Non-linear Symmetries in Maxwell-Einstein Gravity: From Freudenthal Duality to Pre-homogeneous Vector Spaces

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics (LT 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 335))

Included in the following conference series:

Abstract

We review the relation between Freudenthal duality and U-duality Lie groups of type \(E_{7}\) in extended supergravity theories, as well as the relation between the Hessian of the black hole entropy and the pseudo-Euclidean, rigid special (pseudo)Kähler metric of the pre-homogeneous spaces associated to the U-orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here U-duality is referred to as the “continuous” symmetries of [21]. Their discrete versions are the U-duality non-perturbative string theory symmetries introduced by Hull and Townsend [22].

  2. 2.

    For a thorough introduction to special Kähler geometry, see e.g. [34].

  3. 3.

    To be more precise, it is worth mentioning that the actual relevant coset manifold is \(E_{7(7)}/[SU(8)/Z_{2}]\), because spinors transform according to the double cover of the stabilizer of the scalar manifold (see e.g. [35, 36], and Refs. therein).

  4. 4.

    The signature along the \(R^{+}\)-direction is negative [32].

References

  1. Breitenlohner, P., Gibbons, G.W., Maison, D.: Commun. Math. Phys. 120, 295 (1988)

    Article  Google Scholar 

  2. Papapetrou, A.: Proc. R. Irish Acad. A51, 191 (1947)

    Google Scholar 

  3. Ferrara, S., Gibbons, G.W., Kallosh, R.: Nucl. Phys. B500, 75 (1997)

    Article  Google Scholar 

  4. Borsten, L., Dahanayake, D., Duff, M.J., Rubens, W.: Phys. Rev. D80, 026003 (2009)

    Google Scholar 

  5. Ferrara, S., Marrani, A., Yeranyan, A.: Phys. Lett. B701, 640 (2011)

    Article  Google Scholar 

  6. Borsten, L., Duff, M.J., Ferrara, S., Marrani, A.: Class. Quant. Grav. 30, 235003 (2013)

    Article  Google Scholar 

  7. Ferrara, S., Kallosh, R., Strominger, A.: Phys. Rev. D52, 5412 (1995). Strominger, A.: Phys. Lett. B383, 39 (1996). Ferrara, S., Kallosh, R.: Phys. Rev. D54, 1514 (1996). Ferrara, S., Kallosh, R.: Phys. Rev. D54, 1525 (1996)

    Google Scholar 

  8. Hawking, S.W.: Phys. Rev. Lett. 26, 1344 (1971). Bekenstein, J.D.: Phys. Rev. D7, 2333 (1973)

    Google Scholar 

  9. Galli, P., Meessen, P., Ortín, T.: JHEP 1305, 011 (2013)

    Article  Google Scholar 

  10. Fernandez-Melgarejo, J.J., Torrente-Lujan, E.: JHEP 1405, 081 (2014)

    Article  Google Scholar 

  11. Marrani, A., Qiu, C.X., Shih, S.Y.D., Tagliaferro, A., Zumino, B.: JHEP 1303, 132 (2013)

    Article  Google Scholar 

  12. Marrani, A., Tripathy, P., Mandal, T.: Int. J. Mod. Phys. A32, 1750114 (2017)

    Article  Google Scholar 

  13. Borsten, L., Duff, M.J., Marrani, A.: Freudenthal duality and conformal isometries of extremal black holes, preprint. ar**v:1812.10076 [gr-qc]

  14. Borsten, L., Duff, M.J., Fernandez-Melgarejo, J.J., Marrani, A., Torrente-Lujan, E.: JHEP 1907, 070 (2019)

    Article  Google Scholar 

  15. Brown, R.B., Reine Angew, J.: Mathematics 236, 79 (1969)

    Google Scholar 

  16. Meyberg, K.: Nederl. Akad. Wetensch. Proc. Ser. A71, 162 (1968)

    Article  Google Scholar 

  17. Garibaldi, R.S.: Commun. Algebra 29, 2689 (2001)

    Article  Google Scholar 

  18. Krutelevich, S.: Jordan algebras, exceptional groups, and higher composition laws, preprint. ar**v:math/0411104. Krutelevich, S.: J. Algebra 314, 924 (2007)

  19. Ferrara, S., Kallosh, R., Marrani, A.: JHEP 1206, 074 (2012)

    Article  Google Scholar 

  20. Marrani, A., Orazi, E., Riccioni, F.: J. Phys. A44, 155207 (2011)

    Google Scholar 

  21. Cremmer, E., Julia, B.: Phys. Lett. B80, 48 (1978). Cremmer, E., Julia, B.: Nucl. Phys. B159, 141 (1979)

    Google Scholar 

  22. Hull, C., Townsend, P.K.: Nucl. Phys. B438, 109 (1995)

    Google Scholar 

  23. Günaydin, M.: Springer Proc. Phys. 134, 31 (2010)

    Article  Google Scholar 

  24. Borsten, L., Duff, M.J., Ferrara, S., Marrani, A., Rubens, W.: Phys. Rev. D85, 086002 (2012)

    Google Scholar 

  25. Borsten, L., Duff, M.J., Ferrara, S., Marrani, A., Rubens, W.: Commun. Math. Phys. 325, 17 (2014)

    Article  Google Scholar 

  26. Günaydin, M., Sierra, G., Townsend, P.K.: Phys. Lett. B133, 72 (1983). Günaydin, M., Sierra, G., Townsend, P.K.: Nucl. Phys. B242, 244 (1984)

    Google Scholar 

  27. Duff, M.J., Liu, J.T., Rahmfeld, J.: Nucl. Phys. B459, 125 (1996). Behrndt, K., Kallosh, R., Rahmfeld, J., Shmakova, M., Wong, W.K.: Phys. Rev. D54, 6293 (1996)

    Google Scholar 

  28. Andrianopoli, L., D’Auria, R., Ferrara, S.: Phys. Lett. B403, 12 (1997)

    Google Scholar 

  29. Ferrara, S., Marrani, A., Gnecchi, A.: Phys. Rev. D78, 065003 (2008)

    Google Scholar 

  30. Roest, D., Samtleben, H.: Class. Quant. Grav. 26, 155001 (2009)

    Article  Google Scholar 

  31. Garibaldi, S., Guralnick, R.: Forum Math. Pi 3, e3 (2015)

    Google Scholar 

  32. Ferrara, S., Marrani, A., Orazi, E., Trigiante, M.: JHEP 1311, 056 (2013)

    Article  Google Scholar 

  33. Kimura, T.: Introduction Toprehomogeneous Vector Spaces. Translations of Mathematical Monographs, vol. 215. AMS, Providence (2003)

    Google Scholar 

  34. Freed, D.S.: Commun. Math. Phys. 203, 31 (1999)

    Article  Google Scholar 

  35. Yokota, I.: Math. J. Okoyama Univ. 24, 53 (1982)

    Google Scholar 

  36. Aschieri, P., Ferrara, S., Zumino, B.: Riv. Nuovo Cim. 31, 625 (2008)

    Google Scholar 

  37. Sato, M., Kimura, T.: Nagoya Math. J. 65, 1 (1977)

    Article  MathSciNet  Google Scholar 

  38. Richardson, R.W.: Bull. London Math. Soc. 6, 21 (1974)

    Article  MathSciNet  Google Scholar 

  39. Vinberg, E.: Sov. Math. Dokl. 16(6), 1517 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Marrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marrani, A. (2020). Non-linear Symmetries in Maxwell-Einstein Gravity: From Freudenthal Duality to Pre-homogeneous Vector Spaces. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. LT 2019. Springer Proceedings in Mathematics & Statistics, vol 335. Springer, Singapore. https://doi.org/10.1007/978-981-15-7775-8_16

Download citation

Publish with us

Policies and ethics

Navigation