Forthcoming Perspectives in MAS

  • Chapter
  • First Online:
Genetic Map** and Marker Assisted Selection

Abstract

MAS can be simply defined as selection for a trait based on the genotype of an associated marker rather than the trait itself. In essence, the associated marker is used as an indirect selection criterion. The potential of MAS as a tool for crop improvement has been extensively explored in different plant species. This chapter elaborates what would be the future of molecular breeding strategies in several crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Literature Cited

  • Alcala J, Giovannoni JJ, Pike LM, Reddy AS (1997) Application of genetic bit analysis for allele selection in plant breeding. Mol Breed 3:495–502

    Article  CAS  Google Scholar 

  • Chagné D, Vanderzande S, Kirk C, Profitt N, Weskett R, Gardiner SE et al (2019) Validation of SNP markers for fruit quality and disease resistance loci in apple (Malus× domestica Borkh.) using the OpenArray® platform. Hortic Res 6(1):1–16

    Google Scholar 

  • Cherif E, Zehdi S, Castillo K, Chabrillange N, Abdoulkader S, Pintaud JC (2013) Male-specific DNA markers provide genetic evidence of an XY chromosome system a recombination arrest and allow the tracing of paternal lineages in date palm. New Phytol 197:409–415

    Article  CAS  Google Scholar 

  • Cholin SS, Poleshi CA, Manikanta DS, Christopher C (2019) Exploring the genomic resources of carrot for cross-genera transferability and phylogenetic assessment among orphan spices and vegetables of Apiaceae family. Hortic Environ Biotechnol 60(1):81–93

    Article  CAS  Google Scholar 

  • Delannay X, McLaren G, Ribaut JM (2012) Fostering molecular breeding in develo** countries. Mol Breed 29:857–873

    Article  CAS  Google Scholar 

  • Harkess A, Mercati F, Shan HY, Sunseri F, Falavigna A, Leebens Mack J (2015) Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis). New Phytol 207:883–892

    Article  CAS  Google Scholar 

  • Kafkas SM, Khodaeiaminjan M, Guney M, Kafkas E (2015) Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera. BMC Genomics 16:98–108

    Article  Google Scholar 

  • Khasmakhi-Sabet SA, Abdousi V, Samizadeh H, Kalatejari S (2016) Molecular marker linked to number of female flowers per node in cucumber. Int J Veg Sci 22:389–401

    Article  Google Scholar 

  • Liu JJ, Williams H, Zamany A, Li XR, Gellner S, Sniezko RA (2019a) Development and application of marker-assisted selection (MAS) tools for breeding of western white pine (Pinus monticola Douglas ex D. Don) resistance to blister rust (Cronartium ribicola JC Fisch.) in British Columbia. Can J Plant Pathol:1–10. https://doi.org/10.1080/07060661.2019.1638454

  • Liu S, Wang R, Zhang Z, Li Q, Wang L, Wang Y, Zhao Z (2019b) High-resolution map** of quantitative trait loci controlling main floral stalk length in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics 20(1):437

    Article  Google Scholar 

  • McCallum J, Clarke A, Pither-Joyce M, Shaw M, Butler R, Brash D, Havey MJ (2006) Genetic map** of a major gene affecting onion bulb fructan content. Theor Appl Genet 112:958–967

    Article  CAS  Google Scholar 

  • Moodley V, Naidoo R, Gubba A, Mafongoya PL (2019) Development of potato virus Y (PVY) resistant pepper (Capsicum annuum L.) lines using marker-assisted selection (MAS). Physiol Mol Plant Pathol 105:96–101

    Article  CAS  Google Scholar 

  • Mulagund J, Souravi K, Dinesh MR, Ravishankar KV (2019) Molecular characterization, DNA finger printing, and genomics in horticultural crops. In: Conservation and utilization of horticultural genetic resources. Springer, Singapore, pp 595–618

    Chapter  Google Scholar 

  • Muranty H, Jorge V, Bastien C, Lepoittevin C, Bouffier L, Sanchez L (2014) Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops. Tree Genet Genomes 10(6):1491–1510

    Article  Google Scholar 

  • O’Connor K, Hayes B, Hardner C, Alam M, Topp B (2019) Selecting for nut characteristics in Macadamia using a genome-wide association study. HortScience 54(4):629–632

    Article  Google Scholar 

  • Onozaki T, Yoshinari T, Yoshimura T, Yagi M, Yoshioka S, Taneya M, Shibata MP (2014) DNA markers linked to a recessive gene controlling single flower type derived from wild species, Dianthus capitatus ssp. andrzejowskianus. Hortic Res (Jpn) 5:363–367

    Article  Google Scholar 

  • Pooprompan P, Wasee S, Too**da T, Abe J, Chanprame S, Srinives P (2006) Molecular marker analysis of days to flowering in vegetable soybean (Glycine max (L.) Merrill). Kasetsart J 40:573–581

    Google Scholar 

  • Robbins MD, Staub JE (2009) Comparative analysis of marker-assisted and phenotypic selection for yield components in cucumber. Theor Appl Genet 119(4):621–634

    Article  Google Scholar 

  • Robbins MD, Masud MA, Panthee DR, Gardner RG, Francis DM, Stevens MR (2010) Marker-assisted selection for coupling phase resistance to tomato spotted wilt virus and Phytophthora infestans (late blight) in tomato. HortScience 45(10):1424–1428

    Article  Google Scholar 

  • Rubio M, Caranta C, Palloix A (2008) Functional markers for selection of potyvirus resistance alleles at the pvr2-eIF4E locus in pepper using tetra-primer ARMS–PCR. Genome 51(9):767–771

    Google Scholar 

  • Tulsani NJ, Hamid R, Jacob F, Umretiya NG, Nandha AK, Tomar RS, Golakiya BA (2019) Transcriptome landsca** for gene mining and SSR marker development in coriander (Coriandrum sativum L.). Genomics. https://doi.org/10.1016/j.ygeno.2019.09.004

  • Vaijayanthi PV, Ramesh S, Gowda MB, Rao AM, Keerthi CM (2019) Genome-wide marker-trait association analysis in a core set of Dolichos bean germplasm. Plant Genet Resour 17(1):1–11

    Article  CAS  Google Scholar 

  • Wang J, Na J, Yu Q, Gschwend AR, Han J, Zeng F (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci 109:13710–13715

    Article  CAS  Google Scholar 

  • Yagi M, Yamamoto T, Isobe S, Hirakawa H, Tabata S, Tanase K, Yamaguchi H, Onozaki T (2013) Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC Genomics 14:734–738

    Article  CAS  Google Scholar 

  • Yagi M, Kimura T, Yamamoto T, Isobe S, Tabata S, Onozaki T (2014) QTL analysis for resistance to bacterial wilt (Burkholderia caryophylli) in carnation (Dianthus caryophyllus) using an SSR-based genetic linkage map. Mol Breed 30:495–509

    Article  Google Scholar 

  • Yeh T, Lin S, Shieh H, Teoh Y, Kumar S (2016) Markers for cytoplasmic male sterility (CMS) traits in chili peppers (Capsicum annuum L.): multiplex PCR and validation. SABRAO J Breed Genet 48(4):465–473

    Google Scholar 

Further Reading

  • Ali Q et al (2012) An overview of genomics assisted improvement of drought tolerance in maize (Zea mays L.): QTL approaches. Afr J Biotechnol 11(65):12839–12848

    Google Scholar 

  • Fauquet CM, Taylor NJ, Tohme J (2012) The global cassava partnership for the 21st century (GCP21). Trop Plant Biol 5:4–8

    Article  Google Scholar 

  • Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Crit Rev. Plant Sci 31(2):93–123

    Article  Google Scholar 

  • Fridman E, Zamir D (2012) Next-generation education in crop genetics. Curr Opin Plant Biol 15:218–223

    Article  Google Scholar 

  • Isemura T, Kaga A, Tabata S, Somta P, Srinives P et al (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in Mungbean (Vigna radiata). PLoS One 7(8):e41304. https://doi.org/10.1371/journal.pone.0041304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan M (2012) Current status of genomic based approaches to enhance drought tolerance in Rice (Oryza sativa L.): an over view. Mol Plant Breed 3(1):1–10. https://doi.org/10.5376/mpb.2012.03.00

    Article  Google Scholar 

  • Liu Y, He Z, Appels R, **a X (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10

    Article  CAS  Google Scholar 

  • Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1–14. https://doi.org/10.1093/aob/mcs109.

    Article  Google Scholar 

  • Panthee DR, Foolad MR (2012) A re-examination of molecular markers for use in marker-assisted breeding in tomato. Euphytica 184:165–179

    Article  CAS  Google Scholar 

  • Sharma et al (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10(12):621–630

    Article  CAS  Google Scholar 

  • Xu Y et al (2012a) Whole-genome strategies for marker-assisted plant breeding. Mol Breed 29:833–854

    Article  Google Scholar 

  • Xu Y, Li Z-K, Thomson MJ (2012b) Molecular breeding in plants: moving into the mainstream. Mol Breed 29:831–832

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Critical Thinking Questions

Critical Thinking Questions

  1. 1.

    Why is it imperative to develop MAS strategies in underutilized and unexplored crops?

  2. 2.

    Advances in MAS have huge applications in vegetable crop improvement. Explain this with examples.

  3. 3.

    How MAS can enhance the efficiency of tree breeding?

  4. 4.

    Community effort or contract work in genoty** and phenoty** data analysis will be the order of the day in develo** countries. Justify.

  5. 5.

    What are the minimum field laboratory infrastructures that require for MAS?

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boopathi, N.M. (2020). Forthcoming Perspectives in MAS. In: Genetic Map** and Marker Assisted Selection. Springer, Singapore. https://doi.org/10.1007/978-981-15-2949-8_12

Download citation

Publish with us

Policies and ethics

Navigation