar 

  • Huang CH, Tan CS (2014) A review: CO2 utilization. Aerosol Air Qual Res 14:480–499

    Article  CAS  Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Chang 12(4):573–608

    Article  Google Scholar 

  • I. P. O. C. CHANGE (2007) Report IPCC/ONU – new climate scenarios – initiative ecolatina 1 (in Portuguese)

    Google Scholar 

  • I. P. O. C. CHANGE (2014) SPM: summary for policymakers contents. Mitig Clim Chang Summ Policymakers

    Google Scholar 

  • Im H, Lee H, Park MS, Yang JW, Lee JW (2014) Concurrent extraction and reaction for the production of biodiesel from wet microalgae. Bioresour Technol 152:534–537

    Article  CAS  PubMed  Google Scholar 

  • Iverson TM (2006) Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr Opin Chem Biol 10:91–100

    Article  CAS  PubMed  Google Scholar 

  • Jacob-Lopes E, Scoparo CHG, Queiroz MI, Franco TT (2010) Biotransformations of carbon dioxide in photobioreactors. Energ Conver Manage 51(5):894–900

    Article  CAS  Google Scholar 

  • Jensen G, Hi K-K, Eric HR, Pnnceton N (1997) Integrated microalgae production and electricity cogeneration. U.S. Patent 5,659,977, August 26

    Google Scholar 

  • Kadam KL (1997) Power plant flue gas as a source of CO2 for microalgae cultivation: economic impact of different process options. Energ Conver Manage 38:505–510

    Article  Google Scholar 

  • Kaewbai-ngam A, Incharoensakdi A, Monshupanee T (2016) Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: an efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095. Bioresour Technol 212:342–347

    Article  CAS  PubMed  Google Scholar 

  • Kao CY, Chiu SY, Huang TT, Dai L, Hsu LK, Lin CS (2012a) Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading. Appl Energy 93:176–183

    Article  CAS  Google Scholar 

  • Kao C, Chiu S, Huang T, Dai L, Wang G, Tseng C, Chen C, Lin C (2012b) A mutant strain of microalga Chlorella sp. for the carbon dioxide capture from biogas. Biomass Bioenergy 36:132–140

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen Production from Waste Materials. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Kharaka YK, Thordsen JJ, Hovorka SD, Nance HS, Cole DR, Phelps TJ, Knauss KG (2009) Potential environmental issues of CO2 storage in deep saline aquifers: geochemical results from the Frio-I Brine Pilot test, Texas, USA. Appl Geochem 24:1106–1112

    Article  CAS  Google Scholar 

  • Kim H, Nam J, Shin H (2011) A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system. Bioresour Technol 102(15):7272–7279

    Article  CAS  PubMed  Google Scholar 

  • Kondili EM, Kaldellis JK (2007) Biofuel implementation in East Europe: current status and future prospects. Renew Sustain Energy Rev 11:2137–2151

    Article  Google Scholar 

  • Kuddus M, Singh P, Thomas G, Al-hazimi A (2013) Recent developments in production and biotechnological applications of C-phycocyanin. Biomed Res Int

    Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Nag C, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102(8):4945–4953

    Article  CAS  PubMed  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Article  CAS  PubMed  Google Scholar 

  • Lam MK, Lee KT (2013) Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production. Int J Greenh Gas Control 14:169–176

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenh Gas Control 10:456–469

    Article  CAS  Google Scholar 

  • Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38(3–4):536–583

    Article  CAS  Google Scholar 

  • Lee J-S, Lee J-P (2003) Review of advances in biological CO2 mitigation technology. Biotechnol Bioprocess Eng 8:354–359

    Article  CAS  Google Scholar 

  • Lee JN, Lee JS, Shin CS, Park SC, Kim SW (2000) Methods to enhance tolerances of Chlorella KR-1 to toxic compounds in flue gas. Appl Biochem Biotechnol 84–86(x):329–342

    Article  PubMed  Google Scholar 

  • Lee J, Kim D, Lee J, Park S, Koh J, Cho H, Kim S (2002) Effects of SO2 and NO on growth of Chlorella sp. KR-1. Bioresour Technol 82:2–5

    Article  Google Scholar 

  • Li FF, Yang ZH, Zeng R, Yang G, Chang X, Yan JB, Hou YL (2011) Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res 50(10):6496–6502

    Article  CAS  Google Scholar 

  • Maeda K, Owada M, Kimura N, Omata L, Karube I (1995) CO2 fixation from the flue gas on coalfired thermal power plant by microalgae. Energ Conver Manage 36(6–9):717–720. https://doi.org/10.1016/0196-8904(95)00105-M

    Article  CAS  Google Scholar 

  • Mallick N, Sharma L, Singh AK (2007) Poly-β-hydroxybutyrate accumulation in Nostoc muscorum: effects of metabolic inhibitors. J Plant Physiol 164:312–317

    Article  CAS  PubMed  Google Scholar 

  • Martins RG, Gonçalves IS, de Morais MG, Costa JAV (2014) Bioprocess engineering aspects of biopolymer production by the cyanobacterium Spirulina strain LEB 18. Int J Polym Sci 2014:1–7

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458(30):1158–1162

    Article  CAS  PubMed  Google Scholar 

  • Meldon JH, Morales-cabrera MA (2011) Analysis of carbon dioxide absorption in and strip** from aqueous monoethanolamine. Chem Eng J 171:753–759

    Article  CAS  Google Scholar 

  • Merker G, Schwarz C, Stiesch G, Otto F (2006) Simulating combustion, 1st edn. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Milano J, Chyuan H, Masjuki HH, Chong WT, Kee M (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sustain Energy Rev 58:180–197

    Article  Google Scholar 

  • Minowa T, Yokoyama S, Kishimoto M, Okakurat T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Butterworth Heinemann 74(12):1735–1738

    CAS  Google Scholar 

  • Mirón AS, Garcia MC, Gómez AC, Camacho FG, Grima EM, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Article  CAS  Google Scholar 

  • Miyake J, Wakayama T, Schnackenberg J, Arai T, Asada Y (1999) Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production. J Biosci Bioeng 88(6):659–663

    Article  CAS  PubMed  Google Scholar 

  • Molina Grima E, Acién Fernández F, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  PubMed  Google Scholar 

  • Möllers KB, Cannella D, Jørgensen H, Frigaard N-U (2014) Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 64(7)

    Google Scholar 

  • Moraes CC, Burkert JFDM, Kalil SJ (2010) C-phycocyanin extraction process for large-scale use. J Food Biochem 34:133–148

    Article  Google Scholar 

  • Moraes L, Rosa GM, Cardias BB, Oliveira L, Costa JAV (2016) Microalgal biotechnology for greenhouse gas control: carbon dioxide fixation by Spirulina sp. at different diffusers. Ecol Eng 91:426–431

    Article  Google Scholar 

  • Morais EG (2015) Cultivo de microalgas utilizando efluentes da indústria bioenergética e avaliação da conversão em biodiesel. Msc dissertation (in Portuguese), Federal University of Rio Grande, Brazil

    Google Scholar 

  • de Morais MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29(9):1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Morais MG, Costa JAV (2007a) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129(3):439–445

    Article  PubMed  CAS  Google Scholar 

  • Morais MG, Costa JAV (2007b) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energ Conver Manage 48(7):2169–2173

    Article  CAS  Google Scholar 

  • de Morais MG, Costa JAV (2008) Fatty acids profile of microalgae cultivated with carbon dioxide. Sci Agrotechnol 32(4):1245–1251

    Google Scholar 

  • de Morais MG, Silva CK, Henrard AA, Costa JAV (2015) Carbon dioxide mitigation by microalga in a vertical tubular reactor with recycling of the culture medium. Afr J Microbiol Res 9(33):1935–1940

    Article  CAS  Google Scholar 

  • Moreira D, Pires JCM (2016) Atmospheric CO2 capture by algae: negative carbon dioxide emission path. Bioresour Technol 215:371–379

    Article  CAS  PubMed  Google Scholar 

  • Mota CJA, Monteiro RS (2013) Quim. Nova. Química e Sustentabilidade Novas Front em Biocombustíveis 36(10):1483–1490

    CAS  Google Scholar 

  • Nagase H, Yoshihara K, Eguchi K, Okamoto Y, Murasaki S, Yamashita R, Hirata K, Miyamoto K (2001) Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae. Biochem Eng J 7:241–246

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  • Ono E, Cuello JL (2003) Selection of optimal microalgae species for CO2 sequestration. Proceedings 2nd Annual Conference on Carbon Sequestration, Alexandria, pp 1–7

    Google Scholar 

  • Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96(1):129–134

    Article  Google Scholar 

  • Ördög V, Stirk WA, Bálint P, Van Staden J, Lovász C (2012) Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol 24:907–914

    Article  CAS  Google Scholar 

  • Paliwal C, Ghosh T, George B, Pancha I, Maurya R, Chokshi K, Ghosh A, Mishra S (2016) Microalgal carotenoids: potential nutraceutical compounds with chemotaxonomic importance. Algal Res 15:24–31

    Article  Google Scholar 

  • Pandey A, Lee D-J, Chisti Y, Soccol CR (2014) Biofuels from Algae. Elsevier

    Google Scholar 

  • Pangestuti R, Kim S (2011) Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 3(4):255–266

    Article  CAS  Google Scholar 

  • Peng Y, Zhao B, Li L (2012) Advance in post-combustion CO2 capture with alkaline solution: a brief review. Energy Procedia 14:1515–1522

    Article  Google Scholar 

  • Pires JCM, Martins FG, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sustain Energy Rev 16(5):3043–3053

    Article  CAS  Google Scholar 

  • Poza-Carrión C, Fernández-Valiente E, Piñas FF, Leganés F (2001) Acclimation of photosynthetic pigments and photosynthesis of the cyanobacterium Nostoc sp. strain UAM206 to combined fluctuations of irradiance, pH, and inorganic carbon availability. J Plant Physiol 158:1455–1461

    Article  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  CAS  PubMed  Google Scholar 

  • Radmann EM, Costa JAV (2008) Lipid content and fatty acids composition variation of microalgae exposed to CO2, SO2 and NO. Quim Nova 31(7):1609–1612

    Article  CAS  Google Scholar 

  • Radmann EM, Camerini FV, Santos TD, Costa JAV (2011) Isolation and application of SOx and NOx resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energ Conver Manage 52:3132–3136

    Article  CAS  Google Scholar 

  • Rangel-Yagui CDO, Danesi EDG, de Carvalho JCM, Sato S (2004) Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresour Technol 92:133–141

    Article  CAS  Google Scholar 

  • Rani RU, Kumar SA, Kaliappan S, Yeom I, Banu JR (2012) Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresour Technol 103(1):415–424

    Article  PubMed  CAS  Google Scholar 

  • Rashid N, Lee K, Mahmood Q (2011) Bio-hydrogen production by Chlorella vulgaris under diverse photoperiods. Bioresour Technol 102:2101–2104

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. Adv Food Nutr Res 52

    Google Scholar 

  • Ravelonandro PH, Ratianarivo DH, Joannis-Cassan C, Isambert A, Raherimandimby M (2008) Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. J Chem Technol Biotechnol 83(2):842–848

    Article  CAS  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing – a review. Renewable Sustainable Energy Rev 27:622–653

    Article  CAS  Google Scholar 

  • Richmond A (2004) Handbook of microalgae culture: biotechnology and applied phycology. 296(2)

    Google Scholar 

  • Richmond A, Grobbelaar JU (1986) Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10(4):253–264

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, Lenton TM et al (2009) A safe operating space for humanity. Nature 461(24):472–475

    Article  PubMed  CAS  Google Scholar 

  • Romagnoli F, Blumberga D, Pilicka I (2011) Life cycle assessment of biohydrogen production in photosynthetic processes. Int J Hydrogen Energy 36:7866–7871

    Article  CAS  Google Scholar 

  • da Rosa APC, Carvalho LF, Goldbeck L, Costa JAV (2011) Carbon dioxide fixation by microalgae cultivated in open bioreactors. Energ Conver Manage 52(8–9):3071–3073

    Article  CAS  Google Scholar 

  • Rosa GM, Moraes L, Cardias BB, Souza M d RAZ, Costa JAV (2015) Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresour Technol 192:321–327

    Article  CAS  PubMed  Google Scholar 

  • Rosa GM, Moraes L, Souza M d RAZ, Costa JAV (2016) Spirulina cultivation with a CO2 absorbent: influence on growth parameters and macromolecule production. Bioresour Technol 200:528–534

    Article  PubMed  CAS  Google Scholar 

  • Rufford TE, Smart S, Watson GCY, Graham BF, Boxall J, Diniz JC, May EF (2012) The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J Petrol Sci Eng 94–95:123–154

    Article  CAS  Google Scholar 

  • Ryu HJ, Oh KK, Kim YS (2009) Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. J Ind Eng Chem 15:471–475

    Article  CAS  Google Scholar 

  • Sankar V, Daniel DK, Krastanov A (2011) Carbon dioxide fixation by Chlorella minutissima batch cultures in a stirred tank bioreactor. Biotechnol Biotechnol Equip 25(3):2468–2476

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Seyfabadi J, Ramezanpour Z, Khoeyi ZA (2011) Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23:721–726

    Article  CAS  Google Scholar 

  • Shrivastav A, Mishra SK, Mishra S (2010) International Journal of Biological Macromolecules Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. Int J Biol Macromol 46:255–260

    Article  CAS  PubMed  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  CAS  PubMed  Google Scholar 

  • da Silva CK (2016) Produção biotecnológica de biopolímeros aplicando processo cíclico de reutilização de resíduo da extração de poli-hidroxibutirato (PHB). Msc dissertation (in Portuguese), Federal University of Rio Grande, Brazil

    Google Scholar 

  • C. E. de F. Silva and A. Bertucco, “Bioethanol from microalgae and cyanobacteria: a review and technological outlook technological outlook,” Process Biochem., 51(11) 2016.

    Google Scholar 

  • Singh UB, Ahluwalia AS (2013) Microalgae: a promising tool for carbon sequestration. Mitig Adapt Strat Glob Chang 18(1):73–95

    Article  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14(9):2596–2610

    Article  CAS  Google Scholar 

  • Skalska K, Miller JS, Ledakowicz S (2010) Trends in NOx abatement: a review. Sci Total Environ 408(19):3976–3989

    Article  CAS  PubMed  Google Scholar 

  • Stolz P, Obermayer B (2005) Manufacturing microalgae for skin care. Cosmetics Toiletries 120:99–106

    Google Scholar 

  • Stumn W, Morgan J (1981) Aquatic chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sustain Energy Rev 16:4316–4342

    Article  CAS  Google Scholar 

  • Sung K, Lee J, Shin C, Park S, Choi M-J (1999a) CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresour Technol 68:269–273

    Article  CAS  Google Scholar 

  • Sung KD, Lee JS, Shin CS, Park SC (1999b) Isolation of a new highly CO2 tolerant fresh water Microalga Chlorella sp. KR-1. Renew Energy 16(1):1019–1022

    Article  CAS  Google Scholar 

  • Taher H, Al-Zuhair S, Al-Marzouqui AH, Haik Y, Farid MM (2011) A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology. Enzyme Res 46:82–92. https://doi.org/10.4061/2011/468292

    Article  CAS  Google Scholar 

  • Talbot P, Gortares MP, Lencki RW, de la Noiie J (1991) Absorption of CO2 in algal mass culture systems: a different characterization approach. Biotechnol Bioeng 37:834–842

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102(3):3071–3076

    Article  CAS  PubMed  Google Scholar 

  • Trozzi C, Rentz O, Oertel D, Woodfield M, Stewart R (2010) Energy industries. Combustion in energy and transformation industries. Air pollutant emission inventory guidebook. European Environment Agency

    Google Scholar 

  • Tsai DDW, Ramaraj R, Chen PH (2012) Growth condition study of algae function in ecosystem for CO2 bio-fixation. J Photochem Photobio B: Bio 107:27–34

    Article  CAS  Google Scholar 

  • Tsai DD-W, Ramaraj R, Chen PH (2016) Carbon dioxide bio-fixation by algae of high rate pond on natural water medium. Ecol Eng 92:106–110

    Article  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  PubMed  Google Scholar 

  • US DOE (2010) National algal biofuels technology roadmap. May, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    Google Scholar 

  • Van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (Bio-) chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30:1405–1424

    Article  CAS  Google Scholar 

  • Vaz BS, Costa JAV, de Morais MG (2016) CO2 biofixation by the cyanobacterium Spirulina sp. LEB 18 and the green alga Chlorella fusca LEB 111 grown using gas effluents and solid residues of thermoelectric origin. Appl Biochem Biotechnol 178:418–429

    Article  CAS  Google Scholar 

  • Vonshak A (2002) Spirulina Platensis Arthrospira: physiology, cell-biology and biotechnology. CRC Press

    Google Scholar 

  • Walsby A (1982) Cell-water and cell-solute relations. In: Carr N, Whitton B (eds) The biology of cyanobacteria. Blackwell Science Publications, Oxford, pp 237–262

    Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (Jul. 2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Pugh S, Nielsen DR, Zhang W, Meldrum DR (2013) Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng 16:68–77

    Article  CAS  PubMed  Google Scholar 

  • Weiss H (2008) Method for growing photosynthetic organisms – United States patent application US20080220486 A1. Google Patents, September 11

    Google Scholar 

  • Wuang SC, Khin MC, Chua PQD, Luo YD (2016) Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res 15:59–64

    Article  Google Scholar 

  • Yun Y-S, Moon Park J (1997) Development of gas recycling photobioreactor system for microalgal carbon dioxide fixation. J Korean J Chem Eng 14(4):297–300. https://doi.org/10.1007/BF02706827

    Article  CAS  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2012) Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl Energy 92:733–738

    Article  CAS  Google Scholar 

  • Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energy Rev 31:121–132

    Article  CAS  Google Scholar 

  • Zheng Y, Chen Z, Lu H, Zhang W (2011) Optimization of carbon dioxide fixation and starch accumulation by Tetraselmis subcordiformis in a rectangular airlift photobioreactor. Afr J Biotechnol 10(10):1888–1901

    CAS  Google Scholar 

  • Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM (2014) Microalgal biofuels: flexible bioenergies for sustainable development. Renew Sustain Energy Rev 30:1035–1046

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Selvakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prabakaran, P., Virumandi, P., Ravikumar, S., Rashiya, N., Padmini, N., Selvakumar, G. (2021). Use of Flue Gas as a Carbon Source for Algal Cultivation. In: Haq, I., Kalamdhad, A.S. (eds) Emerging Treatment Technologies for Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-2015-7_11

Download citation

Publish with us

Policies and ethics

Navigation