Log in

Characteristics of Hydrogen Sensor Based on Monolayer of Pt Nanoparticles Decorated on Single-Layer Graphene

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the construction and testing of a resistive-type H2 sensor composed of a monolayer of platinum nanoparticles (Pt NPs) deposited using an immersion method on single-layer graphene. It was found that the Pt NP monolayer significantly reduced the response/recovery time of the graphene-based H2 sensor. The very rapid response of the sensor is attributed to the short diffusion length between the monolayer Pt nanoparticles and single-layer graphene. The sensor showed response time of 6 s and recovery time of 69 s at the optimal working temperature of 150°C. In addition, the fabricated device exhibited good repeatability at 10,000 ppm H2, detection range of 10 ppm to 10,000 ppm, and good thermal stability, satisfying the requirements for H2 sensors for safety applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hydrogen Sensor Workshop Report, LANL and LLNL, U.S. Department of Energy, Washington DC, 2007.

  2. M. Krishna Kumar and S. Ramaprabhu, Int. J. Hydrogen Energy 32, 2518 (2007).

    Article  Google Scholar 

  3. M. Yamauchi, H. Kobayashi, and H. Kitagawa, ChemPhysChem 10, 2566 (2009).

    Article  Google Scholar 

  4. M.E. Franke, T.J. Koplin, and U. Simon, Small 2, 36 (2006).

    Article  Google Scholar 

  5. D.-T. Phan and G.-S. Chung, J. Electroceram. 32, 353 (2014).

    Article  Google Scholar 

  6. T.-R. Rashid, D.-T. Phan, and G.-S. Chung, Sens. Actuators B Chem. 185, 777 (2013).

    Article  Google Scholar 

  7. X.-Q. Zeng, Y.-L. Wang, H. Deng, M.L. Latimer, Z.-L. **ao, J. Pearson, T. Xu, H.-H. Wang, U. Welp, G.W. Crabtree, and W.-K. Kwok, ACS Nano 5, 7443 (2011).

    Article  Google Scholar 

  8. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nat. Mater. 6, 652 (2007).

    Article  Google Scholar 

  9. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).

    Article  Google Scholar 

  10. S. Basu and P. Bhattacharyya, Sens. Actuators B Chem. 173, 1 (2012).

    Article  Google Scholar 

  11. P.V. Kamat, J. Phys. Chem. Lett. 1, 520 (2009).

    Article  Google Scholar 

  12. W. Wu, Z. Liu, L.A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y.P. Chen, and S.-S. Pei, Sens. Actuators B Chem. 150, 296 (2010).

    Article  Google Scholar 

  13. B.H. Chu, C.F. Lo, J. Nicolosi, C.Y. Chang, V. Chen, W. Strupinski, S.J. Pearton, and F. Ren, Sens. Actuators B Chem. 157, 500 (2011).

    Article  Google Scholar 

  14. A. Kaniyoor, R. Imran Jafri, T. Arockiadoss, and S. Ramaprabhu, Nanoscale 1, 382 (2009).

    Article  Google Scholar 

  15. J.L. Johnson, A. Behnam, S.J. Pearton, and A. Ural, Adv. Mater. 22, 4877 (2010).

    Article  Google Scholar 

  16. A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, and M.R. Gholami, Int. J. Hydrogen Energy 37, 15423 (2012).

    Article  Google Scholar 

  17. V.V. Quang, N.S. Trong, N.N. Trung, N.D. Hoa, N.V. Duy, and N.V. Hieu, Anal. Lett. 47, 280 (2014).

    Article  Google Scholar 

  18. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  Google Scholar 

  19. M. Gautam and A.H. Jayatissa, Solid State Electron. 78, 159 (2012).

    Article  Google Scholar 

  20. M.G. Chung, D.-H. Kim, D.K. Seo, T. Kim, H.U. Im, H.M. Lee, J.B. Yoo, S.H. Hong, T.J. Kang, and Y.H. Kim, Sens. Actuators B Chem. 169, 387 (2012).

    Article  Google Scholar 

  21. U. Lange, T. Hirsch, V.M. Mirsky, and O.S. Wolfbeis, Electrochim. Acta 56, 3707 (2011).

    Article  Google Scholar 

  22. R. Kumar, D. Varandani, B.R. Mehta, V.N. Singh, Z. Wen, X. Feng, et al., Nanotechnology 22, 275719 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.02-2014.47.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang Si Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, N.H., Long, C.T., Nam, N.H. et al. Characteristics of Hydrogen Sensor Based on Monolayer of Pt Nanoparticles Decorated on Single-Layer Graphene. J. Electron. Mater. 46, 3353–3358 (2017). https://doi.org/10.1007/s11664-016-5214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5214-x

Keywords

Navigation