Heterostructure Devices for THz Signal Recognition

  • Chapter
  • First Online:
Emerging Trends in Terahertz Solid-State Physics and Devices

Abstract

Terahertz region, practically related near the frequency range commencing 100 GHz–10 THz (30 μm toward 3 mm), has drawn great attention during preceding few decades owing to its hopeful relevance into biological, health and manufacturing fields, wideband and welfare memorandum, radio astronomy, space-borne radar technology, etc. Terahertz spacing suggests to a huge contest yet exists, proposed for Terahertz mechanisms as this is inside the borderline of electrons and light-based machinery. The negative differential resistance supported devices, for instance Gunn diode, impact avalanche transit time (IMPATT) diode, resonant tunneling diode and space-plasma wave based nanometer field effect transistors (FETs) are extensively explored for Terahertz frequency range. Commencing elevated region, devices supported by photon akin to quantum cascade laser (QCL) expand the emission spectra starting mid- and far-infrared to Terahertz spectral variety. Every attempt is to follow the effectual radiation and recognition of THz signals. Radiation power along with recognition sensitivity of Terahertz systems is enormously poor contrasted through the millimeter (MM) band and optoelectronic appliances. In modern days, 2D-plasmon in a GaN hetero-structure-based high electron mobility transistor has concerned a lot of interest owing to the characteristics of aiding emission/recognition of electromagnetic radiation within the Terahertz span. An assessment of the figure-of-merits (FoMs) among GaN and GaAs compounds illustrates that an advanced essential field can provide superior output power density; a superior electron saturation velocity may provide very high-speed conversion time; hence, advanced frequency with a high thermal conductivity may undergo since advanced functioning temperature used for GaN-supported devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Dyakonov, M. Shur, Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465–2468 (1993)

    Article  ADS  Google Scholar 

  2. M. Dyakonov, M. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices 43, 380–387 (1996)

    Article  ADS  Google Scholar 

  3. W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Lusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. El Fatimy, Y.M. Meziani, T. Otsuji, Field effect transistors for terahertz detection: physics and first imaging applications. J. Infrared Milli. Terahz Waves 30, 1319–1337 (2009)

    Google Scholar 

  4. W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Łusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, C. Gaquière, Field effect transistors for terahertz detection and emission. J. Infrared Milli. Terahz 32, 618–628 (2011)

    Article  Google Scholar 

  5. T. Otsuji, Y.M. Meziani, T. Nishimura, T. Suemitsu, W. Knap, E. Sano, T. Asano, V.V. Popov, “Emission of terahertz radiation from dualgrating- gates plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems. J. Phys.: Condens. Matters 20, 384206 (2008)

    ADS  Google Scholar 

  6. Y. Tsuda, T. Komori, A. El Fatimy, T. Suemitsu, T. Otsuji, Application of plasmonic microchip emitters to broadband terahertz spectroscopic measurement. J. Opt. Soc. Am. B 26, A52–A57 (2009)

    Article  Google Scholar 

  7. A.K. Geim, K.S. Novoselov, The rise of graphene. Nature Mat. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  8. V. Ryzhii, A. Satou, T. Otsuji, Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures. J. Appl. Phys. 101, 024509 (2007)

    Article  ADS  Google Scholar 

  9. V.V. Popov, TYu. Bagaeva, T. Otsuji, V. Ryzhii, Oblique terahertz plasmons in graphene nanoribbon arrays. Phys. Rev. B 81, 073404 (2010)

    Article  ADS  Google Scholar 

  10. T. Watanabe, K. Akagawa, Y. Tanimoto, D. Coquillat, W. M. Knap, T. Otsuji, Terahertz imaging with InP high-electron-mobility transistors, in SPIE Defense, Security & Sensing, Proc. SPIE, vol 8023, p. 802325 (2011)

    Google Scholar 

  11. K. Akagawa, S. Fukuda, T. Suemitsu, T. Otsuji, H. Yokohama, G. Araki, Impact of T-gate electrode on gate capacitance in In0.7Ga0.3As HEMTs. Phys. Status Solidi C 8, 300–302 (2011)

    Article  ADS  Google Scholar 

  12. From http://www.teraview.com/ab_imageLibrary.asp

  13. M. Smith, S.J. Liu, M.Y. Kao, P. Ho, S.C. Wang, K.H.G. Duh, S.T. Fu, P.C. Chao, W-band high efficiency InP-based power HEMT with 600 GHz fmax. IEEE Microwave Guided Wave Lett. 5, 230–232 (1995)

    Article  Google Scholar 

  14. M.J.W. Rodwell (ed.), High Speed Integrated Circuit Technology: Towards 100 GHZ Logic (World Scientific, Singapore, 2001)

    Google Scholar 

  15. W. Hafez, M. Feng, Experimental demonstration of pseudomorphic heterojunction bipolar transistors with cutoff frequencies above 600 GHz. Appl. Phys. Lett. 86, 152101 (2005)

    Article  ADS  Google Scholar 

  16. W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Bouef, T. Skotnicki, D. Maude, S. Rumyantsev, M.S. Shur, Plasma wave detection of millimeter wave radiation by silicon field effect transistors. Appl. Phys. Lett. 85(4), 675–677 (2004)

    Article  ADS  Google Scholar 

  17. G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller,. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, Science, pp. 2277–2280 (2000)

    Google Scholar 

  18. R. Kohler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, F. Rossi, Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)

    Article  ADS  Google Scholar 

  19. B.S. Williams, S. Kumar, Q. Hu, J.L. Reno, Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. Opt. Express 13, 3331–3339 (2005)

    Article  ADS  Google Scholar 

  20. G. Scalari, N. Hoyler, M. Giovannini, J. Faist, Terahertz bound-tocontinuum quantum-cascade lasers based on optical phonon scattering extraction. Appl. Phys. Lett. 86, 181101 (2005)

    Article  ADS  Google Scholar 

  21. G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, Phys. Rev. Lett. 93, 237403 (2004)

    Article  ADS  Google Scholar 

  22. http://www.lasercomponents.de/wwwuk/products/quantum/main.htm

  23. G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, Science 290, 2277 (2000)

    Article  Google Scholar 

  24. J. Faist et al., Quantum cascade laser. Science 264, 553–556 (1994)

    Article  ADS  Google Scholar 

  25. B. Mirzaei, A. Rostami, H. Baghban, Terahertz dual-wavelength quantum cascade laser based on GaN active region. Opt. Laser Technol. 44, 378–383 (2012)

    Article  ADS  Google Scholar 

  26. E. Bellotti et al., Monte Carlo simulation of terahertz quantum cascade laser structures based on wide-bandgap semiconductors. J. Appl. Phys. 105, 113103 (2009)

    Article  ADS  Google Scholar 

  27. E. Bellotti et al., Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures. Appl. Phys. Lett. 92, 101112 (2008)

    Article  ADS  Google Scholar 

  28. F. Sudradjat et al., Sequential tunneling transport characteristics of GaN/AlGaN coupled-quantum-well structures. J. Appl. Phys. 108, 103704 (2010)

    Article  ADS  Google Scholar 

  29. W. Terashima, H. Hirayama, GaN-based terahertz quantum cascade lasers. Proc. SPIE 9483, 948304 (2015)

    Article  Google Scholar 

  30. D. Turchinovich et al., Ultrafast polarization dynamics in biased quantum wells under strong femtosecond optical excitation. Phys. Rev. B 68, 241307 (2003)

    Article  ADS  Google Scholar 

  31. D. Turchinovich, B.S. Monozon, P.U. Jepsen, Role of dynamical screening in excitation kinetics of biased quantum wells: nonlinear absorption and ultrabroadband terahertz emission. J. Appl. Phys. 99, 013510 (2006)

    Article  ADS  Google Scholar 

  32. H. Hirayama et al., Recent progress and future prospects of THz quantum-cascade lasers. Proc. SPIE 9382, 938217 (2015)

    Article  Google Scholar 

  33. W. Terashima, H. Hirayama, Terahertz frequency emission with novel quantum cascade laser designs, in Proc. SPIE, pp. 11–13 (2015)

    Google Scholar 

  34. S. Miho, T.-T. Lin, H. Hirayama, 1.9 THz selective injection design quantum cascade laser operating at extreme higher temperature above the kBT line. Phys. Status Solidi C 10, 1448–1451 (2013)

    Article  ADS  Google Scholar 

  35. T.-T. Lin, H. Hirayama, Improvement of operation temperature in GaAs/AlGaAs THz-QCLs by utilizing high Al composition barrier. Phys. Status Solidi C 10, 1430–1433 (2013)

    Article  ADS  Google Scholar 

  36. T.-T. Lin, L. Ying, H. Hirayama, Threshold current density reduction by utilizing high-al-composition barriers in 3.7 THz GaAs∕AlxGa1−xAs quantum cascade lasers. Appl. Phys. Express 5, 012101 (2012)

    Article  ADS  Google Scholar 

  37. C. Edmunds et al., Terahertz intersubband absorption in non-polar mplane AlGaN/GaN quantum wells. Appl. Phys. Lett. 105, 021109 (2014)

    Article  ADS  Google Scholar 

  38. M. Beeler, E. Trichas, E. Monroy, III-nitride semiconductors for intersubband optoelectronics: a review. Semicond. Sci. Technol. 28, 074022 (2013)

    Article  ADS  Google Scholar 

  39. M. Beeler et al., Pseudo-square AlGaN/GaN quantum wells for terahertz absorption. Appl. Phys. Lett. 105, 131106 (2014)

    Article  ADS  Google Scholar 

  40. H. Durmaz et al., Terahertz intersubband photodetectors based on semi-polar GaN/AlGaN heterostructures. Appl. Phys. Lett. 108, 201102 (2016)

    Article  ADS  Google Scholar 

  41. J.D. Sun et al., High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl. Phys. Lett. 100, 013506 (2012)

    Article  ADS  Google Scholar 

  42. R.A. Lewis et al., Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector. Appl. Phys. Lett. 100, 173513 (2012)

    Article  ADS  Google Scholar 

  43. H. Hou et al., Modelling of GaN HEMTs as terahertz detectors based on self-mixing. Proc. Eng. 141, 98–102 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manash Chanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharyya, A., Chanda, M., De, D. (2020). Heterostructure Devices for THz Signal Recognition. In: Biswas, A., Banerjee, A., Acharyya, A., Inokawa, H., Roy, J. (eds) Emerging Trends in Terahertz Solid-State Physics and Devices. Springer, Singapore. https://doi.org/10.1007/978-981-15-3235-1_8

Download citation

Publish with us

Policies and ethics

Navigation