Abstract

According to Sutherland and Hecht [1], fragility at specific sites on chromosomes was first described by Dekeban in 1965 and by Lejeune et al. in 1968.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 239.19
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 239.19
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sutherland GR, Hecht F (1985) Fragile sites on human chromosomes. Oxfoford University Press, New York

    Google Scholar 

  2. Magenis RE et al (1970) Heritable fragile site on chromosome 16: probable localization of haptoglobin locus in man. Science 170(3953):85–87

    Article  CAS  PubMed  Google Scholar 

  3. Lubs HA (1969) A marker X chromosome. Am J Hum Genet 21:231–244

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Giraud F et al (1976) Constitutional chromosome breakage. Hum Genet 34:125–126

    Article  CAS  PubMed  Google Scholar 

  5. Harvey J, Judge C, Wiener S (1977) Familial X-linked mental retardation with an X chromosome abnormality. J Med Genet 20:280–285

    Google Scholar 

  6. Sutherland GR (1977) Fragile sites on human chromosomes: Demonstration of their dependence on the type of tissue culture medium. Science 197:265–266

    Article  CAS  PubMed  Google Scholar 

  7. Sutherland GR (1979) Heritable fragile sites on human chromosomes. I. Factors affecting expression in lymphocyte culture. Am J Hum Genet 31:125–135

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Glover TW (2005). Common fragile sites. Cancer Letters

    Google Scholar 

  9. Glover TW et al (1984) DNA polymerase α inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 67:136–142

    Article  CAS  PubMed  Google Scholar 

  10. Glover TW et al (2005) Mechanisms of common fragile site instability. Hum Mol Genet 14:197–205

    Article  Google Scholar 

  11. Hecht F, Hecht BK (1984) Fragile sites and chromosome breakpoints in constitutional rearrangements I-II. Clin Genet 26(3):169–177

    Article  CAS  PubMed  Google Scholar 

  12. Yunis JJ, Soreng AL (1984) Constitutive fragile sites and cancer. Science 226:1199–1204

    Article  CAS  PubMed  Google Scholar 

  13. Sutherland GR, Hecht F (1985). Fragile sites and cancer. In: Fragile sites on human chromosomes. pp 207–226

    Google Scholar 

  14. O’Keefe LV, Richards RI (2006) Common fragile sites and cancer: focus on FRA16D. Cancer Lett 232:37–47

    Article  PubMed  Google Scholar 

  15. Smith DI et al (2006) Common fragile sites, extremely large genes, neural development and cancer. Cancer Lett 232:48–57

    Article  CAS  PubMed  Google Scholar 

  16. DeBacker K, Kooby F (2007) Fragile sites and human disease. Hum Mol Genet 16(2):R150–158

    Article  CAS  PubMed  Google Scholar 

  17. Smith DI et al (2007) Large common fragile site genes and cancer. Semin Cancer Biol 17:31–41

    Article  CAS  PubMed  Google Scholar 

  18. Lukusa T, Fryns JP (2008) Human chromosome fragility. Biochima et Biopysica Acta 1779:3–16

    Article  CAS  Google Scholar 

  19. Mrasek K et al (2010) Global screening and extended nomenclature for 230 aphidicolin-inducible fragile sites, including 61 yet unreported ones. Int J Oncol 36:929–940

    PubMed  Google Scholar 

  20. Zlotorynski E et al (2003) Molecular basis for expression of common and rare fragile site

    Google Scholar 

  21. Schwartz M, Zlotorynski E, Kerem B (2005). The molecular basis of common and rare fragile sites. Cancer Lett

    Google Scholar 

  22. Picchiorri F et al (2008) Molecular parameters of genome instability: roles of fragile genes at common fragile sites. J Cell Biochem 104:1525–1533

    Article  Google Scholar 

  23. Ozeri-Galai E (2011) Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol Cell 43:122–131

    Article  CAS  PubMed  Google Scholar 

  24. Thys et al (2015) DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 16:60–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lamparska K et al (2012) 2′-Deoxyriboguanylurea, the primary breakdown product of 5-aza-2′-deoxyribocytidine is a mutagen, an epimutagen, an inhibitor of DNA methyltransferase and an inducer of 5-azacytidine-type fragile sites. Nucleic Acids Res 40(19):9788–9801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sutherland GR et al (1994) Sixth international workshop on the fragile X and X-linked mental retardation. Am J Med Genet 51:281–293

    Article  CAS  PubMed  Google Scholar 

  27. Glasser L et al (2006) Benign chronic neutropenia with abnormalities involving 16q22, affecting mother and daughter. Am J Hemat 81:262–270

    Article  CAS  PubMed  Google Scholar 

  28. Demirhan O, Tastemir D, Sertdemir Y (2009) The expression of folate sensitive fragile sites in patients with bipolar disorder. Yonsei Med J 50:137–141

    Article  PubMed  PubMed Central  Google Scholar 

  29. Smith CL, Bolton A, Nguyen G (2011) Genomic and epigenomic instability, fragile sites, schizophrenia and autism. Curr Genomics 11:447–469

    Article  Google Scholar 

  30. Durkin SG et al (2008) Replication stress induces tumor-like microdeletions in FHIT/FRA3B. Proc Natl Acad Sci 105:246–251

    Article  CAS  PubMed  Google Scholar 

  31. Arlt MF et al (2011) Hydroxyurea induces de novo copy number variants in human cells. Proc Natl Acad Sci 108:17360–17365

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wilson TE et al (2015) Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Res 25:189–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haag HM, Soucup SW, Neely JE (1981) Chromosome analysis of a human neuroblastoma. Cancer Res 41:2595–2599

    Google Scholar 

  34. McAvoy S et al (2008) Disabled-1 is a large common fragile site gene, inactivated in multiple cancers. Genes Chromosom Cancer 47(2):165–174

    Article  CAS  PubMed  Google Scholar 

  35. Hormozian F et al (2007) FRA1E common fragile site breaks map within a 370 kilobase pair region and disrupt the dihydropyrimidine dehydrogenase gene (DPYD). Cancer Lett 246(1–2):82–91

    Article  CAS  PubMed  Google Scholar 

  36. van Kuilenburg AB et al (2015) Frequent intragenic rearrangements of DPYD in colorectal tumors. Pharmacogen J 15(3):211–218

    Article  Google Scholar 

  37. Gross E et al (2013) Somatic copy number changes in DYPD are associated with lower risk of recurrence in triple-negative breast cancer. Br J Cancer 109(9):2347–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baker E, Sutherland GR (1991) A new folate sensitive fragile site at 1p21.3. J Med Genet 28:356–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lai LA et al (2010) Deletion of fragile sites is a common and early event in Barrett’s esophagus. Mol Cancer Res 8(8):1084–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pelliccia F et al (2008) Replication timing of two human chromosome fragile sites: FRA1H and FRA2G. Cytogenet Genome Res 12(3–4):196–200

    Google Scholar 

  41. Blumrich A et al (2011) The FRA2C common fragile site maps to the borders of MYCN amplicons in neuroblastoma and is associated with gross chromosomal rearrangements in different cancers. Hum Mol Genet 20(8):1488–1501

    Article  CAS  PubMed  Google Scholar 

  42. Lipska BS et al (2013) On the significance of germline cytogenetic rearrangement s at MYCN locus in neuroblastoma. Mol Cytogenet 6(1):43. doi:10.1186/1755-8166-6-43

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rinaldi A et al (2010) Single nucleotide polymorphism-arrays provide new insites in the pathogenesis of post-transplant diffuse large B-cell lymphoma. Br J Haematol 149(4):569–577

    Article  CAS  PubMed  Google Scholar 

  44. Metsu S et al (2014) FRA2A is a CGG repeat expansion associated with silencing of AFF3. PLoS Genet 10(4):e1004242. doi:10.1371/journal.pgen.1004242. eCollection 2014

  45. Ijdo JW et al (1992) FRA2B is distinct from inverted telomere repeat arrays at 2q13. Genomics 12:833–835

    Article  CAS  PubMed  Google Scholar 

  46. Liu CX et al (2000) Genomic organization of a new candidate tumor suppressor gene, LRP1B. Genomics 69:271–274

    Google Scholar 

  47. Mulatinho MV et al (2012) Severe intellectual disability, omphalocele, hypospadias and high blood pressure associated to a deletion at 2q22.1q22.3: case report. Mol Cytogenet 5(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  48. Limongi MZ, Pellicia F, Rocchi A (2003) Characterization of the human common fragile site FRA2G. Genomics 81:93–97

    Article  CAS  PubMed  Google Scholar 

  49. Brueckner LM (2012). Genomic rearrangements at the FRA2H common fragile site frequently involve non-homologous recombination events across LTR and L1 (LINE) repeats

    Google Scholar 

  50. Gao G, Smith D (2015) WWOX, large common fragile site genes and cancer. ExBiol Med (Maywood) 240(3):2d85–95

    Google Scholar 

  51. Darai-Ramqvist E et al (2008) Segmental duplications and evolutionary plasticity at tumor break-prone regions. Genome Res 18(3):370–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Scrimieri F et al (2011) FANM190A rearrangements provide multitude of individualized tumor signatures and neo-antigens in cancer. Oncotarget 2(1–2):69–75

    PubMed  PubMed Central  Google Scholar 

  53. Bolivar J et al (2001) Genomic structure and chromosome location of the human gene encoding the zinc finger autoantigen ZNF330. Cytogenet Cell Genet 93(3):234–238

    Article  CAS  PubMed  Google Scholar 

  54. Zimonic DB (2003) SMAD5 gene expression, rearrangements, copy number, amplification at fragile site FRA5C in human hepatocellular carcinoma. Neoplasia 5(5):390–396

    Article  Google Scholar 

  55. Howell RT, McDermott A, Evans JL (1990) A new apparently folate sensitive fragile site, 5q35. J Med Genet 27:527–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tchinda J et al (2004) Translocations involving 6p22 in acute myeloid leukemia at relapse: breakpoint characterization using microarray-based comparative genomic hybridization. Br J Haematol 126(4):495–500

    Article  CAS  PubMed  Google Scholar 

  57. Morelli C et al (2002) Cloning and characterization of the common fragile site FRA6F harboring a replicative senescence gene and frequently deleted in human tumors. Oncogene 21(47):7266–7276

    Article  CAS  PubMed  Google Scholar 

  58. Denison SR et al (2003) Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer. Genes Chromosom Cancer 38:40–52

    Article  CAS  PubMed  Google Scholar 

  59. Ambroziak W (2015) Genomic instability in the PARK2 locus is associated with Parkinson’s disease. J Appl Genet 56(4):451–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bosco N, Pelliccia F, Rocchi A (2010) Characterization of FRA7B, a human common fragile site mapped at the 7p chromosome terminal region. Cancer Genet Cytogenet 202(1):47–52

    Article  CAS  PubMed  Google Scholar 

  61. Zhu et al (2012) Testin is a tumor suppressor and prognostic marker in breast cancer. Cancer Sci 103(12):2092–2101

    Article  CAS  PubMed  Google Scholar 

  62. Vizkeleti L (2015) Biological role and prognostic significance of genetic alterations in human malignant melanomas (Hungarian). Magy Onkol 59(3):268–272

    PubMed  Google Scholar 

  63. Feldman AL et al (2011) Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massive parallel genomic sewuencing. Blood 117(3):915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vamvakopoulos NC, Chrousos GP (1993) Structural organization of the 5′ flanking region of the human corticotrophin releasing hormone gene. DNA Seq 4:197–206

    Article  CAS  PubMed  Google Scholar 

  65. Hori T et al (1998) A distamycin A-inducible fragile site, FRA8E located I the region of the hereditary multiple exostoses gene, is not involved in HPV16 dNA integration and amplification. Cancer Genet Cytogenet 101:24–34

    Article  CAS  PubMed  Google Scholar 

  66. Hill A et al (1997) Assignment of fragile site 8E (FRA8E) to human chromosome band 8q24.11 adjacent to the hereditary multiple exostoses 1 geneand two overlap** Langer-Giedion syndrome deletion endpoints. Cytogenet Cell Genet 78:56–57

    Article  CAS  PubMed  Google Scholar 

  67. Takahashi E et al (1991) Map** the MYC gene to band 8q24.12-q24.13 by R-banding and distal to fra(8)(q24,11), FRA8E, by fluorescence in situ hybridization. Cytogenet Cell Genet 57:109–111

    Article  CAS  PubMed  Google Scholar 

  68. Sutherland GR (1982) Heritable fragile sites on human chromosomes. IX. Population cytogenetics and segregation analysis of the BrdU-requiring fragile site at 10q25. Am J Hum Genet 34(5):753–756

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Callahan G et al (2003) Characterization of the common fragile site FRA9E and its potential role in ovarian cancer. Oncogene 22:590–601

    Article  CAS  PubMed  Google Scholar 

  70. Ghandi M et al (2010) DNA breaks at fragile sites generate RET/PTC rearrangements in human thyroid cells

    Google Scholar 

  71. Sarafidou T et al (2004) Folate sensitive fragile site FRA10A is due to an expansion of a CGG repeat in a novel gene, FRA10AC1, endcoding a nuclear protwin. Geneomics 84:69–81

    Article  CAS  Google Scholar 

  72. Morel CF, Duncan AMV, Désilets V (2005) A fragile site at 10q23 (FRA10A) in a phenytoin-exposed fetus: a case report and review of the literature. Prenat Diagn 25:318–321

    Article  PubMed  Google Scholar 

  73. Ma K et al (2012) Common fragile sites: genomic hotspots of DNA damage and carcinogenesis. Int J Mol Sci 13(9):11974–11999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Debacker K et al (2007) The molecular basis of the folate-sensitive site FRA11A at 11q13. Cytogenet Genome Res 119(1–2):9–14

    Article  CAS  PubMed  Google Scholar 

  75. Reshmi SC et al (2007) Relationship between FRA11F and 11q13 gene amplification in oral cancer. Genes Chromosom Cancer 46(2):143–154

    Article  CAS  PubMed  Google Scholar 

  76. Parikh RA et al (2007) Loss of distal llq is associated with DNA repair deficiency and reduced sensitivity to ionizing radiation in head and neck squamous cell carcinoma. Genes Chromosom Cancer 46(8):7621–7675

    Article  Google Scholar 

  77. Fechter A et al (2007) Commmon fragile site FRA11G and rare fragile site FRA11B at 11q23.3 encompass distinct genomic regions. Genes Chromosom Cancer 46:98–106

    Article  CAS  PubMed  Google Scholar 

  78. Berg J et al (2000) Bullous ichthyosiform erythroderma, developmental delay, aortic and pulmonary stenosis in association with a FRA12A. Clin Dysmorphol 9(3):213–219

    Article  CAS  PubMed  Google Scholar 

  79. Winnepenninckx B et al (2007) CGG repeat expansion in the DIP2B gene is associated with the fragile site FRA12A on chromosome 12q13.1. Am J Hum Genet 80(2):221–231

    Article  CAS  PubMed  Google Scholar 

  80. Savelyeva L et al (2006) The neurobeachin gene spans the common fragile site FRA13A. Hum Genet 118:551–558

    Article  CAS  PubMed  Google Scholar 

  81. O’Neal J et al (2009) Neurobeachin is a target of recurrent interstitial deletions at 13q13 in patients with MGUS and multiple myeloma. Exp Hematol 37(2):234–244. Erratum in: Exp Hematol. 37(4):532

    Google Scholar 

  82. Zhu Y et al (2006) RORO, a large common fragile site gene, is involved in cellular stress response. Oncogene 25(20):2901–2908

    Article  CAS  PubMed  Google Scholar 

  83. Dooley TP et al (1994) Map** of two phenolsulphotransferase genes, STP and STM to 16p: candidate genes for batten disease. Biochem Biophys Res Commun 205(1):482–489

    Article  CAS  PubMed  Google Scholar 

  84. Dillon LW, Burrow AA, Wang YH (2010) DNA instability of chromosomal fragile sites in cancer. Curr Genomics 11(5):326–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martorell MR et al (2014) Chromosome 16 abnormalities in embryos and in sperm from a male with a fragile site at 16q22.1

    Google Scholar 

  86. Aswini S, Jegatheesan T, Chandra N (2012) Spontaneous expression of FRA16B in a non-consanguineous couple experiencing multiple fetal losses. J Obstet Gynaecol Res 38(9):1223–1227

    Article  CAS  PubMed  Google Scholar 

  87. Ozeri-Galai E et al (2011) Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol Cell 8(43):122–131

    Article  Google Scholar 

  88. Palakodeti A et al (2004) The role of late/slow replication of the FRA16D in common fragile site induction. Genes Chromosom Cancer 39:71–76

    Article  CAS  PubMed  Google Scholar 

  89. Li G et al (2015) Ectopic WWOX expression inhibits growth of 5637 bladder cancer cell in vitro and in vivo. Cell Biochem Biophys 73(2):417–425

    Article  CAS  PubMed  Google Scholar 

  90. Hazan I et al (2015) WWOX guards genome stability by activating ATM. Mol Cell Oncol 2(4):e1008288. doi:10.1080/23723556

    Article  PubMed  PubMed Central  Google Scholar 

  91. Choo A et al (2015) Tumor suppressor WWOX moderates the mitochondrial respiratory complex. Genes Chromosom Cancer 54(12):746–761

    Article  Google Scholar 

  92. Debacker K et al (2007) FRA18C: a new aphidicolin-inducible fragile site on chromosome 18q22, possibly associated with in vivo chromosome breakage. J Med Genet 44:347–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shaw MA et al (2002) A novel gene, FAM11A, associated with FRAXF CpG island is Transcriptionally silent in FRAXF full mutation. Eur J Hum Genet 10(11):767–772

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman E. Wyandt .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wyandt, H.E., Wilson, G.N., Tonk, V.S. (2017). Fragile Sites. In: Human Chromosome Variation: Heteromorphism, Polymorphism and Pathogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-10-3035-2_7

Download citation

Publish with us

Policies and ethics

Navigation