Reduced Graphene Oxide (rGO)-Based Nanohybrids as Gas Sensors: State of the Art

  • Chapter
  • First Online:
Functional Nanomaterials

Abstract

The use of gas sensors in human and environmental safety needs remarkable sensitivity, selectivity, fast response/recovery, low detection limit and long-term stability. Accordingly, various organic as well as inorganic nanostructures have been developed and still remain an area of interest in the field of gas sensors. Among the various nanomaterials, graphene is two-dimensional (2-D) nanostructure that consists of sp2-hybridized carbon atoms arranged in hexagonal ring pattern with intra-atomic separation of 0.142 nm. The larger theoretical surface area (2630 m2 g−1), high carrier mobility at room temperature (2000 m2 V−1 s−1) makes graphene more attractive as a sensing material for gas sensors. Reduced graphene oxide (rGO) is a chemically derived form of graphene that consists of many oxygen functional groups and defects at the basal plane and the edges. The presence of oxygen-containing functional groups in rGO plays an important role in gas adsorption ability and hence enhancing the sensing properties with improved sensitivity. The easy, cost-effective and large-scale synthesis of rGO paved more attention in sensing application as compare to intrinsic graphene. The rGO-based gas sensors mainly include the nanohybrids of 0-D, 1-D, 2-D and 3-D nanostructures of metal/metal oxide with rGO. In gas sensors, the salient features of rGO nanohybrids are needed to study in detail along with the sensing mechanisms. The physical and chemical modifications of rGO surface with metal, metal oxides and polymers not only contribute to individual characteristics but also add or enhance the properties by synergistic effect between them. During the chemical synthesis of nanohybrids, rGO serves the reactive sites to control the particle size by the steric hindrance effect and contributes to improve the sensitivity towards the analytes. In the intrinsic graphene, the Fermi level located at the converging point changes due to adsorption of gas molecules, which is the key point for gas sensing application. Further, the chemical affinity and selectivity of the rGO can be achieved by surface functionalization. Being a most promising material in gas sensing, the systematic review is timely and essential to evaluate the outcomes and challenges in rGO nanohybrids for gas detection. Accordingly, the present chapter is mainly focused on the current state of the art of rGO nanohybrids for the gas sensing application. The classification of different configuration of rGO nanohybrids gas sensors along with its working principles is also described in detail. The chapter also includes the different sensing mechanisms and approaches used to engineer the surface as well as interface of the rGO-based nanohybrids in order to improve the overall sensor performance. The present chapter is mostly devoted to cover the rGO-based nanohybrids with simplified classifications along with application domains which is useful to academics, R&D and scientific communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang J, Qin Z, Zeng D, **e C (2017) Phys Chem Chem Phys 19:6313–6329

    Article  CAS  Google Scholar 

  2. Piloto C, Shafiei M, Khan H, Gupta B, Tesfamichael T, Motta N (2018) Appl Surf Sci 434:126–133

    Article  CAS  Google Scholar 

  3. Kumar R, Avasthi DK, Kaur A (2017) Sens Actuators B 242:461–468

    Article  CAS  Google Scholar 

  4. Zhang D, Tong J, **a B (2014) Sens Actuators B 197:66–72

    Article  CAS  Google Scholar 

  5. Hosseini ZS, Irajizad A, Ghiass MA, Fardindoost S, Hatamie SJ (2017) Mater Chem C 5:8966–8973

    Article  Google Scholar 

  6. Cho B, Yoon J, Lim SK, Kim AR, Kim DH, Park SG, Kwon JD, Lee YJ, Lee KH, Lee BH, Ko HC, Hahm MG (2015) Appl Mater Interfaces 7:16775–16780

    Article  CAS  Google Scholar 

  7. Wiederoder MS, Nallon EC, Weiss M, McGraw SK, Schnee VP, Bright CJ, Polcha MP, Paffenroth R, Uzarski JR (2017) ACS Sens 2:1669–1678

    Article  CAS  Google Scholar 

  8. Liu B, Huang Y, Kam KWL, Cheung W-F, Zhao N, Zheng B (2019) Biosens Bioelect X 1:100016

    Google Scholar 

  9. Chen Y, Zhang Y, Pan F, Liu J, Wang K, Zhang C, Cheng S, Lu L, Zhang W, Zhang Z, Zhi X, Zhang Q, Alfranca G, de la Fuente JM, Chen D, Cui D (2016) ACS Nano 10:8169–8179

    Article  CAS  Google Scholar 

  10. Singh E, Meyyappan M, Nalwa HS (2017) Appl Mater Interfaces 9:34544–34586

    Article  CAS  Google Scholar 

  11. Li H, Shi Y, Li L-J (2018) Carbon 127:602–610

    Article  CAS  Google Scholar 

  12. Ren S, Rong P, Yu Q (2018) Ceram Int 44:11940–11941

    Google Scholar 

  13. Rao CNR, Sood AK, Voggu R, Subrahmanyam KS (2010) J Phys Chem Lett 1:572–580

    Article  CAS  Google Scholar 

  14. Kumar NA, Gambarelli S, Duclairoir F, Bidan G (2013) Mater Chem A 1:2789

    Google Scholar 

  15. Zhang D, Liu J, Chang H, Liu A, **a B (2015) RSC Adv 5:18666

    Article  CAS  Google Scholar 

  16. Yi J, Lee JM, Il Park W (2011) Sens Actuators B 155:264–269

    Google Scholar 

  17. Lee E, Lee D, Yoon J, Yin Y, Lee YN, Uprety S, Yoon YS, Kim D-J (2018) Sensors 18:3334

    Article  CAS  Google Scholar 

  18. Jeevitha G, Abhinayaa R, Mangalaraj D, Ponpandian N, Meena P, Mounasamy V, Madanagurusamy S (2019) Nanoscale Adv 1:1799–1811

    Google Scholar 

  19. Sharma B, Kim J-S (2018) Sci Rep 8:5902

    Article  CAS  Google Scholar 

  20. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  21. Yuan W, Shi G (2013) J Mater Chem A 1:10078

    Article  CAS  Google Scholar 

  22. Ma C, Liao Q, Sun H, Lei S, Zheng Y, Yin R, Zhao A, Li Q, Wang B (2018) Nano Lett 18:386–394

    Article  CAS  Google Scholar 

  23. Tjo V, Jun W, Dravid V, Mhaisalkar S, Mathews N (2011) J Mater Chem 21:15593

    Article  CAS  Google Scholar 

  24. Zhang F, Md Yasin F, Chen X, Mo J, Raston CL, Zhang H (2013) RSC Adv 3:25166–25174

    Google Scholar 

  25. Tan C, Huang X, Zhang H (2013) Mater Today 16:29–36

    Article  CAS  Google Scholar 

  26. Vedala H, Sorescu DC, Kotchey GP, Star A (2011) Nano Lett 11:2342–2347

    Article  CAS  Google Scholar 

  27. Luo Y, Zhang C, Zheng B, Geng X, Debliquy M (2017) Int J Hydrog Energy 42:20386–20397

    Article  CAS  Google Scholar 

  28. Cui S, Mao S, Wen Z, Chang J, Zhang Y, Chen J (2013) Analyst 138:2877

    Article  CAS  Google Scholar 

  29. Mukherjee A, Jaidev LR, Chatterjee K, Misra A (2019) Mater Res Express 6:065611 (11)

    Google Scholar 

  30. Peng Y, Ye I, Zheng L, Zou K (2016) RSC Adv 6:24880–24888

    Article  CAS  Google Scholar 

  31. Ha NH, Long CT, Nam NH, Hue NT, Phuong NH, Hong HS (2017) J Electron Mater 46:3353–3358

    Article  CAS  Google Scholar 

  32. Wang J, Rathi S, Singh B, Lee I, Maeng S, Joh H-I, Kim G-H (2015) Sens Actuators B 220:755–761

    Article  CAS  Google Scholar 

  33. Huang L, Wang Z, Zhang J, Pu J, Lin Y, Xu S, Shen L, Chen Q, Shi W (2014) Appl ACS Mater Interfaces 6:7426–7433

    Google Scholar 

  34. Phan D-T, Youn J-S, Jeon K–J (2018) Renew Energy xxx:1–5

    Google Scholar 

  35. Pandey PA, Wilson NR, Covington JA (2013) Sens Actuators B 183:478–487

    Article  CAS  Google Scholar 

  36. Zhang M, Zhen Y, Sun F, Xu C (2016) Mater Sci Eng B 209:37–44

    Google Scholar 

  37. Lee J-H, Katoch A, Choi S-W, Kim J-H, Kim HW, Kim SS, Appl ACS (2015) Mater Interfaces 7:3101–3109

    Article  CAS  Google Scholar 

  38. Choi S-J, Jang B-H, Lee S-J, Min BK, Rothschild A, Kim I-D (2014) ACS Appl Mater Interfaces 6:2588–2597

    Google Scholar 

  39. Ul Abideen Z, Kim HW, Kim SS (2015) Chem Comm 51:15418

    Google Scholar 

  40. Kathiravan D, Huang B-R, Saravanan A, Appl ACS (2017) Mater Interfaces 9:12064–12072

    Article  CAS  Google Scholar 

  41. Liu J, Li S, Zhang B, Wang Y, Gao Y, Liang X, Wang Y, Lu G (2017) J Coll Interface Sci 504:206–213

    Article  CAS  Google Scholar 

  42. Song HJ, Zhang LC, He CL, Qu Y, Tian YF, Lv Y (2011) J Mater Chem 21:5972–5977

    Article  CAS  Google Scholar 

  43. Liu S, Yu B, Zhang H, Fei T, Zhang T (2014) Sens Actuators B 202:272–278

    Article  CAS  Google Scholar 

  44. Srivastava S, Jain K, Singh VN, Singh S, Vijayan N, Dilawar N (2012) Nanotech 23:205501

    Article  CAS  Google Scholar 

  45. Nemade KR, Baguley SA (2014) Mat Sci Semicon Proc 24:126–131

    Article  CAS  Google Scholar 

  46. Zhang H, Feng JC, Fei T, Liu S, Zhang T (2014) Sens Actuators B 190:472–478

    Article  CAS  Google Scholar 

  47. Kolmakov A, Chen XH, Moskovits M (2008) J Nanosci Nanotechnol 8:111–121

    Article  CAS  Google Scholar 

  48. Zou RJ, He GJ, Xu KB, Liu Q, Zhang ZY, Hu JQ (2013) J Mater Chem A 1:8445–8452

    Article  CAS  Google Scholar 

  49. Choi SJ, Fuchs F, Demadrille R, Grevin B, Jang BH, Lee SJ (2014) ACS Appl Mater Inter 6:9061–9070

    Article  CAS  Google Scholar 

  50. Deng S, Tjoa V, Fan HM, Tan HR, Sayle DC, Olivo M (2012) J Am Chem Soc 134:4905–4917

    Article  CAS  Google Scholar 

  51. Li J, Fan HQ, Jia XH (2010) J Phys Chem C 114:14684–14691

    Article  CAS  Google Scholar 

  52. Zhang B, Liu JD, Guan SK, Wan YZ, Zhang YZ, Chen RF (2007) J Alloy Compd 439:55–58

    Article  CAS  Google Scholar 

  53. Liang ZH, Zhu YJ, Hu XL (2004) J Phys Chem B 108:3488–3491

    Article  CAS  Google Scholar 

  54. Liu JY, Guo Z, Meng FL, Luo T, Li MQ, Liu JH (2009) Nanotechnol 20:125501

    Article  CAS  Google Scholar 

  55. Hoa LT, Tien HN, Luan VH, Chung JS, Hur SH (2013) Sens Actuators B 185:701–705

    Article  CAS  Google Scholar 

  56. Xu XM, Zhao PL, Wang DW, Sun P, You L, Sun YF (2013) Sens Actuators B 176:405–412

    Article  CAS  Google Scholar 

  57. Fu XQ, Liu JY, Wan YT, Zhang XM, Meng FL, Liu JH (2012) J Mater Chem 22:17782–17791

    Article  CAS  Google Scholar 

  58. Zhang HJ, Wu RF, Chen ZW, Liu G, Zhang ZN, Jiao Z (2012) Cryst Eng Comm 14:1775–1782

    Article  CAS  Google Scholar 

  59. Lin QQ, Li Y, Yang MJ (2012) Sens Actuators B 173:139–147

    Article  CAS  Google Scholar 

  60. Yang Y, Tian CG, Wang JC, Sun L, Shi KY, Zhou W (2014) Nanoscale 6:7369–7378

    Article  CAS  Google Scholar 

  61. Huang JR, Dai YJ, Gu CP, Sun YF, Liu JH (2013) J Alloy Compd 575:115–122

    Article  CAS  Google Scholar 

  62. Liu SY, Zhou L, Yao LY, Chai LY, Li L, Zhang G (2014) J Alloy Compd 612:126–133

    Article  CAS  Google Scholar 

  63. Anand K, Singh O, Singh MP, Kaur J, Singh RC (2014) Sens Actuators B 195:409–415

    Google Scholar 

  64. Wang Z, Zhang T, Zhao C, Han T, Fei T, Liu S, Lu G (2018) J Coll Interface Sci 514:599–608

    Article  CAS  Google Scholar 

  65. Drmosh A, Yamani ZH, Hendi AH, Gondal MA, Mqbel RA, Saleh TA, Khan MY (2019) Appl Surf Sci 464:616–626

    Article  CAS  Google Scholar 

  66. Bhati VS, Ranwa S, Rajamani S, Kumari K, Raliya R, Biswas P, Kumar M (2018) Appl ACS Mater Interfaces 10:11116–11124

    Article  CAS  Google Scholar 

  67. Russo PA, Donato N, Leonardi SG, Baek S, Conte DE, Neri G, Pinna N (2012) Angew Chem Int Ed 51:11053–11057

    Article  CAS  Google Scholar 

  68. Sharma B, Kim J-S (2018) Int J Hydrog Energy 43:11397–11402

    Article  CAS  Google Scholar 

  69. Esfandiari A, Ghasemi S, Irajizad A, Akhavan O, Gholami MR (2012) Int J Hydrog Energy 37:15423–15432

    Article  CAS  Google Scholar 

  70. Liu S, Wang Z, Zhang Y, Zhang C, Zhang T (2015) Sens Actuators B 211:318–324

    Article  CAS  Google Scholar 

  71. Abideen ZU, Kim J-H, Mirzaei A, Kim HW, Kim SS (2018) Sens Actuators B 255:1884–1896

    Article  CAS  Google Scholar 

  72. Bhangare B, Jagtap S, Ramgir N, Waichal R, Muthe KP, Gupta SK, Gadkari SC, Aswal DK, Gosavi S (2018) IEEE Sens J 18:9097–9104

    Article  CAS  Google Scholar 

  73. Cançado LG, da Silva MG, Ferreira EHM, Hof F, Kampioti K, Huang K, Pénicaud A, Achete CA, Capaz RB, Jorio A (2018) ACS Nano 12:2521–2530

    Article  CAS  Google Scholar 

  74. Yang Y, Yang X, Yang W, Li S, Xu J, Jiang Y (2014) RSC Adv 4:42546–42553

    Article  CAS  Google Scholar 

  75. Mishra SK, Tripathi SN, Choudhary V, Gupta BD (2014) Sens Actuators B 199:190–200

    Article  CAS  Google Scholar 

  76. Seekaew Y, Lokavee S, Phokharatkul D, Wisitsoraat A, Kerdcharoen T, Wongchoosuk C (2014) Organ Electron 15:2971–2981

    Article  CAS  Google Scholar 

  77. Huang X, Hu N, Gao R, Yu Y, Wang Y, Yang Z, Wai Kong ES, Wei H, Zhang Y (2012) J Mater Chem 22:22488–22495

    Google Scholar 

  78. Parmar M, Balamurugan C, Lee D-W (2013) Sensors 13:16611–16624

    Article  CAS  Google Scholar 

  79. Perreault F, de Faria AF, Elimelech M (2015) Chem Soc Rev 44:5861–5896

    Google Scholar 

  80. Zhao Y, Li X-G, Zhou X, Zhang Y (2014) Sens Actuators B 199:190–200

    Google Scholar 

  81. Kavikumar T, Sasikumar D, Manivannan S (2015) RSC Adv 5:10816–10825

    Article  CAS  Google Scholar 

  82. Yu C, Wu Y, Liu X, Fu F, Gong Y, Rao Y-J, Chen Y (2017) Sens Actuators B 244:107–113

    Google Scholar 

  83. Mishra SK, Tripathi SN, Choudhary V, Gupta BD (2014) Sens Actuators B 199:190–200

    Google Scholar 

  84. Sridevi S, Vasu KS, Bhat N, Asokan S, Sood AK (2016) Sens Actuators B 223:481–486

    Article  CAS  Google Scholar 

  85. Choi S-J, Kim S-J, Kim I-D (2016) NPG Asia Mater: 1–10

    Google Scholar 

  86. Yao B, Yu C, Wu Y, Huang S-W, Wu H, Gong Y, Gong Y, Chen Y, Li Y, Wong CW, Fan X, Rao Y (2017) Nano Lett 17:4996–5002

    Article  CAS  Google Scholar 

  87. Yu C-B, Wu Y, Liu X-L, Yao B-C, Fu F, Gong Y, Rao Y-J, Chen Y-F (2016) Opt Mater Exp 6:727–733

    Google Scholar 

  88. Maharana PK, Jha R, Padhy P (2015) Sens Actuators B 207:117–122

    Article  CAS  Google Scholar 

  89. Zhang A, Wu Y, Yao B, Gong Y (2015) Photonic Sens 5:84–90

    Article  CAS  Google Scholar 

  90. Le X, Wang X, Pang J, Liu Y, Fang B, Xu Z, Gao C, Xu Y, **e J (2018) Sens Actuators B 255:2454–2461

    Article  CAS  Google Scholar 

  91. Sayago I, Matatagui D, Fernandes MJ, Fontecha JL, Jurewicz I, Garriga R, Munoz E (2016) Talanta 148:393–400

    Article  CAS  Google Scholar 

  92. Wang B, Zheng L, Zhou L (2017) Earth Environ Sci 10:1–6

    Google Scholar 

  93. Bhangare B, Ramgir NS, Jagtap S, Debnath AK, Muthe KP, Terashima C, Aswal DK, Gosavi SW, Fujishima A (2019) Appl Surf Sci 487:918–929

    Article  CAS  Google Scholar 

  94. **ao Y, Yang Q, Wang Z, Zhang R, Gao Y, Sun P, Sun Y, Lu G (2016) Sens Actuators B 227:419–426

    Article  CAS  Google Scholar 

  95. Ovsianytskyi O, Nam Y-S, Tsymbalenko O, Lan P-T, Moon M-W, Lee K-B (2018) Sens Actuators B 257:278–285

    Article  CAS  Google Scholar 

  96. Dhall S, Kumar M, Bhatnagar M, Mehta BR (2018) Inter J Hyd Energy 43:17921–17927

    CAS  Google Scholar 

  97. Zhang B, Cheng M, Liu G, Gao Y, Zhao L, Li S, Wang Y, Liu F, Liang X, Zhang T, Lu G (2018) Sens Actuators B 263:387–399

    Article  CAS  Google Scholar 

  98. Wang T, Hao J, Zheng S, Sun Q, Zhang D, Wang Y (2018) Nano Res 11:791–803

    Article  CAS  Google Scholar 

  99. Yousefi N, Lu X, Elimelech M, Tufenkji N (2019) Nat Nanotechnol 14:107–109

    Article  CAS  Google Scholar 

  100. Singh A, Sharma A, Tamar M, Gupta V (2017) Sens Actuators B 245:590–598

    Article  CAS  Google Scholar 

  101. Tyagi P, Sharma A, Tomar M, Gupta V (2017) Sens Actuators B 248:980–986

    Article  CAS  Google Scholar 

  102. Debataraja A, Muchtar AR, Wulan Septiani NL, Yuliarto B, Sunendar B (2017) IEEE Sens J 17:8297–8305

    Google Scholar 

  103. Wang H, Yuan X, Zeng G, Wu Y, Liu Y, **g Q, Gu S (2015) Adv Coll Interf Sci 221:41–59

    Article  CAS  Google Scholar 

  104. Chauang MY, Lin YT, Tung TW, Chang LY, Zan HW, Meng HF, Lu CJ, Tao YT (2018) Sens Actuators B 260:593–600

    Article  CAS  Google Scholar 

  105. Chen Y, Zhang Y, Pan F, Liu J, Wang K, Zhang C, Cheng S, Lu L, Zhang W, Zhang Z, Zhi X, Zhang Q, Alfranca G, de la Fuente JM, Chen D, Cui D (2016) ACS Nano 10:8169−8179

    Google Scholar 

  106. Duy LT, Trung TQ, Hanif A, Siddiqui S, Roh E, Lee W, Lee NE (2017) 2 D Mater 4:025062

    Google Scholar 

  107. Jung MW, Kang SM, Nam K-H, An K-S, Ku B-C (2018) Appl Surf Sci 456:7–12

    Article  CAS  Google Scholar 

  108. Gavgani JN, Hasani A, Nouri M, Mahyari M, Salehi A (2016) Sens Actuators B 229:239–248

    Article  CAS  Google Scholar 

  109. Su P-G, Shieh H-C (2014) Sens Actuators B 190:865–872

    Article  CAS  Google Scholar 

  110. Yi J, Lee J, Il Park W (2011) Sens Actuators B 155:264–269

    Google Scholar 

  111. Jeong HY, Lee DS, Choi HK, Lee DH, Kim JE, Lee JY, Lee WJ, Kim SO, Choi SY (2010) Appl Phys Lett 96:213105

    Article  CAS  Google Scholar 

  112. Yun YJ, Hong WG, Choi N-J, Kim BH, Jun Y, Lee H-K (2015) Sci Rep 5:10904

    Google Scholar 

  113. Choi S-J, Kim S-J (2016) Il-Doo Kim. NPG Asia Mater 8(8):1–10

    Google Scholar 

  114. Zhang D, Wu Z, Zong X (2019) Sens Actuators B 289:32–41

    Article  CAS  Google Scholar 

  115. Park HJ, Kim W-J, Lee H-K, Lee D-S, Shin J-H, Jun Y, Yum YJ (2018) Sens Actuators B 257:846–852

    Article  CAS  Google Scholar 

  116. Chen Q, Liu D, Leimiao, Wu J (2019) Sens Actuators B 286:591–599

    Google Scholar 

  117. Yang Y, Ji H-F, Thundat T (2003) J Am Chem Soc 125:1124–1125

    Article  CAS  Google Scholar 

  118. Alizadeh T, Soltani LH (2016) Sens Actuators B 234:361–370

    Article  CAS  Google Scholar 

  119. Futur R, Koveke EP, Sugimoto S, Shudo Y, Hayami S, Ohira S-I, Toda K (2017) Sens Actuators B 240:657–663

    Article  CAS  Google Scholar 

  120. Yu H, Han H, Jang J, Cho S (2019) ACS Omega 4:5586–5594

    Article  CAS  Google Scholar 

  121. Li H-Y, Lee C-S, Kim DH, Lee J-H, Appl ACS (2018) Mater Interfaces 10:27858–27867

    Article  CAS  Google Scholar 

  122. Singh E, Meyyappan M, Nalwa HS, Appl ACS (2017) Mater Interfaces 9:34544–34586

    Article  CAS  Google Scholar 

  123. Kahn A (2016) Mater Horiz 3:7–10

    Article  CAS  Google Scholar 

  124. Chen C-Y, Retamal JRD, Wu I-W, Lien D-H, Chen M-W, Ding Y, Chueh Y-L, Wu C-I, He J-H (2012) 6–11:9366–9372

    Google Scholar 

  125. Singhal AV, Charaya H, Lahiri I (2016) Crit Rev Solid State Mater Sci: 1–28

    Google Scholar 

  126. **a Y, Wang J, Xu J-L, Li X, **e D, **ang L, Komarneni S (2016) Appl ACS Mater Interfaces 8:35454–35463

    Article  CAS  Google Scholar 

  127. Gu F, Nie R, Han D, Wang Z (2015) Sens Actuators B 219:94–99

    Article  CAS  Google Scholar 

  128. Song Z, Wei Z, Wang B, Luo Z, Xu S, Zhang W, Liu H (2016) Chem Mater 28:1205–1212

    Article  CAS  Google Scholar 

  129. Huang XL, Hu NT, Gao RG, Yu Y, Wang YY, Yang Z (2012) J Mater Chem 22:22488–22495

    Article  CAS  Google Scholar 

  130. Wang T, Sun Z (2017) Sens Actuators B Chem 252:284–294

    Article  CAS  Google Scholar 

  131. Karaduman I, Er E (2017) J Alloys Comp 722:569–578

    Article  CAS  Google Scholar 

  132. Zou Y, Wang Q (2016) Int J Hydrog Energy 41:5396–5404

    Article  CAS  Google Scholar 

  133. Esfandiar A, Irajizad A, Akhavan O, Ghasemi S, Gholami MR (2014) Inter J. Hydrog. Energy 39:8169–8179

    CAS  Google Scholar 

  134. Rañola RAG, Kalaw JM, Sevilla FB (2014) Appl Mech Mater 492:321–325

    Article  CAS  Google Scholar 

  135. Zhou Y, Lin X (2017) Sens Actuators B 240:870–880

    Article  CAS  Google Scholar 

  136. Zhang Z, Yates JT Jr (2012) Chem Rev 112:5520–5551

    Article  CAS  Google Scholar 

  137. Leenaerts O, Partoens B, Peeters FM (2008) Phys Rev B 77:125416

    Article  CAS  Google Scholar 

  138. Neri G, Leonardi SG, Latino M, Donato N, Baek S, Conte DE, Russo PA, Pinna N (2013) Sens Actuators B 179:61–68

    Article  CAS  Google Scholar 

  139. Lu G, Ocola LE, Chen J (2009) Adv Mater 21(24):2487–2491

    Article  CAS  Google Scholar 

  140. Zhao M, Yan L, Zhang X, Xu L, Song Z, Chen P (2017) J Mater Chem C 5:1113–1120

    Article  Google Scholar 

  141. Latif U, Dickert FL (2015) Sensors 15:30504–30524

    Article  CAS  Google Scholar 

  142. Lee SW, Lee W, Hong Y, Lee G, Yoon DS (2018) Sens Actuators B 255:1788–1804

    Article  CAS  Google Scholar 

  143. Cançado LG, Gomes da Silva M, Martins Ferreira EH, Hof F, Kampioti K, Huang K, Pénicaud K, Achete CA, Capaz RB, Jorio A (2017) 2 D Mater 4:025039

    Google Scholar 

  144. Maity I, Ghosh K, Rahaman H, Bhattacharyya P (2017) Trans IEEE Device Mater Reliab 17:738–745

    Article  CAS  Google Scholar 

  145. Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Gr Acio J (2009) Chem Mater 21:4796–4802

    Google Scholar 

  146. Terrones H, Lv R, Terrones M, Dresselhaus MS (2012) Rep Prog Phys 75:062501 (30)

    Google Scholar 

  147. Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Nanotechnology 20:185504

    Article  CAS  Google Scholar 

  148. Fujimoto Y (2017) Nanomater Nanotech 7:1–7

    Article  CAS  Google Scholar 

  149. Kaushik PD, Aziz A, Siddiqui AM, Greczynski G, Jafari MJ, Lakshmi GBVS, Avasthi DK, Syväjärvi M, Reza Yazdi G (2018) Mater Sci Semicond Process 74:122–128

    Google Scholar 

  150. Hajati Y, Blom T, Jafri SHM, Haldar S, Bhandary S, Shoushtari MZ, Eriksson O, Sanyal B, Leifer K (2012) Nanotechnology 23:505501

    Article  CAS  Google Scholar 

  151. Lin J-H, Lin Y-J, Chang H-C (2015) Appl Phys A 118:361–366

    Article  CAS  Google Scholar 

  152. Jafri SHM, Carva K, Widenkvist E, Blom T, Sanyal B, Fransson J, Eriksson O, Jansson O, Grennberg O, Karis O, Quinlan RA, Holloway BC, Leifer K (2010) J Phys D Appl Phys 43:045404 (8)

    Google Scholar 

  153. Kwon YJ, Cho HY, Na HG, Lee BC, Kim SS, Kim HW (2014) Sens Actuators B 203:143–149

    Article  CAS  Google Scholar 

  154. Lee G, Yang G, Cho A, Han JW, Kim J (2016) Phys Chem Chem Phys 18:14198–14204

    Article  CAS  Google Scholar 

  155. Chung G, Kim DH, Lee HM, Kim T, Choi JH, Seo DK, Yoo J-B, Hong S-H, Kang TJ, Kim YH (2012) Sens Actuators B 166–167:172–176

    Article  CAS  Google Scholar 

  156. Mirzaei, Kwon YJ, Wu P, Kim SS, Kim HW (2018) ACS Appl Mater Interfaces 10:732–7333

    Google Scholar 

  157. Yang C-M, Chen T-C, Yang Y-C, Hsiao M-C, Meyyappan M, Lai C-S (2017) Vacuum 140:89–95

    Google Scholar 

  158. Kim HW, Known YJ, Mirzaei A, Kang SY, Choi MS, Bang JH, Kim SS (2017) Sens Actuators B 249:590–601

    Article  CAS  Google Scholar 

  159. Xu S, Sun F, Yang S, Pan Z, Long J, Gu F (2015) Sci Rep 5:8939(8)

    Google Scholar 

  160. Chung MG, Kim DH, Lee HM, Kim T, Choi JH, Seo DK, Yoo J-B, Hong S-H, Kang TJ, Kim YH (2012) Sens Actuators B 166–167:172–176

    Google Scholar 

  161. Guo L, Hao Y-W, Li P-L, Song J-F, Yang R-Z, Fu X-Y, **e S-Y, Zhao J, Zhang Y-L (2018) Improved NO2 gas sensing properties of graphene oxide reduced by two-beam-laser interference. Sci Rep 8(1)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan S. Ramgir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhangare, B. et al. (2020). Reduced Graphene Oxide (rGO)-Based Nanohybrids as Gas Sensors: State of the Art. In: Thomas, S., Joshi, N., Tomer, V. (eds) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4810-9_8

Download citation

Publish with us

Policies and ethics

Navigation