Log in

Freudenthal duality in gravity: from groups of type E 7 to pre-homogeneous spaces

  • Research Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

Freudenthal duality can be defined as an anti-involutive, non-linear map acting on symplectic spaces. It was introduced in four-dimensional Maxwell-Einstein theories coupled to a non-linear sigma model of scalar fields. In this short review, I will consider its relation to the U-duality Lie groups of type E 7 in extended supergravity theories, and comment on the relation between the Hessian of the black hole entropy and the pseudo-Euclidean, rigid special (pseudo)Kähler metric of the pre-homogeneous spaces associated to the U-orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Breitenlohner, G. W. Gibbons and D. Maison, “Four-dimensional black holes from Kaluza-Klein theories,” Commun. Math. Phys. 120, 295 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Papapetrou, “A static solution of the equations of the gravitational field for an arbitrary charge distribution,” Proc. R. Irish Acad. A 51, 191 (1947)

    MathSciNet  Google Scholar 

  3. S. D. Majumdar, “A class of exact solutions of Einstein’s field equations,” Phys. Rev. 72, 930 (1947).

    Article  Google Scholar 

  4. S. Ferrara, G. W. Gibbons and R. Kallosh, “Black holes and critical points in moduli space,” Nucl. Phys. B 500, 75 (1997) [hep-th/9702103].

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Borsten, D. Dahanayake, M. J. Duff and W. Rubens, “Black holes admitting a Freudenthal dual,” Phys. Rev. D 80, 026003 (2009) [ar**v:0903.5517 [hep-th]].

    Article  MathSciNet  Google Scholar 

  6. S. Ferrara, A. Marrani and A. Yeranyan, “Freudenthal duality and generalized special geometry,” Phys. Lett. B 701, 640 (2011) [ar**v:1102.4857 [hep-th]].

    Article  MathSciNet  Google Scholar 

  7. L. Borsten, M. J. Duff, S. Ferrara and A. Marrani, “Freudenthal dual Lagrangians,” Class. Quant. Grav. 30, 235003 (2013) [ar**v:1212.3254 [hep-th]].

    Article  MathSciNet  Google Scholar 

  8. S. Ferrara, R. Kallosh and A. Strominger, “N= 2 extremal black holes,” Phys. Rev. D52, 5412 (1995) [hepth/9508072]

    MathSciNet  Google Scholar 

  9. A. Strominger, “Macroscopic entropy of N= 2 extremal black holes,” Phys. Lett. B383, 39 (1996) [hep-th/9602111]

    Article  MathSciNet  Google Scholar 

  10. S. Ferrara and R. Kallosh, “Supersymmetry and attractors,” Phys. Rev. D54, 1514 (1996) [hep-th/9602136]

    MathSciNet  Google Scholar 

  11. S. Ferrara and R. Kallosh, “Universality of supersymmetric attractors,” Phys. Rev. D54, 1525 (1996) [hep-th/9603090].

    MathSciNet  Google Scholar 

  12. S. W. Hawking, “Gravitational radiation from colliding black holes,” Phys. Rev. Lett. 26, 1344 (1971)

    Article  Google Scholar 

  13. J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D7, 2333 (1973).

    MathSciNet  Google Scholar 

  14. P. Galli, P. Meessen and T. Ortín, “The Freudenthal gauge symmetry of the black holes of N= 2, d = 4 supergravity,” JHEP 1305, 011 (2013) [ar**v:1211.7296 [hep-th]].

    Article  Google Scholar 

  15. J. J. Fernandez-Melgarejo and E. Torrente-Lujan, “N= 2 Sugra BPS Multi-center solutions, quadratic prepotentials and Freudenthal transformations,” JHEP 1405, 081 (2014) [ar**v:1310.4182 [hep-th]].

    Article  Google Scholar 

  16. A. Marrani, C.-X. Qiu, S.-Y. D. Shih, A. Tagliaferro and B. Zumino, “Freudenthal gauge theory,” JHEP 1303, 132 (2013) [ar**v:1208.0013 [hep-th]].

    Article  MathSciNet  Google Scholar 

  17. R. B. Brown, “Groups of type E 7,” J. Reine Angew. Math. 236, 79 (1969).

    MATH  MathSciNet  Google Scholar 

  18. K. Meyberg, “Eine Theorie der Freudenthalschen Triplesysteme. I, II,” Nederl. Akad. Wetensch. Proc. Ser. A71, 162 (1968).

    Article  MathSciNet  Google Scholar 

  19. R. S. Garibaldi, “Groups of type E 7 over arbitrary fields,” Commun. Algebra 29, 2689 (2001), [math/9811056 [math.AG]].

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Krutelevich, “Jordan algebras, exceptional groups, and higher composition laws,” [ar**v:math/0411104]

  21. S. Krutelevich, “Jordan algebras, exceptional groups, and Bhargava composition,” J. Algebra 314, 924 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Ferrara, R. Kallosh and A. Marrani, “Degeneration of groups of type E 7 and minimal coupling in supergravity,” JHEP 1206, 074 (2012) [ar**v:1202.1290[hep-th]].

    Article  MathSciNet  Google Scholar 

  23. A. Marrani, E. Orazi and F. Riccioni, “Exceptional reductions,” J. Phys. A44, 155207 (2011) [ar**v:1012.5797 [hep-th]].

    MathSciNet  Google Scholar 

  24. E. Cremmer and B. Julia, “The N= 8 supergravity theory. 1. The Lagrangian,” Phys. Lett. B 80, 48 (1978)

    Article  Google Scholar 

  25. E. Cremmer and B. Julia, “The SO(8) supergravity,” Nucl. Phys. B159, 141 (1979).

    Article  MathSciNet  Google Scholar 

  26. C. Hull and P. K. Townsend, “Unity of superstring dualities,” Nucl. Phys. B438, 109 (1995) [hepth/9410167].

    Article  MathSciNet  Google Scholar 

  27. M. Günaydin, “Lectures on spectrum generating symmetries and U-duality in supergravity, extremal black holes, quantum attractors and harmonic superspace,” Springer Proc. Phys. 134, 31 (2010) [ar**v:0908.0374 [hep-th]].

    Article  Google Scholar 

  28. L. Borsten, M. J. Duff, S. Ferrara, A. Marrani and W. Rubens, “Small orbits,” Phys. Rev. D85, 086002 (2012) [ar**v:1108.0424 [hep-th]].

    Google Scholar 

  29. L. Borsten, M. J. Duff, S. Ferrara, A. Marrani and W. Rubens, “Explicit orbit classification of reducible Jordan algebras and Freudenthal triple systems,” Commun. Math. Phys. 325, 17 (2014) [ar**v:1108.0908 [math.RA]].

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Günaydin, G. Sierra and P. K. Townsend, “Exceptional supergravity theories and the magic square,” Phys. Lett. B133, 72 (1983)

    Article  Google Scholar 

  31. M. Günaydin, G. Sierra and P. K. Townsend, “The geometry of N= 2 Maxwell-Einstein supergravity and Jordan algebras,” Nucl. Phys. B242, 244 (1984).

    Article  Google Scholar 

  32. M. J. Duff, J. T. Liu and J. Rahmfeld, “Four-dimensional string-string-string triality,” Nucl. Phys. B459, 125 (1996) [hep-th/9508094]

    Article  MathSciNet  Google Scholar 

  33. K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W. K. Wong, “STU black holes and string triality,” Phys. Rev. D54, 6293 (1996) [hep-th/9608059].

    MathSciNet  Google Scholar 

  34. L. Andrianopoli, R. D’Auria and S. Ferrara, “U invariants, black hole entropy and fixed scalars,” Phys. Lett. B403, 12 (1997) [hep-th/9703156].

    Article  MathSciNet  Google Scholar 

  35. S. Ferrara, A. Marrani and A. Gnecchi, “d = 4 attractors, effective horizon radius and fake supergravity,” Phys. Rev. D 78, 065003 (2008) [ar**v:0806.3196 [hep-th]].

    Article  MathSciNet  Google Scholar 

  36. D. Roest and H. Samtleben, “Twin supergravities,” Class. Quant. Grav. 26, 155001 (2009) [ar**v:0904.1344 [hep-th]].

    Article  MathSciNet  Google Scholar 

  37. S. Garibaldi and R. Guralnick, Simple Groups Stabilizing Polynomials, Forum of Mathematics 3 (3), Pi (2015) [ar**v:1309.6611 [math.GR]].

    Google Scholar 

  38. S. Ferrara, A. Marrani, E. Orazi and M. Trigiante, “Dualities near the horizon,” JHEP 1311, 056 (2013) [ar**v:1305.2057 [hep-th]].

    Article  Google Scholar 

  39. T. Kimura, Introduction to Prehomogeneous Vector Spaces, Translations of Math. Monographs 215 (AMS, Providence, 2003).

    MATH  Google Scholar 

  40. D. S. Freed, “Special Kähler manifolds,” Commun. Math. Phys. 203, 31 (1999) [ar**v:hep-th/9712042].

    Article  MATH  MathSciNet  Google Scholar 

  41. I. Yokota, “Subgroup SU(8)/Z 2 of compact simple Lie group E 7 and non-compact simple Lie group E 7(7) of type E 7,” Math. J. OkoyamaUniv. 24, 53 (1982).

    MATH  MathSciNet  Google Scholar 

  42. P. Aschieri, S. Ferrara and B. Zumino, “Duality rotations in nonlinear electrodynamics and in extended supergravity,” Riv. Nuovo Cim. 31, 625 (2008) [ar**v:0807.4039 [hep-th]].

    Google Scholar 

  43. M. Sato and T. Kimura, “A classification of irreducible prehomogeneous vector spaces and their relative invariants,” Nagoya Math. J. 65, 1 (1977).

    MATH  MathSciNet  Google Scholar 

  44. R. W. Richardson, “Conjugacy classes in parabolic subgroups of semisimple algebraic groups,” Bull. London Math. Soc. 6, 21 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  45. E. Vinberg, “The classification of nilpotent elements of graded Lie algebras,” Soviet Math. Dokl. 16 (6), 1517 (1975).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Marrani.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marrani, A. Freudenthal duality in gravity: from groups of type E 7 to pre-homogeneous spaces. P-Adic Num Ultrametr Anal Appl 7, 322–331 (2015). https://doi.org/10.1134/S207004661504007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004661504007X

Keywords

Navigation