Abiotic Stress Mitigation Through Plant-Growth-Promoting Rhizobacteria

  • Chapter
  • First Online:
Plant-Microbe Interaction: An Approach to Sustainable Agriculture

Abstract

Abiotic and biotic stresses highly impacts production of principal crops all around the world. Due to climate change, extreme abiotic factors like high and low temperatures, droughts, salinity, osmotic stress, heavy rains, floods and frost damages are posing grave threats to crop production. There is a dire need to mitigate these stresses, so in order to cope with such impacts, microorganisms can be employed as best alternatives to chemical inputs by exploiting their unique properties of tolerance to extreme environments, their ubiquity, their genetic diversity and their interaction with crop plants and by develo** methods for their successful employment in agriculture production. Plant-growth-promoting rhizobacteria (PGPRs) mitigate abiotic stresses on plants most effectively through degradation of ACC, the ethylene precursor by bacterial ACC-deaminase and through biofilm and exopolysaccharide production. Alleviation of environmental stresses in crop plants using these microorganisms opens new and emerging applications in sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali Sk Z, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soil 46:45–55

    Article  Google Scholar 

  • Ali SZ, Sandhya V, Rao LV (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent. Ann Microbiol 64(2):493–502

    Article  CAS  Google Scholar 

  • Antoun H, Pre’vost D D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT (1998) Plant growth substances in the rhizosphere: microbial production and functions. Adv. Bloemberg and Lugtenberg (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Plant Biol 4:343–350

    Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with plant growth promoting rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of Pisum sativum L. Pedosphere 18:611–620

    Article  Google Scholar 

  • Ashraf M, Berge SH, Mahmood OT (2004) Inoculating wheat seedling with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya NP, Jha DK (2012) Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Chang WS, van de Mortel M, Nielsen L, de Guzman GN, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YP, Rekha PD, Arunshen AB, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82(2):273–281

    Article  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by the bacterium isolated by the air environment of tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 395–412

    Chapter  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Todorovie B, Czarny J, Cheng Z, Duan J (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in Maize (Zea mays L.). Int J Microbiol. http://dx.doi.org/10.1155/2013/869697

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biotechnol 39:11–17

    Article  CAS  Google Scholar 

  • Grover M (2010) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. W J Microbiol Biotechnol 27(5):1231–1240

    Article  Google Scholar 

  • Grover M, Ali Z, Sandhya V, Rasul A, Venkateswarlu B (2011) W J Microbiol Biotechnol 27:1231–1240. doi:10.1007/s11274-010-0572-7

    Article  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil micro-organisms in improving P Nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Hontzeas N, Richardson AO, Belimov A, Safronova V, Abu-Omar MM, Glick BR (2005) Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Environ Microbiol 71:7556–7558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalid A, Akhtar MJ, Mahmood MJ, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75:231–236

    Article  CAS  Google Scholar 

  • Khan KS, Joergensen RG (2009) Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresour Technol 100:303–309

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Scher FM, Laliberte M, Tip** B (1986) Emergence-promoting rhizobacteria: description and implications for agricultures. NATO ASI Ser A Life Sci 117:155–164

    Google Scholar 

  • Kloepper JW et al (2004) Induced systemic resistance and promotion of plant growth by Bacillus species. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598

    Article  Google Scholar 

  • Lynch JP, Brown KM (1997) Ethylene and plant responses to nutritional stress. Physiol Plant 100:613–619

    Article  CAS  Google Scholar 

  • Ma W, Charles TC, Glick BR (2003) The Rhizobium leguminosarum bv.viciae ACC deaminase protein promotes the nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maheswari UT, Anbukkarasi K, Hemalatha T, Chendrayan K (2013) Studies on phytohormone producing ability of indigenous endophytic bacteria isolated from tropical legume crops. Int J Curr Microbiol App Sci 2:127–136

    Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Matysik J, Alia BB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–531

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Meyer JM, Geoffroy VA, Baida N (2002) Siderophore ty**, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol 68(6):2745–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZM, Naveed M, Arshad M (2007) Preliminary investigation on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC-deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Peck SC, Kende H (1995) Sequential induction of the ethylene biosynthetic enzymes by indole- 3-acetic acid in etiolated peas. Plant Mol Biol 28:293–301

    Article  CAS  PubMed  Google Scholar 

  • Potarzycki J, Grzebisz W (2010) Effect of zinc foliar application on grain yield of maize and it’s yielding components. Plant Soil Environ 55(12):519–527

    Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43(3):1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Namrata Y, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in vertisols of central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. LSMR 21:1–30

    Google Scholar 

  • Sandhya V, Ali Sk Z, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soil 46:17–26

    Article  CAS  Google Scholar 

  • Sarode PD, Rane MR, Chaudhari BL, Chincholkar SB (2009) Siderophoregenic Acinetobacter calcoaceticus isolated from wheat rhizosphere with strong PGPR activity. Malayas J Microbiol 5:6–12

    Google Scholar 

  • Shahzad SM, Khalid A, Arif MS, Riaz M, Ashraf M, Iqbal Z, Yasmeen T (2014) Co-inoculation integrated with P-enriched compost improved nodulation and growth of Chickpea (Cicer arietinum L.) under irrigated and rainfed farming systems. Biol Fertil Soils 50:1–12

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Khanna V, Kumari P (2013) Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. Afr J Microbiol Res 7(50):5749–5757

    Article  CAS  Google Scholar 

  • Sharma P, Khanna V, Kumari S (2015) Potential of ACC-deaminase producing plant growth promoting rhizobacteria on water stress mitigation in lentil (Lens culinaris L. Medikus) under axenic conditions. Int J Adv Res 3(12):59–67

    Google Scholar 

  • Shrivastava UP, Kumar A (2013) Characterization and optimization of 1-Aminocyclopropane-1-Carboxylate deaminase (ACCD) activity in different rhizospheric PGPR along with Microbacterium sp. strain ECI-12A. J Appl Sci Biotechnol 1(1):11–15

    CAS  Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbial. http://dx.doi.org/10.3389/fmicb.2015.00937

  • Spaepen S, Vanderleyden J (2010) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a001438

    Google Scholar 

  • Sundaramoorthy S, Balabaskar P (2012) Consortial effect of endophytic and plant growth promoting rhizobacteria for the management of early blight of tomato incited by Alternaria solani. J Plant Pathol Microbiol 3:145. doi:10.4172/2157-7471.1000145

    Article  Google Scholar 

  • Timmusk S (2003) Mechanism of action of the plant growth promoting Bacterium Paenibacillus polymyxa. Comprehansive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 908. Acta Univ Upsaliensis Uppsala, Sweden, pp 40

    Google Scholar 

  • Vaid SK, Gangwar BK, Sharma A, Srivastava PC, Singh MV (2013) Effect of zinc solubilizing bioinoculants on zinc nutrition of wheat (Triticum aestivum L.). Int J Adv Res 1(9):805–820

    Google Scholar 

  • Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP (2013) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci. http://dx.doi.org/10.1016/j.jcs.2013.09.001

  • Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation strategies. Indian J Agron 54:226–230

    Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yeilds and nutrients uptake of Chickpea (Cicer areitinum L.) under sustainable agriculture. Ecol Eng 51:282–86

    Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535

    Article  CAS  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell Suppl 14:131–151

    Google Scholar 

  • WHO (2012) The world health report. World Health Organization, Geneva

    Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol Plant Mol Biol 35:155–189

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu C (2004) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1)

    Google Scholar 

  • Zafar-ul-Hye M, Farooq HM, Zahir ZA, Hussain M, Hussain A (2014) Application of ACC-deaminase containing rhizobacteria with fertilizer improves maize production under drought and salinity stress. Int J Agric Biol 16:591–596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palika Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sharma, P., Khanna, V., Kumari, S. (2016). Abiotic Stress Mitigation Through Plant-Growth-Promoting Rhizobacteria. In: Choudhary, D., Varma, A., Tuteja, N. (eds) Plant-Microbe Interaction: An Approach to Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-2854-0_15

Download citation

Publish with us

Policies and ethics

Navigation