Effect of Climate Change on Endocrine Regulation of Fish Reproduction

  • Chapter
  • First Online:
Recent updates in molecular Endocrinology and Reproductive Physiology of Fish

Abstract

Climate change is a serious concern for aquatic environment which alters physical and chemical properties of the water causing negative impacts on the aquatic organisms including fish. Temperature alteration, ocean acidification, and hypoxia are the major factors associated with climate change, which affects the endocrine regulation of fish reproduction profoundly. Fish being poikilothermic animals, the change in environmental temperature directly affects their body temperature. Seasonal change in temperature has either fastened the spawning process or delayed the process depending upon the species and their spawning window. Ocean acidification and hypoxia had caused threat to larval survival by impairing larval behavior and sensory capacity. Often climate change shows extreme effect of the demography of fishes by leading to a non-spawning season in some species. Depending upon species, geographic location, and spawning ground, exogenous factors possess significant threat on fish reproduction. The present chapter will provide baseline information on effect of different factors of climate change such as temperature, ocean acidification, and hypoxia on fish reproduction and early ontogenesis phase of fish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aarnio, K., Bonsdorff, E., & Norkko, A. (1998). Role of Halicryptus spinulosus (Priapulida) in structuring meiofauna and settling macrofauna. Marine Ecology Progress Series, 163, 145–153.

    Article  Google Scholar 

  • Baker, D. M., Davies, B., Pierce, A. L., Dickhoff, W. W., & Swanson, P. (2000). Effects of fasting and metabolic hormones on the reproductive axis of coho salmon, Oncorhynchus kisutch. Reproductive Physiology of Fish, 478, 480.

    Google Scholar 

  • Beldade, R., Blandin, A., O’Donnell, R., & Mills, S. C. (2017). Cascading effects of thermally-induced anemone bleaching on associated anemone fish hormonal stress response and reproduction. Nature Communications, 8(1), 1–9.

    Article  CAS  Google Scholar 

  • Bencic, D. C., Cloud, J. G., & Ingermann, R. L. (2000). Carbon dioxide reversibly inhibits sperm motility and fertilizing ability in steelhead (Oncorhynchus mykiss). Fish Physiology and Biochemistry, 23(4), 275–281.

    Article  CAS  Google Scholar 

  • Blaxter, J. H. S. (1991). The effect of temperature on larval fishes. Netherlands Journal of Zoology, 42(2–3), 336–357.

    Article  Google Scholar 

  • Bonte, M., & Zwolsman, J. J. (2010). Climate change induced salinisation of artificial lakes in the Netherlands and consequences for drinking water production. Water Research, 44(15), 4411–4424.

    Article  CAS  PubMed  Google Scholar 

  • Boonstra, R. (2004). Co** with changing northern environments: The role of the stress axis in birds and mammals. Integrative and Comparative Biology, 44(2), 95–108.

    Article  PubMed  Google Scholar 

  • Breton, B., Jalabert, B., Billard, R., & Weil, C. (1971). In vitro stimulation of the release of pituitary gonadotropic hormone by a hypothalamic factor in the carp Cyprinus carpio L. Comptes rendus hebdomadaires des seances de l’Academie des sciences. Serie D: Sciences naturelles, 273(25), 2591.

    CAS  Google Scholar 

  • Bromage, N. (2001). The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture, 197, 63–98.

    Article  CAS  Google Scholar 

  • Brown, D. J. A., & Sadler, K. (1989). Fish survival in acid waters. Acid Toxicity and Aquatic Animals, 34, 31–44.

    Article  CAS  Google Scholar 

  • Brown, N. P., Shields, R. J., & Bromage, N. R. (2006). The influence of water temperature on spawning patterns and egg quality in the Atlantic halibut (L.). Aquaculture, 261(3), 993–1002.

    Article  Google Scholar 

  • Cameron, P., & Von Westernhagen, H. (1997). Malformation rates in embryos of North Sea fishes in 1991 and 1992. Oceanographic Literature Review, 8(44), 896.

    Google Scholar 

  • Cerdá-Reverter, J. M., Zanuy, S., Carrillo, M., & Kah, O. (1996). Development of Enzyme Immunoassays for 3, 5, 3′-Triiodo-l-thyronine andl-Thyroxine: Time-Course Studies on the Effect of Food Deprivation on Plasma Thyroid Hormones in Two Marine Teleosts, Sea Bass (Dicentrarchus labrax L.) and Sea Bream (Sparus aurata L.). General and Comparative Endocrinology, 103(3), 290–300.

    Article  PubMed  Google Scholar 

  • Clark, R. W., Henderson-Arzapalo, A., & Sullivan, C. V. (2005). Disparate effects of constant and annually-cycling daylength and water temperature on reproductive maturation of striped bass (Morone saxatilis). Aquaculture, 249(1–4), 497–513.

    Article  Google Scholar 

  • Cushing, D. H. (1990). Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis. In Advances in marine biology (Vol. 26, pp. 249–293). Academic Press.

    Google Scholar 

  • Datta, M., Prasad, R. N., & Bhattacharya, S. (1999). Thyroid hormone regulation of perch ovarian 3β-hydroxysteroid dehydrogenase/Δ5–Δ4-isomerase activity: Involvement of a 52-kDa protein. General and Comparative Endocrinology, 113(2), 212–220.

    Article  CAS  PubMed  Google Scholar 

  • David, D., & Degani, G. (2011). Temperature affects brain and pituitary gene expression related to reproduction and growth in the male blue gouramis, Trichogaster trichopterus. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 315(4), 203–214.

    Article  CAS  Google Scholar 

  • Diaz, R. J., & Rosenberg, R. (1995). Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology. An Annual Review, 33, 245–203.

    Google Scholar 

  • Donelson, J. M., Munday, P. L., McCormick, M. I., Pankhurst, N. W., & Pankhurst, P. M. (2010). Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Marine Ecology Progress Series, 401, 233–243.

    Article  Google Scholar 

  • Dufour, S., Sebert, M. E., Weltzien, F. A., Rousseau, K., & Pasqualini, C. (2010). Neuroendocrine control by dopamine of teleost reproduction. Journal of Fish Biology, 76(1), 129–160.

    Article  CAS  PubMed  Google Scholar 

  • Dumas, J., Bassenave, J. G., Jarry, M., Barriere, L., & Glise, S. (2007). Effects of fish farm effluents on egg-to-fry development and survival of brown trout in artificial redds. Journal of Fish Biology, 70(6), 1734–1758.

    Article  Google Scholar 

  • Elisio, M., Chalde, T., & Miranda, L. A. (2012). Effects of short periods of warm water fluctuations on reproductive endocrine axis of the pejerrey (Odontesthes bonariensis) spawning. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 163(1), 47–55.

    Article  CAS  Google Scholar 

  • Ficke, A. D., Myrick, C. A., & Hansen, L. J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17(4), 581–613.

    Article  Google Scholar 

  • Gillet, C., & QueTin, P. (2006). Effect of temperature changes on the reproductive cycle of roach in Lake Geneva from 1983 to 2001. Journal of Fish Biology, 69(2), 518–534.

    Article  Google Scholar 

  • Gillet, C., Breton, B., Mikolajczyk, T., Bodinier, P., & Fostier, A. (2011). Disruption of the secretion and action of 17, 20β-dihydroxy-4-pregnen-3-one in response to a rise in temperature in the Arctic charr, Salvelinus alpinus. Consequences on oocyte maturation and ovulation. General and Comparative Endocrinology, 172(3), 392–399.

    Article  CAS  PubMed  Google Scholar 

  • Green, B. S., & Fisher, R. (2004). Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. Journal of Experimental Marine Biology and Ecology, 299(1), 115–132.

    Article  Google Scholar 

  • Guiguen, Y., Fostier, A., Piferrer, F., & Chang, C. F. (2010). Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish. General and Comparative Endocrinology, 165(3), 352–366.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann, D. L., Tank, A. M. K., Rusticucci, M., Alexander, L.V., Brönnimann, S., Charabi, Y. A. R., et al. (2013). Observations: Atmosphere and surface. In Climate change 2013 the physical science basis: Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change (pp. 159–254). Cambridge University Press.

    Google Scholar 

  • Hoback, W. W., & Barnhart, M. C. (1996). Lethal limits and sublethal effects of hypoxia on the amphipod Gammarus pseudolimnaeus. Journal of the North American Benthological Society, 15(1), 117–126.

    Article  Google Scholar 

  • Hutchings, J. A., & Myers, R. A. (1994). Timing of cod reproduction: Interannual variability and the influence of temperature. Marine Ecology Progress Series, 108(1), 21–32.

    Article  Google Scholar 

  • Inaba, K., Dréanno, C., & Cosson, J. (2003). Control of flatfish sperm motility by CO2 and carbonic anhydrase. Cell Motility and The Cytoskeleton, 55(3), 174–187.

    Article  CAS  PubMed  Google Scholar 

  • Ishimatsu, A., Hayashi, M., Lee, K. S., Kikkawa, T., & Kita, J. (2005). Physiological effects on fishes in a high-CO2 world. Journal of Geophysical Research: Oceans, 110(C9), 1–8.

    Google Scholar 

  • Ito, Y., & Momii, K. (2015). Impacts of regional warming on long-term hypo limnetic anoxia and dissolved oxygen concentration in a deep lake. Hydrological Processes, 29(9), 2232–2242.

    Article  CAS  Google Scholar 

  • Jeppesen, E., Meerhoff, M., Holmgren, K., González-Bergonzoni, I., Teixeira-de Mello, F., Declerck, S. A., et al. (2010). Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia, 646(1), 73–90.

    Article  CAS  Google Scholar 

  • Johnson, L. L., & Landahl, J. T. (1994). Chemical contaminants, liver disease, and mortality rates in English sole (Pleuronectes vetulus). Ecological Applications, 4(1), 59–68.

    Article  Google Scholar 

  • Jones, J. C., & Reynolds, J. D. (1999). Costs of egg ventilation for male common gobies breeding in conditions of low dissolved oxygen. Animal Behaviour, 57(1), 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Kaushal, S. S., Likens, G. E., Jaworski, N. A., Pace, M. L., Sides, A. M., Seekell, D., et al. (2010). Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment, 8(9), 461–466.

    Article  Google Scholar 

  • Kikkawa, T., Kita, J., & Ishimatsu, A. (2004). Comparison of the lethal effect of CO2 and acidification on red sea bream (Pagrus major) during the early developmental stages. Marine Pollution Bulletin, 48(1–2), 108–110.

    Article  CAS  PubMed  Google Scholar 

  • King, H. R., Pankhurst, N. W., & Watts, M. (2007). Reproductive sensitivity to elevated water temperatures in female Atlantic salmon is heightened at certain stages of vitellogenesis. Journal of Fish Biology, 70(1), 190–205.

    Article  CAS  Google Scholar 

  • Lambert, Y., Dutil, J. D., & Ouellet, P. (2000). Nutritional condition and reproductive success in wild fish populations. In International Symposium on the Reproductive Physiology of Fish.

    Google Scholar 

  • Landry, C. A., Steele, S. L., Manning, S., & Cheek, A. O. (2007). Long term hypoxia suppresses reproductive capacity in the estuarine fish, Fundulus grandis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 148(2), 317–323.

    Article  CAS  Google Scholar 

  • Levavi-Sivan, B., Bogerd, J., Mañanós, E. L., Gómez, A., & Lareyre, J. J. (2010). Perspectives on fish gonadotropins and their receptors. General and Comparative Endocrinology, 165(3), 412–437.

    Article  CAS  PubMed  Google Scholar 

  • Lim, B. S., Kagawa, H., Gen, K., & Okuzawa, K. (2003). Effects of water temperature on the gonadal development and expression of steroidogenic enzymes in the gonad of juvenile red seabream, Pagrus major. Fish Physiology and Biochemistry, 28(1–4), 161–162.

    Article  CAS  Google Scholar 

  • Lubzens, E., Young, G., Bobe, J., & Cerdà, J. (2010). Oogenesis in teleosts: How fish eggs are formed. General and Comparative Endocrinology, 165(3), 367–389.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J., & Li, H. (2002). Preliminary discussion on eutrophication status of lakes, reservoirs and rivers in China and overseas. Resources and Environment in the Yangtze Valley, 11(6), 575–578.

    CAS  Google Scholar 

  • Mir, I. N., Bhat, I. A., Dar, S. A., Jain, K. K., Varghese, T., Kumari, R., et al. (2019a). Expression of alpha-amylase and growth-related genes during early larval developmental stages of Clarias magur. Aquaculture, 507, 69–74.

    Article  CAS  Google Scholar 

  • Mir, I. N., Srivastava, P. P., Bhat, I. A., Dar, S. A., Sushila, N., Varghese, T., et al. (2019b). Expression and activity of key lipases during the larval development of walking catfish (Clarias magur). Journal of Experimental Zoology –B (Molecular & Developmental Evolution). https://doi.org/10.1002/jez.b.22861.

  • Mir, I. N., Srivastava, P. P., Bhat, I. A., Muralidhar, A. P., & Varghese, T. (2018). Expression and activity of trypsin and pepsin during larval development of Indian walking catfish (Clarias magur). Aquaculture, 491, 266–272.

    Article  CAS  Google Scholar 

  • Miranda, L. A., Chalde, T., Elisio, M., & Strüssmann, C. A. (2013). Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerrey Odontesthes bonariensis. General and Comparative Endocrinology, 192, 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Modig, C., Westerlund, L., & Olsson, P. E. (2007). Oocyte zona pellucida proteins. In The fish oocyte (pp. 113–139). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mooij, W. M., Domis, L. D. S., & Janse, J. H. (2009). Linking species-and ecosystem-level impacts of climate change in lakes with a complex and a minimal model. Ecological Modelling, 220(21), 3011–3020.

    Article  Google Scholar 

  • Morris, R., Taylor, E. W., & Brown, J. A. (Eds.). (1989). Acid toxicity and aquatic animals (Vol. 34). Cambridge University Press.

    Google Scholar 

  • Munday, P. L., Dixson, D. L., McCormick, M. I., Meekan, M., Ferrari, M. C., & Chivers, D. P. (2010). Replenishment of fish populations is threatened by ocean acidification. Proceedings of the National Academy of Sciences, 107(29), 12930–12934.

    Article  CAS  Google Scholar 

  • Munday, P. L., Donelson, J. M., Dixson, D. L., & Endo, G. G. (2009). Effects of ocean acidification on the early life history of a tropical marine fish. Proceedings of the Royal Society B: Biological Sciences, 276(1671), 3275–3283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahama, Y. (1997). 17α, 20β-Dihydroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes: Mechanisms of synthesis and action. Steroids, 62(1), 190–196.

    Article  CAS  PubMed  Google Scholar 

  • Omura, T., & Morohashi, K. I. (1995). Gene regulation of steroidogenesis. The Journal of Steroid Biochemistry and Molecular Biology, 53(1–6), 19–25.

    Article  CAS  PubMed  Google Scholar 

  • Pankhurst, N. (1997). Temperature effects on the reproductive performance of fish. Global Warming: Implications for Freshwater and Marine Fish, Society for Experimental Biology Seminal Series, 61, 159–176.

    Google Scholar 

  • Pankhurst, N. W. (2011). The endocrinology of stress in fish: An environmental perspective. General and Comparative Endocrinology, 170(2), 265–275.

    Article  CAS  PubMed  Google Scholar 

  • Pankhurst, N. W., & King, H. R. (2010). Temperature and salmonid reproduction: Implications for aquaculture. Journal of Fish Biology, 76(1), 69–85.

    Article  CAS  PubMed  Google Scholar 

  • Pankhurst, N. W., & Munday, P. L. (2011). Effects of climate change on fish reproduction and early life history stages. Marine and Freshwater Research, 62(9), 1015–1026.

    Article  CAS  Google Scholar 

  • Pankhurst, N. W., Purser, G. J., Van Der Kraak, G., Thomas, P. M., & Forteath, G. N. R. (1996). Effect of holding temperature on ovulation, egg fertility, plasma levels of reproductive hormones and in vitro ovarian steroidogenesis in the rainbow trout Oncorhynchus mykiss. Aquaculture, 146(3–4), 277–290.

    Article  CAS  Google Scholar 

  • Pankhurst, N. W., & Thomas, P. M. (1998). Maintenance at elevated temperature delays the steroidogenic and ovulatory responsiveness of rainbow trout Oncorhynchus mykiss to luteinizing hormone releasing hormone analogue. Aquaculture, 166(1–2), 163–177.

    Article  CAS  Google Scholar 

  • Planas, J. V., Swanson, P., Rocha, M., Arukwe, A., & Kapoor, B. (2008). Physiological function of gonadotropins in fish. In Fish reproduction (pp. 37–66). Science Publishers.

    Google Scholar 

  • Portner, H. O., & Farrell, A. P. (2008). Physiology and climate change. Science, 322(5902), 690–692.

    Article  PubMed  Google Scholar 

  • Raff, H., & Bruder, E. D. (2006). Steroidogenesis in human aldosterone-secreting adenomas and adrenal hyperplasias: Effects of hypoxia in vitro. American Journal of Physiology-Endocrinology and Metabolism, 290(1), E199–E203.

    Article  CAS  PubMed  Google Scholar 

  • Rather, M. A., Basha, S. H., Bhat, I. A., Sharma, N., Nandanpawar, P., Badhe, M., et al. (2017). Characterization, molecular docking, dynamics simulation and metadynamics of kisspeptin receptor with kisspeptin. International Journal of biological Macromolecules, 101, 241–253.

    Article  CAS  PubMed  Google Scholar 

  • Rather, M. A., Dutta, S., Guttula, P. K., Dhandare, B. C., Yusufzai, S. I., & Zafar, M. I. (2020). Structural analysis, molecular docking and molecular dynamics simulations of G-protein-coupled receptor (kisspeptin) in fish. Journal of Biomolecular Structure and Dynamics., 38(8), 2422–2439.

    Article  CAS  PubMed  Google Scholar 

  • Rideout, R. M., Rose, G. A., & Burton, M. P. (2005). Skipped spawning in female iteroparous fishes. Fish and Fisheries, 6(1), 50–72.

    Article  Google Scholar 

  • Rombough, P. J. (1997, January). The effects of temperature on embryonic and larval development. In Seminar series-society for experimental biology (Vol. 61, pp. 177–224). Cambridge University Press.

    Google Scholar 

  • Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1), 55–89.

    CAS  PubMed  Google Scholar 

  • Shuter, B. J., Finstad, A. G., Helland, I. P., Zweimüller, I., & Hölker, F. (2012). The role of winter phenology in sha** the ecology of freshwater fish and their sensitivities to climate change. Aquatic Sciences, 74(4), 637–657.

    Article  CAS  Google Scholar 

  • Soria, F. N., Strüssmann, C. A., & Miranda, L. A. (2008). High water temperatures impair the reproductive ability of the pejerrey fish Odontesthes bonariensis: Effects on the hypophyseal-gonadal axis. Physiological and Biochemical Zoology, 81(6), 898–905.

    Article  CAS  PubMed  Google Scholar 

  • Sponaugle, S., & Cowen, R. K. (1996). Larval supply and patterns of recruitment for two Caribbean reef fishes Stegastes partitrus. Marine and Freshwater Research, 47(2), 433–447.

    Article  Google Scholar 

  • Thomas, P., Rahman, M. S., Kummer, J. A., & Lawson, S. (2006). Reproductive endocrine dysfunction in Atlantic croaker exposed to hypoxia. Marine Environmental Research, 62, S249–S252.

    Article  CAS  PubMed  Google Scholar 

  • Tveiten, H., & Johnsen, H. K. (2001). Thermal influences on temporal changes in plasma testosterone and oestradiol-17β concentrations during gonadal recrudescence in female common wolffish. Journal of Fish Biology, 59(1), 175–178.

    CAS  Google Scholar 

  • Tyler, C. R., Santos, E. M., & Prat, F. (2000). Unscrambling the egg-cellular, biochemical, molecular and endocrine advances in oogenesis. In International Symposium on the Reproductive Physiology of fish.

    Google Scholar 

  • Weber, G. M., & Sullivan, C. V. (2000). Effects of insulin-like growth factor-I on in vitro final oocyte maturation and ovarian steroidogenesis in striped bass, Morone saxatilis. Biology of Reproduction, 63(4), 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  • Whitney, J. E., Al-Chokhachy, R., Bunnell, D. B., Caldwell, C. A., Cooke, S. J., Eliason, E. J., et al. (2016). Physiological basis of climate change impacts on North American inland fishes. Fisheries, 41(7), 332–345.

    Article  Google Scholar 

  • Wingfield, J. C., & Sapolsky, R. M. (2003). Reproduction and resistance to stress: When and how. Journal of Neuroendocrinology, 15(8), 711–724.

    Article  CAS  PubMed  Google Scholar 

  • Wu, R. S. (2009). Effects of hypoxia on fish reproduction and development. In Fish physiology (Vol. 27, pp. 79–141). Academic Press.

    Google Scholar 

  • Wu, R. S., & Lam, P. K. (1997). Glucose-6-phosphate dehydrogenase and lactate dehydrogenase in the green-lipped mussel (Perna viridis): Possible biomarkers for hypoxia in the marine environment. Water Research, 31(11), 2797–2801.

    Article  CAS  Google Scholar 

  • Wu, R. S., Zhou, B. S., Randall, D. J., Woo, N. Y., & Lam, P. K. (2003a). Aquatic hypoxia is an endocrine disruptor and impairs fish reproduction. Environmental Science & Technology, 37(6), 1137–1141.

    Article  CAS  Google Scholar 

  • Wu, R. S. S. (1999). Eutrophication, water borne pathogens and xenobiotic compounds: Environmental risks and challenges. Marine Pollution Bulletin, 39(1–12), 11–22.

    Article  CAS  Google Scholar 

  • Zohar, Y., Muñoz-Cueto, J. A., Elizur, A., & Kah, O. (2010). Neuroendocrinology of reproduction in teleost fish. General and Comparative Endocrinology, 165(3), 438–455.

    Article  CAS  PubMed  Google Scholar 

  • Zucchetta, M., Cipolato, G., Pranovi, F., Antonetti, P., Torricelli, P., Franzoi, P., et al. (2012). The relationships between temperature changes and reproductive investment in a Mediterranean goby: Insights for the assessment of climate change effects. Estuarine, Coastal and Shelf Science, 101, 15–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhilipsa Biswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswal, A., Srivastava, P.P., Paul, T. (2021). Effect of Climate Change on Endocrine Regulation of Fish Reproduction. In: Sundaray, J.K., Rather, M.A., Kumar, S., Agarwal, D. (eds) Recent updates in molecular Endocrinology and Reproductive Physiology of Fish. Springer, Singapore. https://doi.org/10.1007/978-981-15-8369-8_21

Download citation

Publish with us

Policies and ethics

Navigation