Noncontact Characterization Techniques of GaN-Based Terahertz Devices

  • Chapter
  • First Online:
Advanced Materials for Future Terahertz Devices, Circuits and Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 727))

  • 505 Accesses

Abstract

The fresh developments in the area of terahertz (THz) devices and systems based on gallium nitride (GaN) have lifted the requirement of the state-of-the-art noncontact characterization techniques. In this chapter, three major noncontact characterization techniques used for characterizing GaN-based THz devices have been described in details; those are (i) THz time-domain spectroscopy, (ii) laser-induced THz emission spectroscopy, and (iii) THz electromodulation spectroscopy. These noncontact characterization techniques have been established as potential alternatives of conventional contact measurement techniques due to their accuracy, reliability, and capability of providing noteworthy amount of visually interpretable information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P.H. Siegel, Terahertz technology. IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002)

    Article  Google Scholar 

  2. P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, A. Rogalski, New concepts in infrared photodeector designs. Appl. Phys. Rev. 1, 041102-1–041102-35 (2014)

    Google Scholar 

  3. R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield, M. Pepper, Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47, 3853–3863 (2002)

    Article  Google Scholar 

  4. M. Nagel, P.H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, R. Buttner, Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett. 80(1), 154–156 (2002)

    Article  CAS  Google Scholar 

  5. N. Karpowicz, H. Zhong, C. Zhang, K.I Lin, J.S. Hwang, J. Xu, X.C. Zhang, Compact continuous-wave subterahertz system for inspection applications. Appl. Phys. Lett. 86(5), 054105-1–054105-3 (2005)

    Google Scholar 

  6. K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, Non-invasive inspection of c-4 explosive in mails by terahertz time-domain spectroscopy. J. Appl. Phys. 43(3B), L414–L417 (2004)

    Article  CAS  Google Scholar 

  7. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11(20), 2054–2549 (2003)

    Article  Google Scholar 

  8. C. Joerdens, M. Koch, Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt. Eng. 47(3), 037003-1–037003-5 (2008)

    Google Scholar 

  9. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2007)

    Article  CAS  Google Scholar 

  10. K. Ahi, Review of GaN-based devices for terahertz operation. Opt. Eng. 56(9), 090901 (2017)

    Article  Google Scholar 

  11. J. Faist et al., Quantum cascade laser. Science 264, 553–556 (1994)

    Article  CAS  Google Scholar 

  12. R. Köhler et al., Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)

    Article  CAS  Google Scholar 

  13. B.S.Williams et al., Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. Opt. Express 13(9), 3331–3339 (2005)

    Google Scholar 

  14. E. Bellotti et al., Monte Carlo simulation of terahertz quantum cascade laser structures based on wide-bandgap semiconductors. J. Appl. Phys. 105, 113103-1–113103-9 (2009)

    Google Scholar 

  15. E. Bellotti et al., Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures. Appl. Phys. Lett. 92, 1011121–1011123 (2008)

    Article  CAS  Google Scholar 

  16. F. Sudradjat et al., Sequential tunneling transport characteristics of GaN/AlGaN coupled-quantum-well structures. J. Appl. Phys. 108, 103704–1–5 (2010)

    Google Scholar 

  17. D. Turchinovich et al., Ultrafast polarization dynamics in biased quantum wells under strong femtosecond optical excitation. Phys. Rev. B 68, 241307-1–241307-8 (2003)

    Google Scholar 

  18. D. Turchinovich, B.S. Monozon, P.U. Jepsen, Role of dynamical screening in excitation kinetics of biased quantum wells: nonlinear absorption and ultrabroadband terahertz emission. J. Appl. Phys. 99, 013510-1–013510-8 (2006)

    Google Scholar 

  19. S. Miho, T.-T. Lin, H. Hirayama, 1.9 THz selective injection design quantum cascade laser operating at extreme higher temperature above the kBT line. Phys. Status Solidi (c) 10, 1448–1451 (2013)

    Google Scholar 

  20. T.-T. Lin, H. Hirayama, Improvement of operation temperature in GaAs/AlGaAs THz-QCLs by utilizing high Al composition barrier. Phys. Status Solidi C 10(11), 1430–1433 (2013)

    Article  CAS  Google Scholar 

  21. T.-T. Lin, L. Ying, H. Hirayama, Threshold current density reduction by utilizing high-al-composition barriers in 3.7 THz GaAs∕AlxGa1−xAs quantum cascade lasers. Appl. Phys. Express 5, 012101 (2012)

    Google Scholar 

  22. W. Terashima, H. Hirayama, GaN-based terahertz quantum cascade lasers. Proc. SPIE 9483, 948304 (2015)

    Article  Google Scholar 

  23. H. Hirayama et al., Recent progress and future prospects of THz quantum-cascade lasers. Proc. SPIE Int. Soc. Opt. Eng. 9382, 938217-1–93821711 (2015)

    Google Scholar 

  24. J. D. Sun et al., High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl. Phys. Lett. 100, 013506-1–0135063 (2012)

    Google Scholar 

  25. R. A. Lewis et al., Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector. Appl. Phys. Lett. 100, 173513-1–173513-3 (2012)

    Google Scholar 

  26. M. Bauer et al., High-sensitivity wideband THz detectors based on GaN HEMTs with integrated Bow-Tie antennas, in Proceedings of the 10th European Microwave Integrated Circuits Conference, 7–8 Sept 2015 (Paris, France, 2015), pp. 1–4

    Google Scholar 

  27. H. Hou et al., Modelling of GaN HEMTs as terahertz detectors based on self-mixing. Proc. Eng. 141, 98–102 (2016)

    Article  CAS  Google Scholar 

  28. A. Kikuchi, R. Bannai, K. Kichino, C.-M. Lee, J.-I. Chyi, AlN/GaN double-barrier resonant tunneling diodes grown by rf-plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 81, 1729–1731 (2002)

    Article  CAS  Google Scholar 

  29. A. E. Belyaev, C. T. Foxon, S. V. Novikov, O. Makarovsky, L. Eaves, M. J. Kappers, C. J. Humphreys, Comment on AlN/GaN double-barrier resonant tunneling diodes grown by rf-plasmaassisted molecular-beam epitaxy [Appl. Phys. Lett. 81, 1729 (2002)]. Appl. Phys. Lett. 83, 3626–3627 (2003)

    Google Scholar 

  30. A. Kikuchi, R. Bannai, K. Kichino, C. M. Lee, J.-I. Chyi, Response to comment on AlNÕGaN double-barrier resonant tunneling diodes grown by rf-plasma-assisted molecular-beam epitaxy †Appl. Phys. Lett. 83, 3626, 2003]83, 3628 (2003)

    Google Scholar 

  31. C.T. Foxon, S.V. Novikov, A.E. Belyaev, L.X. Zhao, O. Makarovsky, D.J. Walker, L. Eaves, R.I. Dykeman, S.V. Danylyuk, S.A. Vitusevich, M.J. Kappers, J.S. Barnard, C.J. Humphreys, Current–voltage instabilities in GaN/AlGaN resonant tunnelling structures. Phys. Status Solidi (c) 7, 2389–2392 (2003)

    Google Scholar 

  32. S. Golka, C. Pflugl, W. Schrenk, G. Strasser, C. Skierbiszewski, M. Siekacz, I. Grzegory, S. Porowski, Negative differential resistance in dislocation-free GaN/AlGaN doublebarrier diodes grown on bulk GaN. Appl. Phys. Lett. 88, 172106-1–172106-3 (2006)

    Google Scholar 

  33. C. Bayram, Z. Vashaei, M. Razeghi, AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 96, 042103–1–3 (2010)

    Google Scholar 

  34. P. Klein, J. Mittereder, S. Binari, J. Roussos, D. Katzer, D. Storm, Photoionisation spectroscopy of traps in AlGaN/GaN high electron mobility transistors grown by molecular beam epitaxy. Electron. Lett. 39(18), 1256–1354 (2003)

    Article  Google Scholar 

  35. J.W.P. Hsu, M.J. Manfra, R.J. Molnar, B. Heying, J.S. Speck, Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates. Appl. Phys. Lett. 81(1), 79–81 (2002)

    Article  CAS  Google Scholar 

  36. S. Syed, M.J. Manfra, Y.J. Wang, R.J. Molnar, H.L. Stormer, Electron scattering in AlGaN/GaN structures. Appl. Phys. Lett. 84(9), 1507–1509 (2004)

    Article  CAS  Google Scholar 

  37. L. Rigutti, G. Jacopin, A. De Luna Bugallo, M. Tchernycheva, E. Warde,F. H. Julien, R. Songmuang, E. Galopin, L. Largeau, J.-C. Harmand,Investigation of the electronic transport in GaN nanowires containing GaN/AlN quantum discs. Nanotechnology 21(42), 425206 (2010)

    Google Scholar 

  38. R. Songmuang, G. Katsaros, E. Monroy, P. Spathis, C. Bougeral, M. Mongillo, S. De Franceschi, Quantum transport in GaN/AlN double-barrier heterostructure nanowires. Nano Lett. 10, 3545–3550 (2010)

    Article  CAS  Google Scholar 

  39. F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302 (2006)

    Article  CAS  Google Scholar 

  40. M.S. Shur, AlGaN/GaN plasmonic terahertz electronic devices. J. Phys. 486, 012025–1–6 (2014)

    Google Scholar 

  41. M.I. Dyakonov, M.S. Shur, Plasma wave electronics: novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron. Devices 43(10), 1640–1645 (1996)

    Article  CAS  Google Scholar 

  42. J.-Q. Lu et al., Detection of microwave radiation by electronic fluid in AlGaN/GaN heterostructure field effect transistors, in Proceedings IEEE/ Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, (1997), pp. 211–217

    Google Scholar 

  43. W. Knap et al., Nonresonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 91, 9346–9353 (2002)

    Article  CAS  Google Scholar 

  44. A. El Fatimy et al., Terahertz detection by GaN/AlGaN transistors. Electron. Lett. 42, 1342–1344 (2006)

    Article  CAS  Google Scholar 

  45. T. Otsuji, M. Shur, Terahertz plasmonics: good results and great expectations. IEEE Microwave Mag. 15, 43–50 (2014)

    Article  Google Scholar 

  46. S. Krishnamurthy et al., Bandstructure effect on high-field transport in GaN and GaAlN. Appl. Phys. Lett. 71, 1999–2001 (1997)

    Article  CAS  Google Scholar 

  47. B.E. Foutz et al., Comparison of high field electron transport in GaN and GaAs. Appl. Phys. Lett. 70, 2849–2851 (1997)

    Article  CAS  Google Scholar 

  48. E. Alekseev, D. Pavlidis, GaN Gunn diodes for THz signal generation,” in IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017) vol. 3, (2000), pp. 1905–1908

    Google Scholar 

  49. E. Alekseev, D. Pavlidis, GaN Gunn diodes for THz signal generation. IEEE MTT-S Int. Microwave Symp. Digest 3, 1905–1908 (2000)

    Google Scholar 

  50. Y. Wang et al., Modulation of the domain mode in GaN-based planar Gunn diode for terahertz applications. Phys. Status Solidi (C) 13, 382–385 (2016)

    Google Scholar 

  51. S. Boppel et al., 0.25-μm GaN TeraFETs optimized as THz power detectors and intensity-gradient sensors. IEEE Trans. Terahertz Sci. Technol. 6, 348–350 (2016)

    Google Scholar 

  52. D. Veksler et al., GaN heterodimensional Schottky diode for THz detection, in The 5th IEEE Conference on Sensors (2006), pp. 323–326

    Google Scholar 

  53. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Willy, India, 2010).

    Google Scholar 

  54. T.A. Midford, R.L. Bernick, Millimeter Wave CW IMPATT diodes and oscillators. IEEE Trans. Microwave Theo. Tech. 27, 483–492 (1979)

    Article  Google Scholar 

  55. A. Acharyya, J.P. Banerjee, Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci. 4, 1–14 (2014)

    Article  CAS  Google Scholar 

  56. A. Acharyya, J.P. Banerjee, Potentiality of IMPATT devices as terahertz source: an avalanche response time based approach to determine the upper cut-off frequency limits. IETE J. Res. 59(2), 118–127 (2013)

    Article  Google Scholar 

  57. S. Chakraborty, A. Acharyya, A. Biswas, A.K. Kundu, Multi-stage-multi-iterative optimization algorithm for design optimization of multi-quantum well terahertz avalanche transit time sources, in 2nd International Conference on VLSI Device, Circuit and System, 18th–19th July, (2020), Accepted

    Google Scholar 

  58. A. Biswas, S. Sinha, A. Acharyya, A. Banerjee, S. Pal, H. Satoh, H. Inokawa, 1.0 THz GaN IMPATT source: effect of parasitic series resistance. J. Infrared Millimeter Terahertz Waves39(10), 954–974 (2018).

    Google Scholar 

  59. J.T. Kindt, C.A. Schmuttenmaer, Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J. Phys. Chem. 100, 10373–10379 (1996)

    Article  CAS  Google Scholar 

  60. B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, M. Rahm, Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range. Appl. Phys. Lett. 100, 221101-1–221101-3 (2012)

    Google Scholar 

  61. K.P. Cheung, D.H. Auston, Excitation of coherent phonon polaritons with femtosecond optical pulses. Phys. Rev. Lett. 55(20), 2152–2155 (1985)

    Article  CAS  Google Scholar 

  62. K.P. Cheung, D.H. Auston, A novel technique for measuring far-infrared absorption and dispersion. Infrared Phys. 26, 23–27 (1986)

    Article  CAS  Google Scholar 

  63. N. J. Halas, I. N. Duling III, M. B. Ketchen, D. Grischkowsky, Measured dispersion and absorption of a 5 micron coplanar transmission line, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986)

    Google Scholar 

  64. M.C. Nuss, D.H. Auston, F. Capasso, Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide. Phys. Rev. Lett. 58, 2355–2358 (1987)

    Article  CAS  Google Scholar 

  65. W.J. Gallagher, C.-C. Chi, I.N. Duling III., D. Grischkowsky, N.J. Halas, M.B. Ketchen, A.W. Kleinsasser, Subpicosecond optoelectronic study of resistive and superconductive transmission lines. Appl. Phys. Lett. 50, 350–352 (1987)

    Article  CAS  Google Scholar 

  66. R. Sprik, I.N. Duling III., C.-C. Chi, D. Grischkowsky, Far-infrared spectroscopy with subpicosecond electrical pulses on transmission lines. Appl. Phys. Lett. 51, 548–550 (1987)

    Article  CAS  Google Scholar 

  67. D. Grischkowsky, I.N. Duling III., J.C. Chen, C.-C. Chi, Electromagnetic shock waves from transmission lines. Phys. Rev. Lett. 59, 1663–1666 (1987)

    Article  CAS  Google Scholar 

  68. D. Grischkowsky, C.-C. Chi, I.N. Duling III, W J. Gallagher, M.B. Ketchen, R. Sprik, Spectroscopy with ultrashort electrical pulses, in Laser Spectroscopy VIII, ed. by W. Persson, S. Svanberg (Springer, New York, 1987)

    Google Scholar 

  69. D. Grischkowsky, Time-domain far-infrared spectroscopy, in ed. by R. Kesselring, F.K. Kneubuhl. Proceedings of the 4th International Conference on Infrared Physics, ETH, Zurich, (1988)

    Google Scholar 

  70. Ch. Fattinger, D. Grischkowsky, Point source terahertz optics. Appl. Phys. Lett. 53, 1480–1482 (1988)

    Article  Google Scholar 

  71. Y. Pastol, G. Arjavalingam, J.-M. Halbout, G.V. Kopcsay, Coherent broadband microwave spectroscopy using picoseconds optoelectronic antennas. Appl. Phys. Lett. 54, 307–309 (1989)

    Article  CAS  Google Scholar 

  72. Ch. Fattinger, D. Grischkowsky, Terahertz beams. Appl. Phys. Lett. 54, 490–492 (1989)

    Article  Google Scholar 

  73. M. van Exter, C.H. Fattinger, D. Grischkowsky, Terahertz time-domain spectoscopy of water vapour. Opt. Lett. 14, 1128–1130 (1989)

    Article  CAS  Google Scholar 

  74. Y. Pastol, G. Arjavalingam, G.V. Kopcsay, J.-M. Halbout, Dielectric properties of uniaxial crystals measured with optoelectronically generated microwave transient radiation. Appl. Phys. Lett. 55, 2277–2279 (1989)

    Article  CAS  Google Scholar 

  75. S. Keiding, D. Grischkowsky, Measurements of the phase shift and resha** of teraHz pulses due to total internal reflection. Opt. Lett. 15, 48–50 (1990)

    Article  CAS  Google Scholar 

  76. M. van Exter and D. Grischkowsky, Optical and electronic properties of doped silicon from 0.1 to 2 THz. Appl. Phys. Lett. 56, 1694–1696 (1990)

    Google Scholar 

  77. M. van Exter, D. Grischkowsky, Carrier dynamics of electrons and holes in moderately-doped silicon. Phys. Rev. B 41, 12140–12149 (1990)

    Article  Google Scholar 

  78. D. Grischkowsky, S. Keiding, Terahertz time-domain spectroscopy of high T, substrates. Appl. Phys. Lett. 57, 1055–1057 (1990)

    Article  CAS  Google Scholar 

  79. M. Van Exter, D. Grischkowsky, Carrier dynamics of electron and holes in moderately doped silicon. Phys. Rev. B 41, 12140–12149 (1990)

    Article  Google Scholar 

  80. D. Grischkowsky et al., Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7, 2006–2015 (1990)

    Article  CAS  Google Scholar 

  81. N. Katzenellenbogen, D. Grischkowsky, Electrical characterization to 4 THz of N- and P-type GaAs using THz time-domain spectroscopy. Appl. Phys. Lett. 61, 840–842 (1992)

    Article  CAS  Google Scholar 

  82. Y. Bu et al., Optical properties of GaN epitaxial films grown by lowpressure chemical vapor epitaxy using a new nitrogen source: hydrazoic acid (HN3). Appl. Phys. Lett. 66, 2433–2435 (1995)

    Article  CAS  Google Scholar 

  83. T. Nagashima, K. Takata, M. Hangyo, Electrical characterization of GaN thin films using terahertz-time domain spectroscopy, in 27th International Conference on Infrared and Millimeter Waves, (2002), pp. 247–248

    Google Scholar 

  84. T. Nagashima et al., Measurement of electrical properties of GaN thin films using terahertz-time domain spectroscopy. Jpn. J. Appl. Phys. 44, 926–931 (2005)

    Article  CAS  Google Scholar 

  85. W. Zhang, Abul K. Azad and D. Grischkowsky, Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN. Appl. Phys. Lett. 82, 2841–2843 (2003)

    Google Scholar 

  86. T.R. Tsai et al., Terahertz response of GaN thin films. Opt. Express 14, 4898–4907 (2006)

    Article  CAS  Google Scholar 

  87. H. Fang et al., Temperature dependence of the point defect properties of GaN thin films studied by terahertz time-domain spectroscopy. Sci. China Phys. Mech. Astron. 56, 2059–2064 (2013)

    Article  CAS  Google Scholar 

  88. J. Neu, C.A. Schmuttenmaer, Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 124, 231101 (2018)

    Article  CAS  Google Scholar 

  89. T. Kondo et al., Terahertz radiation from (111) InAs surface using 1.55 μm femtosecond laser pulses. Jpn. J. Appl. Phys. 38, L1035–L1037 (1999)

    Google Scholar 

  90. D.H. Auston, K.P. Cheung, P.R. Smith, Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett. 45, 284–286 (1984)

    Article  Google Scholar 

  91. N. Sekine, K. Yamanaka, K. Hirakawa, M. Voßebürger, P. Haring-Bolivar, H. Kurz, Observation of terahertz radiation from higher-order two-dimensional plasmon modes in GaAs/AlGaAs single quantum wells. Appl. Phys. Lett. 74, 1006–1008 (1999)

    Article  CAS  Google Scholar 

  92. M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, S. Nakashima, Terahertz radiation from superconducting YBa2Cu3O7−δ thin films excited by femtosecond optical pulses. Appl. Phys. Lett. 69, 2122–2124 (1996)

    Article  CAS  Google Scholar 

  93. K. Nikawa, M. Yamashita, T. Matsumoto, C. Otani, M. Tonouchi, Y. Midoh, K. Miura, K. Nakamae, Non-electrical-contact LSI failure analysis using non-bias laser terahertz emission microscope, in Proceedings of 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 4–7 July, (2011), pp. 1–5

    Google Scholar 

  94. H. Nakanishi, S. Fujiwara2, K. Takayama2, I. Kawayama, H. Murakami, M. Tonouchi, Imaging of a polycrystalline silicon solar cell using a laser terahertz emission microscope. Appl. Phys. Express. 5, 112301 (2012)

    Google Scholar 

  95. M. Yamashita, T. Kiwa, M. Tonouchi, K. Nikawa, C. Otani, K. Kawase, Laser terahertz emission microscope for inspecting electrical failures in integrated circuits, in International Meeting for Future of Electron Devices, 26–28 July (2004), pp. 29–30

    Google Scholar 

  96. Y. Sakai et al., Visualization of GaN surface potential using terahertz emission enhanced by local defects. Sci. Rep. 5, 13860 (2015)

    Article  Google Scholar 

  97. S. G. Engelbrecht et al., Terahertz electromodulation spectroscopy of electron transport in GaN. Appl. Phys. Lett. 106, 092107–1–3 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prajukta Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, P., Acharyya, A., Inokawa, H., Biswas, A. (2021). Noncontact Characterization Techniques of GaN-Based Terahertz Devices. In: Acharyya, A., Das, P. (eds) Advanced Materials for Future Terahertz Devices, Circuits and Systems. Lecture Notes in Electrical Engineering, vol 727. Springer, Singapore. https://doi.org/10.1007/978-981-33-4489-1_3

Download citation

Publish with us

Policies and ethics

Navigation