Climate Change and Stress Response in Teleost

  • Chapter
  • First Online:
Outlook of Climate Change and Fish Nutrition
  • 429 Accesses

Abstract

Fish being ectotherms and in direct contact with water are directly affected by climate change-induced hydrogeological changes and demonstrate a cascade of a response that ranges from cellular adaptation to change in population dynamics. In acute stress, a fish generally tends to increase ATP synthesis to fuel alarm reaction. However, a fish under chronic stress adapts its physiological functions to facilitate energy distribution in a manner that prioritizes the functioning of critical organs and essential cellular pathways. This chapter discusses the physiological processes involved in stress perception and adaptation. The role of the neuroendocrine system, the sympathetic nervous system-chromaffin cell axis (SNC), and the hypothalamus–pituitary–interrenal (HPI) axis is discussed in detail. Hydromineral balance and preservation of the functional structure of the protein in response to abiotic stress are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42(3):517–525. https://doi.org/10.1093/icb/42.3.517

    Article  CAS  Google Scholar 

  • Barton B, Iwama G (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1(C):3–26

    Article  Google Scholar 

  • Boone AN, Vijayan MM (2002) Glucocorticoid-mediated attenuation of the hsp70 response in trout hepatocytes involves the proteasome. Am J Physiol Regul Integr Comp Physiol 283:R680–R687. https://doi.org/10.1152/ajpregu.00125.2002

    Article  CAS  Google Scholar 

  • Dawood MA, Eweedah NM, Elbialy ZI, Abdelhamid AI (2020) Dietary sodium butyrate ameliorated the blood stress biomarkers, heat shock proteins, and immune response of Nile tilapia (Oreochromis niloticus) exposed to heat stress. J Therm Biol 88:102500

    Article  CAS  Google Scholar 

  • Faught E, Vijayan MM (2016) Mechanisms of cortisol action in fish hepatocytes. Comp Biochem Physiol B Biochem Mol Biol 199:136–145. https://doi.org/10.1016/j.cbpb.2016.06.012

    Article  CAS  Google Scholar 

  • Faught E, Hernandez-Perez J, Wilson JM, Vijayan MM (2019) Stress in response to environmental changes. In: Climate change and non-infectious fish disorders

    Google Scholar 

  • Galhardo MLS, Oliveira RF (2009) Psychological stress and welfare in fish. ARBS Ann Rev Biomed Sci 11:1–20. https://doi.org/10.5016/1806-8774.2009v11p1

    Article  CAS  Google Scholar 

  • Gomez-Pastor R, Burchfiel ET, Thiele DJ (2018) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 19:4–19. https://doi.org/10.1038/nrm.2017.73

    Article  CAS  Google Scholar 

  • Hattingh J (1977) Blood sugar as an indicator of stress in the freshwater fish, Labeo capensis (Smith). J Fish Biol 10(2):191–195

    Article  CAS  Google Scholar 

  • Houlihan D (1991) Protein turnover in ectotherms and its relationships to energetics. In: Advances in comparative and environmental physiology. Springer, pp 1–43

    Google Scholar 

  • IPCC (2022) Climate change 2022: impacts, adaptation, and vulnerability. In: Pörtner H-O, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, AlegrĂ­a A, Craig M, Langsdorf S, Löschke S, Möller V, Okem A, Rama B (eds) Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Iwama GK, Vijayan MM, Forsyth RB, Ackerman PA (1999) Heat shock proteins and physiological stress in Fish1. Am Zool 39:901–909. https://doi.org/10.1093/icb/39.6.901

    Article  CAS  Google Scholar 

  • KĂĽltz D (2012) The combinatorial nature of osmosensing in fishes. Physiology 27:259–275

    Article  Google Scholar 

  • KĂĽltz D (2015) Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol 218:1907–1914

    Article  Google Scholar 

  • Kwong RW, Kumai Y, Tzaneva V, Azzi E, Hochhold N, Robertson C, Pelster B, Perry SF (2016) Inhibition of calcium uptake during hypoxia in develo** zebrafish is mediated by hypoxia-inducible factor. J Exp Biol 219:3988–3995

    Google Scholar 

  • Laiz-carriĂłn R, MartĂ­n Del RĂ­o MP, Miguez JM, Mancera JM, Soengas JL (2003) Influence of cortisol on osmoregulation and energy metabolism in gilthead seabream Sparus aurata. J Exp Zool A Comp Exp Biol 298A:105–118. https://doi.org/10.1002/jez.a.10256

    Article  CAS  Google Scholar 

  • Mazeaud MM, Mazeaud F, Donaldson EM (1977) Primary and secondary effects of stress in fish: some new data with a general review. Trans Am Fish Soc 106:201–212. https://doi.org/10.1577/1548-8659(1977)106<201:PASEOS>2.0.CO;2

    Article  CAS  Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794. https://doi.org/10.1093/icb/41.4.781

    Article  CAS  Google Scholar 

  • McCormick SD, Regish A, O’Dea MF, Shrimpton JM (2008) Are we missing a mineralocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone and aldosterone on osmoregulation, gill Na+, K+-ATPase activity and isoform mRNA levels in Atlantic salmon. Gen Comp Endocrinol 157:35–40. https://doi.org/10.1016/J.YGCEN.2008.03.024

    Article  CAS  Google Scholar 

  • Mohanty BP, Mahanty A, Mitra T, Parija SC, Mohanty S (2018) Heat shock proteins in stress in Teleosts. In: Asea AAA, Kaur P (eds) Regulation of heat shock protein responses, heat shock proteins. Springer International Publishing, Cham, pp 71–94. https://doi.org/10.1007/978-3-319-74715-6_4

    Chapter  Google Scholar 

  • Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268. https://doi.org/10.1023/A:1008924418720

    Article  Google Scholar 

  • Nikinmaa M (1992a) How does environmental pollution affect red cell function in fish? Aquat Toxicol 22:227–238

    Article  CAS  Google Scholar 

  • Nikinmaa M (1992b) Membrane transport and control of hemoglobin-oxygen affinity in nucleated erythrocytes. Physiol Rev 72(2):301–321

    Article  CAS  Google Scholar 

  • Peter M (2011) The role of thyroid hormones in stress response of fish. Gen Comp Endocrinol 172(2):198–210

    Article  CAS  Google Scholar 

  • Reid S, Bernier N, Perry S (1998) The adrenergic stress response in fish: control of catecholamine storage and release. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 120:1–27

    CAS  Google Scholar 

  • Sales CF, Lemos FS, Morais RD, ThomĂ© RG, Santos HB, Pinheiro AP, Bazzoli N, Rizzo E (2019) Thermal stress induces heat shock protein 70 and apoptosis during embryo development in a Neotropical freshwater fish. Reprod Fertil Dev 31:547–556

    Article  CAS  Google Scholar 

  • Sánchez-Muros MJ, Villacreces S, Miranda-de la Lama G, de Haro C, GarcĂ­a-Barroso F (2013) Effects of chemical and handling exposure on fatty acids, oxidative stress and morphological welfare indicators in gilt-head sea bream (Sparus aurata). Fish Physiol Biochem 39:581–591. https://doi.org/10.1007/s10695-012-9721-2

    Article  CAS  Google Scholar 

  • Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59:55–63. https://doi.org/10.1016/S0006-2952(99)00299-3

    Article  CAS  Google Scholar 

  • Schreck CB, Tort L (2016) The concept of stress in fish. Fish Physiol 35:1–34. https://doi.org/10.1016/B978-0-12-802728-8.00001-1

    Article  Google Scholar 

  • Secombes C, Hardie L, Daniels G (1996) Cytokines in fish: an update. Fish Shellfish Immunol 3(4):291–304

    Article  Google Scholar 

  • Takei Y, Hwang P-P (2016) Homeostatic responses to osmotic stress. In: Fish physiology. Elsevier, pp 207–249

    Google Scholar 

  • Takei Y, McCormick SD (2012) Hormonal control of fish euryhalinity. In: McCormick SD, Farrell AP, Brauner CJ (eds) Fish physiology. Academic Press, Cambridge, pp 69–123. https://doi.org/10.1016/B978-0-12-396951-4.00003-7

    Chapter  Google Scholar 

  • Tse WK, Au DW, Wong CK (2007) Effect of osmotic shrinkage and hormones on the expression of Na+/H+ exchanger-1, Na+/K+/2Cl–cotransporter and Na+/K+-ATPase in gill pavement cells of freshwater adapted Japanese eel, Anguilla japonica. J Exp Biol 210:2113–2120

    Article  CAS  Google Scholar 

  • Vijayan MM, Raptis S, Sathiyaa R (2003) Cortisol treatment affects glucocorticoid receptor and glucocorticoid-responsive genes in the liver of rainbow trout. Gen Comp Endocrinol 132:256–263

    Article  CAS  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    Article  CAS  Google Scholar 

  • Wood CM, Eom J (2021) The osmorespiratory compromise in the fish gill. Comp Biochem Physiol A Mol Integr Physiol 254:110895. https://doi.org/10.1016/j.cbpa.2021.110895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Jamwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Jamwal, A. (2022). Climate Change and Stress Response in Teleost. In: Sinha, A., Kumar, S., Kumari, K. (eds) Outlook of Climate Change and Fish Nutrition. Springer, Singapore. https://doi.org/10.1007/978-981-19-5500-6_13

Download citation

Publish with us

Policies and ethics

Navigation