Log in

CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 15 December 2015

Abstract

The concentration of carbon dioxide (CO2) in the atmosphere has increased from 280 to 400 ppm in the last 10 years, and the coal-fired power plants are responsible for approximately 22 % of these emissions. The burning of fossil fuel also produces a great amount of solid waste that causes serious industrial and environmental problems. The biological processes become interesting alternative in combating pollution and develo** new products. The objective of this study was to evaluate the CO2 biofixation potential of microalgae that were grown using gaseous effluents and solid residues of thermoelectric origin. The microalgae Chlorella fusca LEB 111 presented higher rate of CO2 biofixation (42.8 %) (p < 0.01) than did Spirulina sp. LEB 18. The values for the CO2 biofixation rates and the kinetic parameters of Spirulina and Chlorella cells grown using combustion gas did not differ significantly from those of cells grown using CO2 and a carbon source in the culture media. These microalgae could be grown using ash derived from coal combustion, using the minerals present in this residue as the source of the essential metals required for their growth and the CO2 derived from the combustion gas as their carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Toledo-Cervantes, A., Morales, M., Novelo, E., & Revah, S. (2013). Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresource Technology, 130, 652–658.

    Article  CAS  Google Scholar 

  2. Eletrobras, CGTEE. Companhia de geração térmica de energia elétrica. Available from: www.cgtee.gov.br. Accessed 22 September 2015.

  3. Liu, G., Vassilev, S. V., Gao, L., Zheng, L., & Peng, Z. (2005). Mineral and chemical composition and some trace element contents in coals and coal ashes from Huaibei coal field, China. Energy Conversion and Management, 46, 2001–2009.

    Article  CAS  Google Scholar 

  4. Bityukova, L., Mõtlep, R., & Kirsimäe, K. (2010). Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva thermal power plants, Estonia. Oil Shale, 27, 339–353.

    Article  CAS  Google Scholar 

  5. Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99, 3389–3396.

    Article  CAS  Google Scholar 

  6. Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100, 833–838.

    Article  CAS  Google Scholar 

  7. Rosa, A. P. C., Carvalho, L. F., Goldbeck, L., & Costa, J. A. V. (2011). Carbon dioxide fixation by microalgae cultivated in open bioreactors. Energy Conversion and Management, 52, 3071–3073.

    Article  Google Scholar 

  8. Flues, M., Sato, I. M., Scapin, M. A., Cotrim, M. E. B., & Camargo, I. M. C. (2013). Toxic elements mobility in coal and ashes of Figueira coal power plant, Brazil. Fuel, 103, 430–436.

    Article  CAS  Google Scholar 

  9. Ctvrtnickova, T., Mateo, M. P., Yañez, A., & Nicolas, G. (2009). Characterization of coal fly ash components by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 1093–1097.

    Article  Google Scholar 

  10. Antelo, F. S., Anschau, A., Costa, J. A. V., & Kalil, S. J. (2010). Extraction and purification of C-phycocyanin from Spirulina platensis in conventional and integrated aqueous two-phase systems. Journal of the Brazilian Chemical Society, 21, 921–926.

    Article  CAS  Google Scholar 

  11. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  12. Haase, S. M., Huchzermeyer, B., & Rath, T. (2012). PHB accumulation in Nostoc muscorum under different carbon stress situations. Journal of Applied Phycology, 24, 157–162.

    Article  CAS  Google Scholar 

  13. Morais, M. G., Costa, J. A. V., Marins, L. F. F., Reichert, C. C., Dalcanton, F., & Durante, A. J. (2008). Isolation and characterization of a new Arthrospira strain. Zeitschrift für Naturforschung Section C, 63c, 144–150.

    Google Scholar 

  14. Zarrouk, C. (1966), Contribuition a letude cyanophycee, influence de divers facteurs physiques et chimiques sur la croissance et photosynthese de Spirulina maxima Geitler. University of Paris.

  15. Rippka, R., Deruelles, J., Waterbury, J. W., Herdman, M., & Stanier, R. G. (1979). Genetic assignments, strain histories and properties of pure cultures of Cyanobacteria. Journal of General Microbiology, 111, 1–61.

    Google Scholar 

  16. Morais, M. G., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129, 439–445.

    Article  Google Scholar 

  17. Reichert, C. C., Reinehr, C. O., & Costa, J. A. V. (2006). Semicontinuous cultivation of the cyanobacterium Spirulina platensis in a closed photobioreactor. Brazilian Journal of Chemical Engineering, 23, 23–28.

    Article  Google Scholar 

  18. Radmann, E. M., Reinehr, C. O., & Costa, J. A. V. (2007). Optimization of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds. Aquaculture, 265, 118–126.

    Article  Google Scholar 

  19. Baumgarten, M. G. Z., Wallner-Kersanach, M., & Niencheski, L. F. H. (2010). Manual de análises em oceanografia química (2nd ed.). Rio Grande: FURG. 172p.

    Google Scholar 

  20. Schmidell, W., Lima, A. U., Aquarone, E., & Borzani, W. (2001). Biotecnologia industrial. São Paulo: Edgard Blücher LTDA.

    Google Scholar 

  21. Bailey, J. E., & Ollis, D. F. (1986). Biochemical engineering fundamentals (2nd ed.). Singapore: McGraw-Hill.

    Google Scholar 

  22. Binaghi, L. D., Borghi, A., Lodi, A., Converti, A. D., & Borghi, M. (2003). Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochemistry, 38, 1341–1346.

    Article  CAS  Google Scholar 

  23. Basu, S., Roy, A. S., Mohanty, K., & Ghoshal, A. K. (2013). Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresource Technology, 143, 369–377.

    Article  CAS  Google Scholar 

  24. Radmann, E. M., Camerini, F. V., Santos, T. D., & Costa, J. A. V. (2011). Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energy Conversion and Management, 52, 3132–3136.

    Article  CAS  Google Scholar 

  25. Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., & Simões, M. (2012). Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew and Sustainable Energy Reviews, 16, 3043–3053.

    Article  CAS  Google Scholar 

  26. Brown, L. M. (1996). Uptake of carbon dioxide from flue gas by microalgae. Energy Conversion and Management, 37, 1363–1367.

    Article  CAS  Google Scholar 

  27. Chu, W. L., Phang, S. M., & Goh, S. H. (1996). Environmental effects on growth and biochemical composition of Nitzschia inconspicua Grunow. Journal of Applied Phycology, 8, 389–396.

    Article  CAS  Google Scholar 

  28. Renaud, S. M., Thinh, L. V., Lambridis, G., & Parry, D. L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211, 195–214.

    Article  CAS  Google Scholar 

  29. Salih, F. M. (2011). Microalgae tolerance to high concentrations of carbon dioxide: a review. Journal of Environmental Protection, 2, 648–654.

    Article  CAS  Google Scholar 

  30. Morais, M. G., & Costa, J. A. V. (2007). Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48, 2169–2173.

    Article  Google Scholar 

  31. Tastan, B. E., Duygu, E., Atakol, O., & Donmez, G. (2012). SO2 and NO2 tolerance of microalgae with the help of some growth stimulators. Energy Conversion and Management, 64, 28–34.

    Article  CAS  Google Scholar 

  32. Costa, J. A. V., Colla, L. M., Filho, P. D., Kabke, K., & Weber, A. (2002). Modelling of Spirulina platensis growth in fresh water using response surface methodology. World Journal of Microbiology and Biotechnology, 18, 603–607.

    Article  Google Scholar 

  33. Vonshak, A. (1997). Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. London: Taylor & Francis.

    Google Scholar 

  34. Soares, E. R., Mello, J. W. V., Schaefer, E. G. R., & Costa, L. M. (2006). Cinza e carbonato de cálcio na mitigação de drenagem ácida em estéril de mineração de carvão. Revista Brasileira de Ciência do Solo, 30, 171–181.

    Article  CAS  Google Scholar 

  35. Sankar, V., Daniel, D. K., & Krastanov, A. (2011). Carbon dioxide fixation by Chlorella minutissima batch cultures in a stirred tank bioreactor. Biotechnology & Biotechnological Equipment, 25, 2468–2476.

    Article  CAS  Google Scholar 

  36. Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122, 109–119.

    Article  CAS  Google Scholar 

  37. Singh, P., & Cameotra, S. S. (2004). Enhancement of metal bioremediation by use of microbial surfactants. Biochemical and Biophysical Research Communications, 319, 291–297.

    Article  CAS  Google Scholar 

  38. Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., & Liu, Y. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162, 1174–1186.

    Article  CAS  Google Scholar 

  39. Bender, J., Rodriguez-Eaton, S., Ekanemesang, U. M., & Phillips, P. (1994). Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats. Applied and Environmental Microbiology, 60, 2311–2315.

    CAS  Google Scholar 

  40. Fungaro, D. A., & Silva, M. G. (2002). Utilização de zeólita preparada a partir de cinzas residuárias de carvão como adsorvedor de metais em água. Quim Nova, 6, 1081–1085.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq (National Council of Technological and Scientific Development) and CGTEE (Company of Thermal Generation of Electric Power) for their financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Greque de Morais.

Ethics declarations

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Vaz, B., Costa, J.A.V. & de Morais, M.G. CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin. Appl Biochem Biotechnol 178, 418–429 (2016). https://doi.org/10.1007/s12010-015-1876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1876-8

Keywords

Navigation