The Interactions of Soil Microbes Affecting Stress Alleviation in Agroecosystems

  • Chapter
  • First Online:
Probiotics in Agroecosystem

Abstract

Crop plants are subjected to different kinds of stresses, and as a result, their growth is adversely affected. Different mechanisms may be used by crop plants to tolerate the stress including the morphological and physiological ones. However, the efficiency of such mechanisms differs in sensitive and tolerant crop species, and the tolerant species can utilize such mechanisms more efficiently. The other important aspect of stress tolerance in crop plants is related to their interactions with the soil microbes. A wide range of soil microbes including arbuscular mycorrhizal (AM) fungi, plant growth-promoting rhizobacteria (PGPR), and endophytic bacteria as well as their interactions can affect stress tolerance in crop plants. Such a topic is among the most important research subjects and can greatly affect the efficiency of crop plants under stress. Mycorrhizal fungi are soil fungi, develo** a symbiotic association with their nonspecific host plants, and increase their growth by enhancing the uptake of water and nutrients. PGPR are soil bacteria, which can enhance the growth of their host plant by different mechanisms through develo** a nonsymbiotic association. The endophytic microbes are able to colonize the inner parts of their host plant and affect its growth under different conditions including stress. The interactions of soil microbes in most cases can positively affect the growth of the host plant under different conditions including stress. The important point, which deserves investigation, is the interaction of mycorrhizal fungi, PGPR, and the endophytic bacteria, which reside in plant roots affecting plant growth and yield production. Such details will be useful for the production of more tolerant microbial inoculums, which are more efficient under different conditions including stress. Some of the most important and recent findings related to the growth of crop plants under stress, as affected by the interactions of soil microbes, along with the future perspectives are presented, reviewed, and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Rahman S, Abdel-Kader A, Khalil S (2011) Response of three sweet basil cultivars to inoculation with Bacillus subtilis and arbuscular mycorrhizal fungi under salt stress conditions. Nat Sci 9:93–111

    Google Scholar 

  • Adesemoye A, Torbert H, Kloepper J (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Ahmed E, Hassan E, El Tobgy K, Ramadan E (2014) Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control. Ann Agric Sci 59:273–280

    Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Sandhya V, Grover M, Kishore N, Rao L, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Amijee F, Tinker P, Stribley D (1989) The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol 111:435–446

    Article  Google Scholar 

  • Arkhipova T, Veselov S, Melentiev A, Martynenko E, Kudoyarova G (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum spp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  CAS  Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environ Pollut 147:609–614

    Article  CAS  PubMed  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de Bashan L, Prabhu R, Hernandez J (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Bauer W, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433

    Article  CAS  PubMed  Google Scholar 

  • Bell T, Newman J, Silverman B, Turner S, Lilley A (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160

    Article  CAS  PubMed  Google Scholar 

  • Ben Khaled L, Gomez AM, Ourraqi EM, Oihabi A (2003) Physiological and biochemical responses to salt stress of mycorrhized and/or nodulated clover seedlings (Trifolium alexandrinum L.) Agronomie 23:571–580

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bisseling T, Dangl JL, Schulze-Lefert P (2009) Next-generation communication. Science 324:691–691

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski M, Roy J (2005) Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms. Oecologia 143:232–240

    Article  PubMed  Google Scholar 

  • Bunn R, Lekberg Y, Zabinski C (2009) Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 90:1378–1388

    Article  PubMed  Google Scholar 

  • Calvo P, Nelson L, Kloepper J (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Carvalho L, Correia P, Caçador I, Martins-Loução M (2003) Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils 38:137–143

    Article  Google Scholar 

  • Cassan F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    Article  CAS  Google Scholar 

  • Chakraborty U, Chakraborty B, Dey P Chakraborty AP (2015) Role of microorganisms in alleviation of abiotic stresses for sustainable agriculture. In: Chakraborty U, Chakraborty B (eds.) Abiotic stresses in crop plants, ISBN: 9781780643731, CAB International, Wallingford, pp 232

    Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proAB genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabdopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509

    Article  CAS  Google Scholar 

  • Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  CAS  PubMed  Google Scholar 

  • Dastager G, Deepa C, Pandey A (2010) Isolation and characterization of novel plant growth promoting micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48:987–992

    Article  CAS  PubMed  Google Scholar 

  • Degens BP (1998) Decreases in microbial functional diversity do not result in corresponding changes in decomposition under different moisture conditions. Soil Biol Biochem 30:1989–2000

    Article  CAS  Google Scholar 

  • De Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. In: Van Loon L (ed) Plant innate immunity. Academic Press Ltd./Elsevier Science Ltd., London, pp 223–281

    Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Döbbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:153–162

    Article  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Article  Google Scholar 

  • Eichmann R, Schäfer P (2015) Growth versus immunity-a redirection of the cell cycle? Curr Opin Plant Biol 26:106–112

    Article  CAS  PubMed  Google Scholar 

  • FAO, 2015. www.fao.org

  • Fiedler H, Krastel P, Müller J, Gebhardt K, Zeeck A (2001) Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett 196:147–151

    Article  CAS  PubMed  Google Scholar 

  • Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Flessa H, Ruser R, Dörsch P, Kamp T, Jimenez MA, Munch JC, Beese F (2002) Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany. Agric Ecosyst Environ 91:175–189

    Article  CAS  Google Scholar 

  • Franzini VI, Azcon R, Mendes FL, Aroca R (2010) Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J Plant Physiol 167:614–619

    Article  CAS  PubMed  Google Scholar 

  • Franzini VI, Azcon R, Mendes FL, Aroca R (2013) Different interaction among Glomus and Rhizobium species on Phaseolus vulgaris and Zea mays plant growth, physiology and symbiotic development under moderate drought stress conditions. Plant Growth Regul 70:265–273

    Article  CAS  Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2016) Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regul. doi:10.1007/s10725-016-0174-y

    Google Scholar 

  • Giovannetti M, Avio L, Fortuna P, Pellegrino E, Sbrana C, Strani P (2006) At the root of the wood wide web. Self-recognition and nonself incompatibility in mycorrhizal networks. Plant Signal Behav 1:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (ed.) (2015) Beneficial plant-bacterial interactions. Springer International Publishing, Switzerland

    Google Scholar 

  • Gopal S, Chandrasekaran M, Shagol C, Kim KY, Sa TM (2012) Spore associated bacteria (sab) of arbuscular mycorrhizal fungi (amf) and plant growth promoting rhizobacteria (pgpr) increase nutrient uptake and plant growth under stress conditions. Korean J Soil Sci Fert 45:582–592

    Article  CAS  Google Scholar 

  • Grover M, Ali S, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gutierrez-Manero F, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo F, Talon M (2001) The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Haichar E-ZF, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Hamaoui B, Abbadi J, Burdman S, Rashid A, Sarig S, Okon Y (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21:553–560

    Article  Google Scholar 

  • Hartmann A, Bashan Y (2009) Ecology and application of Azospirillum and other plant growth-promoting bacteria (PGPB)-special issue. Eur J Soil Biol 45:1–2

    Article  Google Scholar 

  • Hoseinzade H, Ardakani MR, Shahdi A, Rahmani HA, Noormohammadi G, Miransari M (2016) Rice (Oryza sativa L.) nutrient management using mycorrhizal fungi and endophytic Herbaspirillum seropedicae. J Integr Agric 5:1385–1394

    Article  CAS  Google Scholar 

  • Hsieh T, Huang H, Erickson R (2010) Spread of seed-borne Erwinia rhapontici in bean, pea and wheat. Eur J Plant Pathol 127:579–584

    Article  Google Scholar 

  • Huang X, Chaparro J, Reardon K, Zhang R, Shen Q, Vivanco J (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Imbert M, Béchet M, Blondeau R (1995) Comparison of the main siderophores produced by some species of Streptomyces. Curr Microbiol 31:129–133

    Article  CAS  Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    Article  CAS  PubMed  Google Scholar 

  • Kalita M, Bharadwaz M, Dey T, Gogoi K, Dowarah P, Unni BG, Ozah D, Saikia I (2015) Develo** novel bacterial based bioformulation having PGPR properties for enhanced production of agricultural crops. Indian J Exp Biol 53:56–60

    PubMed  Google Scholar 

  • Kang S, Khan A, Hamayun M, Hussain J, Joo G, You Y, Kim J, Lee I (2012) Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J Microbiol 50:902–909

    Article  CAS  PubMed  Google Scholar 

  • Kaymak H (2010) Potential of PGPR in agricultural innovations. In: Maheshwari, Dinesh K (eds) Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 45–79

    Chapter  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Roldán A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434

    Article  CAS  Google Scholar 

  • Koide R, Li M (1990) On host regulation of the vesicular-arbuscular mycorrhizal symbiosis. New Phytol 114:59–74

    Article  Google Scholar 

  • Koide R (1991) Tansley review no. 29: nutrient supply, nutrient demand, and plant response to mycorrhizal infection. New Phytol 117:365–386

    Article  CAS  Google Scholar 

  • Kpomblekou K, Tabatabai M (1994) Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci Soc Am J 158:442–453

    Article  Google Scholar 

  • Lau J, Lennon J (2011) Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224

    Article  PubMed  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Lopez-Raez JA (2015) How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243(6):1375–1385

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Li XL, Xu H, Han Y, Cai Z, Yagi K (2007) Effects of nitrogen fertilizer and wheat straw application on CH4 and N2O emissions from a paddy rice field. Aust J Soil Res 45:359–367

    Article  CAS  Google Scholar 

  • Mabrouk Y, Belhadj O (2016) Enhancing the biological nitrogen fixation of leguminous crops grown under stressed environments. Afr J Biotechnol 11:10809–10815

    Google Scholar 

  • Malinowski D, Belesky D (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Rumberger A (2004) Rapid changes in the rhizosphere bacterial community structure during re-colonization of sterilized soil. Biol Fertil Soils 40:1–6

    Article  Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis model and research methods. Soil Biol Biochem 43:883–894

    Article  CAS  Google Scholar 

  • Martínez O, Jorquera M, Crowley D, de la Luz MM (2011) Influence of nitrogen fertilisation on pasture culturable rhizobacteria occurrence and the role of environmental factors on their potential PGPR activities. Biol Fertil Soils 47:875–885

    Article  Google Scholar 

  • Meister R, Rajani MS, Ruzicka D, Schachtman DP (2014) Challenges of modifying root traits in crops for agriculture. Trends Plant Sci 19:779–788

    Article  CAS  PubMed  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2009) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Tillage Res 103:282–290

    Article  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Miransari M (2011a) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2011b) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92:875–885

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2011c) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2013) Soil microbes and the availability of soil nutrients. Acta Physiologiae Plan 35:3075–3084

    Article  CAS  Google Scholar 

  • Miransari M, Riahi H, Eftekhar F, Minaie A, Smith DL (2013) Improving soybean (Glycine max L.) N2 fixation under stress. J Plant Growth Regul 32:909–921

    Article  CAS  Google Scholar 

  • Miransari M (2014) Plant growth promoting rhizobacteria. J Plant Nutr 37:2227–2235

    Article  CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2015) Development of soil N testing for wheat production using soil residual mineral N. J Plant Nutr 38:1995–2005

    Article  CAS  Google Scholar 

  • Muthukumar T, Priyadharsini P, Uma E, Jaison S, Pandey R (2014) Role of arbuscular mycorrhizal fungi in alleviation of acidity stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 43–71

    Chapter  Google Scholar 

  • Naveed M, Mitter B, Yousaf S, Pastar M, Afzal M, Sessitsch A (2014a) The endophyte Enterobacter sp. FD17: a maize enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soils 50:249–262

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014b) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Newton A, Fitt B, Atkins S, Walters D, Daniell T (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends Microbiol 18:365–373

    Article  CAS  PubMed  Google Scholar 

  • Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Pereg L, McMillan M (2015) Sco** the potential uses of beneficial microorganisms for increasing productivity in cotton crop** systems. Soil Biol Biochem 80:349–358

    Article  CAS  Google Scholar 

  • Piccoli P, Lucangeli D, Schneider G, Bottini R (1997) Hydrolysis of [17,17-2H2]Gibberellin A20-Glucoside and [17, 17-2H2]Gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen free biotin based chemically-defined medium. Plant Growth Regul 23:179–182

    Article  CAS  Google Scholar 

  • Pozo M, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Raju P, Clark R, Ellis J, Maranville J (1988) Effects of VA mycorrhizae on growth and mineral uptake of sorghum grown at varied levels of soil acidity. Commun Soil Sci Plant Analysis 19:919–931

    Article  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Rutto K, Mizutani F, Kadoya K (2002) Effect of root-zone flooding on mycorrhizal and non-mycorrhizal peach (Prunus persica Batsch) seedlings. Sci Hortic 94:285–295

    Article  Google Scholar 

  • Sandhya V, Ask Z, Grover M, Reddy G, Venkateswarlu B (2009a) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAPP45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Sandhya V, Ali S, Grover M, Kishore N, Venkateswarlu B (2009b) Pseudomonas sp. strain P45 protects sunflowers seedlings from drought stress through improved soil structure. J Oilseed Res 26:600–601

    Google Scholar 

  • Saia S, Ruisi P, Fileccia V, Di Miceli G, Amato G, Martinelli F (2015) Metabolomics suggests that soil inoculation with arbuscular mycorrhizal fungi decreased free amino acid content in roots of durum wheat grown under N-limited, P-rich field conditions. PLoS One 10:e0129591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saubidet M, Fatta N, Barneix A (2000) The effects of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil 245:215–222

    Article  Google Scholar 

  • Sayyed R, Badgujar M, Sonawane H, Mhaske M, Chincholkar S (2005) Production of microbial iron chelators (siderophores) by fluorescent pseudomonads. Indian J Biotechnol 4:484–490

    CAS  Google Scholar 

  • Schenk P, Carvalhais L, Kazan K (2012) Unraveling plant–microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, He L (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Biswas D, Marwaha T (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.): a hydroponics study under phytotron growth chamber. J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Pandey V, Singh D (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Smith S, Facelli E, Pope S, Smith F (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth promoting actions of rhizobacteria. Adv Bot Res 51:283–320

    Article  CAS  Google Scholar 

  • Stewart L, Hamel C, Hogue R, Moutoglis P (2005) Response of strawberry to inoculation with arbuscular mycorrhizal fungi under very high soil phosphorus conditions. Mycorrhiza 15:612–619

    Article  CAS  PubMed  Google Scholar 

  • Suarez R, Wong A, Ramirez M, Barraza A, OrozcoMdel C, Cevallos MA, Lara M, Hernandez G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21:958–996

    Article  CAS  PubMed  Google Scholar 

  • Subramanian K, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245–253

    Article  Google Scholar 

  • Street T, Bolen D, Rose G (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A 103:13997–14002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talaat N, Shawky B (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31

    Article  CAS  Google Scholar 

  • Temirov Y, Esikova T, Kashparov IA (2003) A catecholic siderophore produced by the thermoresistant Bacillus licheniformis VK21 strain. Russ J Bioorg Chem 29:542–549

    Article  CAS  Google Scholar 

  • Vosatka M, Batkhuugyin E, Albrechtova J (1999) Response of three arbuscular mycorrhizal fungi to simulated acid rain and aluminium stress. Biol Plant 42:289–296

    Article  CAS  Google Scholar 

  • Waqas M, Khan AL, Kang SM, Kim YH, Lee IJ (2014) Phytohormone-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol Fertil Soils 50:1155–1167

    Article  CAS  Google Scholar 

  • Wu Q, **a R (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, **a R, Zou Y (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128

    Article  Google Scholar 

  • Yasmin S, Bakar MAR, Malik KA, Hafeez FY (2004) Isolation, characterization and beneficial effects of rice associated plant growth promoting bacteria from Zanzibar soils. J Basic Microbiol 3:241–252

    Article  CAS  Google Scholar 

  • Yu XM, Ai CX, **n L, Zhou GF (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145

    Article  Google Scholar 

  • Yuan ZL, Zhang CL, Lin FC (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126

    Article  CAS  Google Scholar 

  • Zamioudis C, Pieterse C (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R (2014) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374:689–700

    Article  CAS  Google Scholar 

  • Zhu X, Song F, Xu H (2010) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Miransari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Miransari, M. (2017). The Interactions of Soil Microbes Affecting Stress Alleviation in Agroecosystems. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics in Agroecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-10-4059-7_2

Download citation

Publish with us

Policies and ethics

Navigation