Role of Plant Growth-Promoting Rhizobacteria in Combating Abiotic and Biotic Stresses in Plants

  • Chapter
  • First Online:
Microbial BioTechnology for Sustainable Agriculture Volume 1

Abstract

Global climate change accelerates the coincidence of a variety of abiotic stresses, viz., salinity, drought, flooding, high and low temperature, and biotic stresses, viz. phytopathogens which degrade agricultural productivity. In such circumstances, plant growth-promoting rhizobacteria (PGPR) are eco-friendly and sustainable candidates to combat these stresses. Several PGPR with the ability to support plant growth under various stressed conditions have been commercialized. The current chapter is mainly restricted to beneficial effects of PGPR on plant growth and development under environmental and biotic stresses. It begins with the description of various abiotic and biotic stress factors affecting plant growth and their tolerance achieved by both physiological and molecular mechanisms of adaptation. The use of PGPR helps ameliorate these stresses in rhizosphere by using several mechanisms and has beneficial effects on plant growth after efficiently colonizing the root surface. Plant growth stimulation through PGPR is the net result of multiple mechanisms of action that may be activated simultaneously. Such bacteria are more likely to be used for stress tolerance to fulfill the need for food production under extreme environmental conditions. The bacterial inoculants also enhance nutrient uptake and crop growth. They are also involved in biocontrol so they may be good supplements to chemical fertilizers and agrochemicals. This chapter discusses the potential and key mechanisms used by PGPR under stress conditions for sustainable agricultural productivity followed by their prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aasfar A, Bargaz A, Yaakoubi K, Hilali A, Bennis I, Zeroual Y, Meftah Kadmiri I (2021) Nitrogen fixing azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front Microbiol 12:354. https://doi.org/10.3389/fmicb.2021.628379

    Article  Google Scholar 

  • Abbas T, Zahir ZA, Naveed M (2017) Bioherbicidal activity of allelopathic bacteria against weeds associated with wheat and their effects on growth of wheat under axenic conditions. Bio Control 62(5):719–730

    CAS  Google Scholar 

  • Abd El-Daim IA, Bejai S, Meijer J (2014) Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379(1):337–350

    Article  CAS  Google Scholar 

  • Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LSP (2017) The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Rep 36(7):1009–1025

    Article  CAS  PubMed  Google Scholar 

  • Adak MK, Sarkar B, De AK, Saha I, Ghosh A (2020) Alleviation of abiotic stress by nonconventional plant growth regulators in plant physiology. In: Rakshit A, Singh HB, Singh AK, Singh US, Fraceto L (eds) New frontiers in stress management for durable agriculture. Springer, Singapore, pp 197–211

    Chapter  Google Scholar 

  • Adetunji CO, Oloke JK, Bello OM, Pradeep M, Jolly RS (2019) Isolation, structural elucidation and bioherbicidal activity of an eco-friendly bioactive 2-(hydroxymethyl) phenol, from Pseudomonas aeruginosa (C1501) and its ecotoxicological evaluation on soil. Environ Technol Innov 13:304–317

    Article  Google Scholar 

  • Ahammed GJ, Li X, Zhou J, Zhou YH, Yu JQ (2016) Role of hormones in plant adaptation to heat stress. In: Ahammed GJ, Yu JQ (eds) Plant hormones under challenging environmental factors. Springer, Dordrecht, pp 1–21

    Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co-inoculation with Rhizobium and PGPR containing ACC-deaminase. Can J Microbiol 57(7):578–589

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013a) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Nazli F, Akram F, Arshad M, Khalid M (2013b) Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz J Microbiol 44(4):1341–1348

    Article  PubMed  Google Scholar 

  • Ahmad M, Nadeem S, Naveed M (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313

    Chapter  Google Scholar 

  • Ahmad M, Naseer I, Hussain A, Mumtaz MZ, Mustafa A, Hilger TH, Zahir ZA, Xu M (2019a) Appraising endophyte-plant symbiosis for improved growth, nodulation, nitrogen fixation and abiotic stress tolerance: an experimental investigation with chickpea (Cicer arietinum L.). Agronomy 9:621. https://doi.org/10.3390/agronomy9100621

    Article  CAS  Google Scholar 

  • Ahmad I, Zaib S, Alves PC, Luthe DS, Bano A, Shakeel SN (2019b) Molecular and physiological analysis of drought stress responses in Zea mays treated with plant growth promoting rhizobacteria. Biol Plant 63:536–547

    Article  CAS  Google Scholar 

  • Ahmadi N, Mibus H, Serek M (2009) Characterization of ethylene-induced organ abscission in F1 breeding lines of miniature roses (Rosa hybrida L.). Postharvest Biol Technol 52:260–266

    Article  CAS  Google Scholar 

  • Ahmed S, Nawata E, Sakuratani T (2006) Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean (Vigna radiata L.) Wilczak cv. KPS1 during waterlogging. Environ Exp Bot 57(3):278–284

    Article  CAS  Google Scholar 

  • Akhgar R, Arzanlou M, Bakker PA, Hamidpour M (2014) Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas sp. in the rhizosphere of salt-stressed canola. Pedosphere 24:161–468

    Article  Google Scholar 

  • Al-Hussini HS, Al-Rawahi AY, Al-Marhoon AA, Al-Abri SA, Al-Mahmooli IH, Al-Sadi AM, Velazhahan R (2019) Biological control of dam**-off of tomato caused by Pythium aphanidermatum by using native antagonistic rhizobacteria isolated from Omani soil. J Plant Pathol 101(2):315–322

    Article  Google Scholar 

  • Ali S, Kim WC (2018) Plant growth promotion under water: decrease of waterlogging-induced ACC and ethylene levels by ACC deaminase-producing bacteria. Front Microbiol 9:1096

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Linga VR, Bandi V (2011) Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6(4):239–246

    Article  CAS  Google Scholar 

  • Ali S, Khan MA, Kim WC (2018) Pseudomonas veronii KJ mitigates flood stress-associated damage in Sesamum indicum L. Appl Biol Chem (5):575–585

    Google Scholar 

  • Ali Q, Shahid S, Nazar N, Hussain AI, Ali S, Chatha SA, Perveen R, Naseem J, Haider MZ, Hussain B, Hussain SM (2020) Use of phytohormones in conferring tolerance to environmental stress. In: Hasanuzzaman M (ed) Plant ecophysiology and adaptation under climate change: mechanisms and perspectives II. Springer, Singapore, pp 245–355

    Google Scholar 

  • Ali M, Lou Y, Hafeez R, Li X, Hossain A, **e T, Lin L, Li B, Yin Y, Yan J, An Q (2021) Functional analysis and genome mining reveal high potential of biocontrol and plant growth promotion in nodule-inhabiting bacteria within Paenibacillus polymyxa complex. Front Microbiol 11:3627

    Article  Google Scholar 

  • Alvarez F, Castro M, Principe A, Borioli G, Fischer S, Mori G, Jofre E (2012) The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112(1):159–174

    Article  CAS  PubMed  Google Scholar 

  • Amna DBU, Sarfraz S, **a Y, Kamran MA, Javed MT, Sultan T, Munis MF, Chaudhary HJ (2019) Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress. Ecotoxicol Environ Saf 183:109466

    Article  CAS  PubMed  Google Scholar 

  • Anderson R, Bayer PE, Edwards D (2020) Climate change and the need for agricultural adaptation. Curr Opin Plant Biol 56:197–2020. https://doi.org/10.1016/j.pbi.2019.12.006

    Article  PubMed  Google Scholar 

  • Ansari FA, Jabeen M, Ahmad I (2021) Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant. Int J Environ Sci Technol 3:1–6

    Google Scholar 

  • Araya MA, Valenzuela T, Inostroza NG, Maruyama F, Jorquera MA, Acuña JJ (2020) Isolation and characterization of cold-tolerant hyper-acc-degrading bacteria from the rhizosphere, endosphere, and phyllosphere of Antarctic vascular plants. Microorganisms 8(11):1788

    Article  CAS  PubMed Central  Google Scholar 

  • Arif F, Ghoul M (2018) Halotolerance of indigenous fluorescent Pseudomonads in the presence of natural osmoprotectants. Annu Res Rev Biol 24(4):1–11

    Article  Google Scholar 

  • Arkhipova T, Veselov S, Melentiev A, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272(1–2):201–209

    Article  CAS  Google Scholar 

  • Armada E, Roldan A, Azcon R (2014) Differential activity of autochthonousbacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microb Ecol 67:410–420

    Article  CAS  PubMed  Google Scholar 

  • Armstrong W, Drew MC (2002) Root growth and metabolism under oxygen deficiency. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 729–761

    Google Scholar 

  • Armstrong W, Brändle R, Jackson MB (1994) Mechanisms of flood tolerance in plants. Acta Bot Neerl 43(4):307–358

    Article  CAS  Google Scholar 

  • Arya B, Komala BR, Sumalatha NT, Surendra GM, Gurumurthy PR (2018) PGPR induced systemic tolerance in plant. Int J Curr Microbiol App Sci 7:453–462

    Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asghari B, Khademian R, Sedaghati B (2020) Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Sci Hort 263:109132

    Article  CAS  Google Scholar 

  • Ashraf MA, Akbar A, Askari SH, Iqbal M, Rasheed R, Hussain I (2018) Recent advances in abiotic stress tolerance of plants through chemical priming: an overview. In: Rakshit A, Singh HB (eds) Advances in seed priming. Springer, Singapore, pp 51–79

    Google Scholar 

  • Aslam F, Ali B (2018) Halotolerant bacterial diversity associated with Suaeda fruticosa (L.) forssk. Improved growth of maize under salinity stress. Agronomy 8:131

    Article  CAS  Google Scholar 

  • Aslam H, Ahmad SR, Anjum T, Akram W (2018) Native halotolerant plant growth promoting bacterial strains can ameliorate salinity stress on tomato plants under field conditions. Int J Agric Biol 20:315–322

    Article  CAS  Google Scholar 

  • Aslam MU, Raza MA, Saleem MF, Waqas M, Iqbal R, Ahmad S, Haider I (2020) Improving strategic growth stage-based drought tolerance in quinoa by rhizobacterial inoculation. Commun Soil Sci Plant Anal 51(7):853–868

    Article  CAS  Google Scholar 

  • Avramova V, AbdElgawad H, Zhang Z, Fotschki B, Casadevall R, Vergauwen L, Knapen D, Taleisnik E, Guisez Y, Asard H, Beemster GT (2015) Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol 169(2):1382–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi S, Sharma A, Saxena P, Yadav J, Pandiyan K, Kumar M, Singh A, Chakdar H, Bhowmik A, Kashyap PL, Srivastava AK (2019) Molecular detection and in silico characterization of cold shock protein coding gene (cspA) from cold adaptive Pseudomonas koreensis. J Plant Biochem Biotechnol 28:405–413

    Article  CAS  Google Scholar 

  • Baek KH, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci 165(6):1221–1227

    Article  CAS  Google Scholar 

  • Bal HB, Adhya TK (2021) Alleviation of submergence stress in rice seedlings by plant growth-promoting rhizobacteria with ACC-deaminase activity. Front Sust Food Syst 5:36

    Google Scholar 

  • Balal RM, Shahid MA, Javaid MM, Iqbal Z, Anjum MA, Garcia-Sanchez F, Mattson NS (2016) The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high temperature stress. Acta Physiol Plant 38(6):158. https://doi.org/10.1007/s11738-016-2174-y

    Article  CAS  Google Scholar 

  • Bangash N, Khalidi A, Mahmood T, Siddique TM (2013) Screening rhizobacteria containing ACC deaminase for growth promotion of wheat under water stress. Pak J Bot 45(SI):91–96

    CAS  Google Scholar 

  • Banowetz GM, Azevedo MD, Armstrong DJ, Halgren AB, Mills DI (2008) Germination-Arrest Factor (GAF): biological properties of a novel, naturally-occurring herbicide produced by selected isolates of rhizosphere bacteria. Biol Control 46:380390

    Article  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    Article  CAS  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235

    Article  CAS  PubMed  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161(4):502–514

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylatedeaminase increase yield of plants grown in drying soil via both local andsystemic hormone signaling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG, Davies WJ (2014) Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem 74:84–91

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bent E (2006) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tusuz S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, Boston, MA, pp 225–258

    Chapter  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 3(66):1–10

    Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768. https://doi.org/10.1038/srep34768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya D, Garladinne M, Lee YH (2015) Volatile indole produced by rhizobacterium Proteus vulgaris JBLS202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways. J Plant Growth Regul 34:158–168

    Article  CAS  Google Scholar 

  • Bottner P, Couteaux MM, Vallejo VR (1995) Soil organic matter in Mediterranean-type ecosystems and global climatic changes: a case study-thesoils of the Mediterranean basin. In: Jose M, Oechel WC (eds) Global change and mediterranean-type ecosystems. Springer-Verlag, New York, pp 306–325

    Chapter  Google Scholar 

  • Boyette CD, Hoagland RE (2015) Bioherbicidal potential of Xanthomonas campestris for controlling Conyza canadensis. Biocontrol Sci Technol 25:229–237

    Article  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Crand Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  CAS  PubMed  Google Scholar 

  • Brown AJP, Cowen LE, di Pietro A, Quinn J (2017) Stress adaptation. Fungal Kingdom 1:463–485

    Article  Google Scholar 

  • Brunetti C, Tattini M, Guidi L, Velikova V, Ferrini F, Fini A (2019) An integrated overview of physiological and biochemical responses of Celtis australis to drought stress. Urban For Urban Green 46:126480. https://doi.org/10.1016/j.ufug.2019.126480

    Article  Google Scholar 

  • Bruno LB, Karthik C, Ma Y, Kadirvelu K, Freitas H, Rajkumar M (2020) Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere 244:125521

    Article  CAS  PubMed  Google Scholar 

  • Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T (2020) Communication of plants with microbial world: exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 1:126486

    Article  CAS  Google Scholar 

  • Buttar ZA, Wu SN, Arnao MB, Wang C, Ullah I, Wang C (2020) Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants 9(7):809

    Article  CAS  PubMed Central  Google Scholar 

  • Caldwell CJ, Hynes RK, Boyetchko SM, Korber DR (2012) Colonization and bioherbicidal activity on green foxtail by Pseudomonas fluorescens BRG100 in a pesta formulation. Can J Microbiol 58:1–9

    Article  CAS  PubMed  Google Scholar 

  • Carbonell-Bojollo R, Veroz-Gonzalez O, Ordoñez-Fernandez R, Moreno-Garcia M, Basch G, Kassam A, Repullo-Ruiberriz de Torres MA, Gonzalez-Sanchez EJ (2019) The effect of conservation agriculture and environmental factors on CO2 emissions in a rainfed crop rotation. Sustainability 11(14):3955. https://doi.org/10.3390/su11143955

    Article  CAS  Google Scholar 

  • Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü (2020) Influence of Brevibacterium linens RS16 on foliage photosynthetic and volatile emission characteristics upon heat stress in Eucalyptus grandis. Sci Total Environ 700:134453

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Chen L, Liu Y, Wu G, Veronican NK, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158:34–44

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, Abuduaini X, Mamat N, Yang QL, Wu MJ, Lin XR, Wang R, Lin RR, Zeng WJ, Ning HC, Zhao HP (2021) Genome sequencing and functional annotation of Bacillus sp. strain BS-Z15 isolated from cotton rhizosphere soil having antagonistic activity against Verticillium dahliae. Arch Microbiol 5:1–1

    CAS  Google Scholar 

  • Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A, Mapelli F, Blilou I, Borin S, Boudabous A, Cherif A (2015) Oasisdesert farming selects environment-specific date palm root endophyticcommunities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep 7:668–678

    Article  CAS  PubMed  Google Scholar 

  • Chiappero J, del Rosario CL, Alderete LG, Palermo TB, Banchio E (2019) Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind Crop Prod 139:111553

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci 101(42):15243–15248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coupland D, Jackson MB (1991) Effects of mecoprop (an auxin analogue) on ethylene evolution and epinasty in two biotypes of stellaria media. Ann Bot 68:167–172

    Article  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11(1):163. https://doi.org/10.1186/1471-2229-11-163

    Article  PubMed  PubMed Central  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Cui L, Yang C, Wei L, Li T, Chen X (2020) Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biol Control 141:104156

    Article  CAS  Google Scholar 

  • Danish S, Zafar-ul-Hye M (2019) Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci Rep 9(1):1–3

    Article  Google Scholar 

  • Danish S, Zafar-ul-Hye M, Mohsin F, Hussain M (2020) ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS One 15(4):e0230615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar A, Zahir ZA, Asghar HN, Ahmad R (2020) Preliminary screening of rhizobacteria for biocontrol of little seed canary grass (Phalaris minor Retz.) and wild oat (Avena fatua L.) in wheat. Can J Microbiol 66:368–376

    Article  CAS  PubMed  Google Scholar 

  • Daranas N, Roselló G, Cabrefiga J, Donati I, Francés J, Badosa E, Spinelli F, Montesinos E, Bonaterra A (2019) Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad-spectrum activity. Ann Appl Biol 174(1):92–105

    Article  PubMed  Google Scholar 

  • Datir SS, Kochle M, **dal S (2019) Molecular approaches and salt tolerance mechanisms in leguminous plants. In: Akhtar MS (ed) Salt stress, microbes, and plant interactions: mechanisms and molecular approaches. Springer, Singapore, pp 49–67

    Chapter  Google Scholar 

  • Dawood T, Yang X, Visser EJ, Te Beek TA, Kensche PR, Cristescu SM, Lee S, Floková K, Nguyen D, Mariani C, Rieu I (2016) A coopted hormonal cascade activates dormant adventitious root primordia upon flooding in Solanum dulcamara. Plant Physiol 170:2351–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviateabiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2004) Will modifying plant ethylene status improve plant productivity in water-limited environments. In: Handbook and Abstracts for the 4th International Science Congress, Brisbane, Australia, p 134

    Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Dubey A, Verma AK (2019) Salinity stress-dependent coordination of metabolic networks in relation to salt tolerance in plants. In: Giri B, Verma A (eds) Microorganisms in saline environments: strategies and functions. Springer, Cham, pp 401–422

    Chapter  Google Scholar 

  • Dugé de Bernonville T, Noël LD, SanCristobal M, Danoun S, Becker A, Soreau P, Arlat M, Lauber E (2014) Transcriptional reprogramming and phenotypical changes associated with growth of Xanthomonas campestris pv. campestris in cabbage xylem sap. FEMS Microbiol Ecol 89:527–541

    Article  CAS  PubMed  Google Scholar 

  • Dunne C, Moënne-Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling DN, O’Gara F (1998) Combining proteolytic and phloroglucinol-producing bacteria for improved biocontrol of Pythium-mediated dam**-off of sugar beet. Plant Pathol 47(3):299–307

    Article  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:61–864

    Article  CAS  Google Scholar 

  • Egamberdieva D (2013) The role of phytohormone producing bacteria inalleviating salt stress in crop plants. In: Miransari M (ed) Biotechnological techniques of stress tolerance in plants. Stadium Press LLC, Houston, TX, pp 21–39

    Google Scholar 

  • Egamberdieva D, Lugtenberg B (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. PGPR to alleviate salinity stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New York, pp 73–96

    Chapter  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, AbdAllah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104. https://doi.org/10.3389/fmicb.2017.02104

    Article  PubMed  PubMed Central  Google Scholar 

  • Eida AA, Bougouffa S, L’Haridon F, Alam I, Weisskopf L, Bajic VB, Saad MM, Hirt H (2020) Genome insights of the plant-growth promoting bacterium Cronobacter muytjensii JZ38 with volatile-mediated antagonistic activity against Phytophthora infestans. Front Microbiol 11:369

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Daim IAA, Bejai S, Meijer J (2014) Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379(1–2):337–350

    Article  CAS  Google Scholar 

  • Etesami H, Alikhani HA (2019) Halotolerant plant growth-promoting fungi and bacteria as an alternative strategy for improving nutrient availability to salinity-stressed crop plants. In: Kumar M, Estesami H, Kumar V (eds) Saline soil-based agriculture by halotolerant microorganisms. Springer, Singapore, pp 103–146

    Chapter  Google Scholar 

  • Etesami H, Hosseini HM, Alikhani HA (2014) Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiol Mol Biol Plants 20(4):425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921

    Article  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Khan F, Ullah S, Alharby H (2016) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    Article  CAS  PubMed  Google Scholar 

  • Fallahzadeh-Mamaghani V, Golchin S, Shirzad A, Mohammadi H, Mohamadivand F (2021) Characterization of Paenibacillus polymixa N179 as a robust and multifunctional biocontrol agent. Biol Control 154:104505

    Article  CAS  Google Scholar 

  • FAO Food and Agriculture Organization of the United Nations (2015) The impact of natural hazards and disasters on agriculture and food security and nutrition: a call for action to build resilient livelihoods. FAO, Rome

    Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147(3):540–545

    Article  CAS  PubMed  Google Scholar 

  • Fernandez O, Vandesteene L, Feil R, Baillieul F, Lunn JE, Clément C (2012) Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance. Planta 236(2):355–369

    Article  CAS  PubMed  Google Scholar 

  • Fernie AR, Geigenberger P, Stitt M (2005) Flux an important, but neglected, component of functional genomics. Curr Opin Plant Biol 8(2):174–182

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo MV, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by coinoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 1:945–963

    Article  CAS  Google Scholar 

  • Flynn P (2003) Biotic vs. abiotic—distinguishing disease problems from environmental stresses. Hortic Home Pest News 489:22

    Google Scholar 

  • Gan P, Liu F, Li R, Wang S, Luo J (2019) Chloroplasts- beyond energy capture and carbon fixation: tuning of photosynthesis in response to chilling stress. Int J Mol Sci 20(20):5046. https://doi.org/10.3390/ijms20205046

    Article  CAS  PubMed Central  Google Scholar 

  • Garcia FP, Menendez E, Rivas R (2015) Role of bacterial bio fertilizers in agriculture and forestry. AIMS Bioeng 2:183–205

    Article  CAS  Google Scholar 

  • García JE, Maroniche G, Creus C, Suárez-Rodríguez R, Ramirez-Trujillo JA, Groppa MD (2017) In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol Res 202:21–29

    Article  CAS  PubMed  Google Scholar 

  • Gautam S, Chauhan A, Sharma R, Sehgal R, Shirkot CK (2019a) Potential of Bacillus amyloliquefaciens for biocontrol of bacterial canker of tomato incited by Clavibacter michiganensis ssp. michiganensis. Microb Pathog 130:196–203

    Article  CAS  PubMed  Google Scholar 

  • Gautam N, Sharma P, Rana JC, Singh M (2019b) Plant growth promoting traits of a novel psychrotrophic bacterium Virdibacillus arenosi PH15 isolated from rhizosphere of Podophyllum hexandrum. R Acad J Med Plants 7(1):013–019

    Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Sen S, Mohapatra S (2017) Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain. Ann Microbiol 67(10):655–668

    Article  CAS  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. https://doi.org/10.6064/2012/963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of Jojoba during in vitro rooting. Ind Crop Prod 76:41–48

    Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Goyal D, Prakash O, Pandey J (2019) Rhizospheric microbial diversity: an important component for abiotic stress management in crop plants toward sustainable agriculture. In: Singh JS, Singh DP (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 115–134

    Chapter  Google Scholar 

  • Grichko VP, Glick BR (2001a) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39(1):11–17

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001b) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol Biochem 39(1):19–25

    Article  CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240

    Article  Google Scholar 

  • Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596. https://doi.org/10.1155/2014/701596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microbiol Biochem 7:96–102

    CAS  Google Scholar 

  • Gurusiddaiah S, Gealy DR, Kennedy AC, Ogg AG (1994) Isolation and characterization of metabolites from Pseudomonas fluorescens D7 for control of downy brome (Bromus tectorum). Weed Sci 42:492–501

    Article  CAS  Google Scholar 

  • Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza AN, Mehouachi JR, Tadeo F, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111(2):206–211

    Article  Google Scholar 

  • Guy E, Lautier M, Chabannes M, Roux B, Lauber E, Arlat M, Noël LD (2013) xopAC-triggered immunity against Xanthomonas depends on Arabidopsis receptor-like cytoplasmic kinase genes PBL2 and RIPK. PLoS One 8:e73469. https://doi.org/10.1371/journal.pone.0073469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547. https://doi.org/10.1155/2016/6284547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habibzadeh F, Sorooshzadeh A, Pirdashti H, Modarres Sanavy SA (2012) A comparison between foliar application and seed inoculation of biofertilizers on canola (Brassica napus L.) grown under waterlogged conditions. Aust J Crop Sci 6(10):1435–1440

    CAS  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Akhani H, Poschenrieder C (2018) Salt tolerance mechanisms in three Irano-Turanian Brassicaceae halophytes relatives of Arabidopsis thaliana. J Plant Res 131:1029–1046

    Article  CAS  PubMed  Google Scholar 

  • Halgren A, Maselko M, Azevedo M, Mills D, Armstrong D, Banowetz G (2013) Genetics of germination-arrest factor (GAF) production by Pseudomonas fluorescens WH6: identification of a gene cluster essential for GAF biosynthesis. Microbiology 159:36–45

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Overbeek LSV, Elsas JDV (2008) Properties of bacterialendophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Gill SS, Fajita M (2013) Drought stress responses in plants, oxidative stress, and antioxidant defense. In: Tuteja N, Gill SS (eds) Climate change and plant abiotic stress tolerance. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 209–250

    Chapter  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10:4–10

    Article  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103(2):351–370

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmad I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hellal FA, El-Shabrawi HM, El-Hady MA, Khatab IA, El-Sayed SA, Abdelly C (2018) Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. J Genet Eng Biotechnol 16(1):203–212

    Article  CAS  PubMed  Google Scholar 

  • Hendry GA (2005) Oxygen free radical process and seed longevity. Seed Sci J 3:141–147

    Article  Google Scholar 

  • Horn PJ, Chapman KD (2012) Lipidomics in tissues, cells and subcellular compartments. Plant J 70(1):69–80

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Li Y, Li C, Yang H, Wang W, Lu M (2010) Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J Plant Growth Regul 29(4):455–464

    Article  CAS  Google Scholar 

  • Hui LJ, Kim SD (2013) Induction of drought stress resistance by multifunctional PGPR Bacillus licheniformis K11 in Pepper. Plant Pathol J 29:201–208

    Article  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393. https://doi.org/10.3389/fpls.2018.00393

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Ohme-Takagi M (2009) A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol 50:970–975

    Article  CAS  PubMed  Google Scholar 

  • Ilyas N, Mumtaz K, Akhtar N, Yasmin H, Sayyed RZ, Khan W, Enshasy HAE, Dailin DJ, Elsayed EA, Ali Z (2020) Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability 12(21):8876

    Article  CAS  Google Scholar 

  • Imaizumi S, Nishino T, Miyabe K, Fujimori T, Yamada M (1997) Biological control of annual bluegrass (Poa annua L.) with a Japanese isolate of Xanthomonas campestris pv. Poae (JT-P482). Biol Control 8:7–14

    Article  Google Scholar 

  • Issa A, Esmaeel Q, Sanchez L, Courteaux B, Guise JF, Gibon Y, Ballias P, Clément C, Jacquard C, Vaillant-Gaveau N, Aït Barka E (2018) Impacts of Paraburkholderia phytofirmans strain PsJN on tomato (Lycopersicon esculentum L.) under high temperature. Front Plant Sci 9:1397

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2018) Positive role of 1-aminocyclopropane-1-carboxylate deaminase-producing endophytic Streptomyces sp. GMKU 336 on flooding resistance of mung bean. Agric Nat Resour 52(4):330–334

    Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A (2009) Drought stress in plants: a review on morphologicalcharacteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jamali H, Sharma A, Srivastava AK (2020) Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani. J Basic Microbiol 60(3):268–280

    Article  CAS  PubMed  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns S (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947

    Article  CAS  PubMed  Google Scholar 

  • Jha Y (2018) Induction of anatomical, enzymatic, and molecular events in maize by PGPR under biotic stress. In: Meena VS (ed) Role of rhizospheric microbes in soil. Springer, Singapore, pp 125–141

    Chapter  Google Scholar 

  • Ji J, Yuan D, ** C, Wang G, Li X, Guan C (2020) Enhancement of growth and salt tolerance of rice seedlings (Oryza sativa L.) by regulating ethylene production with a novel halotolerant PGPR strain Glutamicibacter sp. YD01 containing ACC deaminase activity. Acta Physiol Plant 42:42. https://doi.org/10.1007/s11738-020-3034-3

    Article  CAS  Google Scholar 

  • Jochum MD, McWilliams KL, Borrego EJ, Kolomiets MV, Niu G, Pierson EA, Jo YK (2019) Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front Microbiol 10:2106

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson DR, Wyse DL, Jones KJ (1996) Controlling weeds with phytopathogenic bacteria. Weed Technol 10:621–624

    Article  Google Scholar 

  • Joshi B, Chaudhary A, Singh H, Kumar PA (2020) Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.). Plant Soil 457(1):225–240

    Article  CAS  Google Scholar 

  • Jung H, Ali S, Kim JY, Kim WC (2018) Transgenic Arabidopsis expressing acdS gene of Pseudomonas veronii-KJ alleviate the adverse effects of salt and water-logging stress. Plant Breed Biotechnol 6(3):221–232

    Article  Google Scholar 

  • Kakembo D, Lee YH (2019) Analysis of traits for biocontrol performance of Pseudomonas parafulva JBCS1880 against bacterial pustule in soybean plants. Biol Control 134:72–81

    Article  CAS  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Article  CAS  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH (2015) Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annum L. Eur J Soil Biol 68:85–93

    Article  CAS  Google Scholar 

  • Kang SM, Khan AL, Waqas M, Asaf S, Lee KE, Park YG, Kim AY, Khan MA, You YH, Lee IJ (2019) Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J Plant Interact 14(1):416–423

    Article  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3):346–350

    Article  CAS  PubMed  Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244

    Article  CAS  Google Scholar 

  • Kennedy AC, Johnson BN, Stubbs TL (2001) Host range of a deleterious rhizobacterium for biological control of downy brome. Weed Sci 49:792–797

    Article  CAS  Google Scholar 

  • Khan N, Bano A (2019) Rhizobacteria and abiotic stress management. In: Syed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management. Springer, Singapore, pp 65–80

    Chapter  Google Scholar 

  • Khan N, Bano A, Rahman MA, Guo J, Kang Z, Babar MA (2019) Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep 9(1):1–9

    Google Scholar 

  • Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ (2020a) Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application. PLoS One 15(4):e0232228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ (2020b) Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol 20(1):1–4

    Article  CAS  Google Scholar 

  • Khan N, Bano A, Ali S, Babar MA (2020c) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203

    Article  CAS  Google Scholar 

  • Killi D, Raschi A, Bussotti F (2020) Lipid peroxidation and chlorophyll fluorescence of photosystem II performance during drought and heat stress is associated with the antioxidant capacities of C3 sunflower and C4 maize varieties. Int J Mol Sci 21(14):4846

    Article  CAS  PubMed Central  Google Scholar 

  • Kim SY, Mulkey TJ (1997) Effect of ethylene antagonists on auxin-induced inhibition of intact primary root elongation in maize (Zea mays L.). J Plant Biol 40:256–260

    Article  CAS  Google Scholar 

  • Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim AY, Shahzad R, Kang SM, Seo CW, Park YG, Park HJ, Lee IJ (2017) IAA-producing Klebsiella variicola AY13 reprograms soybean growth during flooding stress. J Crop Sci Biotechnol 20(4):235–242

    Article  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Koskey G, Mburu SW, Awino R, Njeru EM, Maingi JM (2021) Potential use of beneficial microorganisms for soil amelioration, phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems. Front Sustain Food Syst 5:606308. https://doi.org/10.3389/fsufs

    Article  Google Scholar 

  • Kosová K, Urban MO, Vítámvás P, Prášil IT (2016) Drought stress response in common wheat, durum wheat, and barley: transcriptomics, proteomics, metabolomics, physiology, and breeding for an enhanced drought tolerance. In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran LSP (eds) Drought stress tolerance in plants, vol 2. Springer, Cham, pp 277–314

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS, Saxena AK (2020) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3(1):23–34

    Article  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad NV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 1–28

    Google Scholar 

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? concepts, definitions and applications in seed science. New Phytol 188:655–673

    Article  CAS  PubMed  Google Scholar 

  • Kremer RJ, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol 43:182–186

    Article  CAS  PubMed  Google Scholar 

  • Kuan KB, Othman R, Rahim KA, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11(3):0152478. https://doi.org/10.1371/journal.pone.0152478

    Article  CAS  Google Scholar 

  • Kumar A, Patel JS, Meena VS, Srivastava R (2019a) Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatal Agric Biotechnol 29:101271. https://doi.org/10.1016/j.bcab.2019.101271

    Article  Google Scholar 

  • Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R (2019b) Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS One 14(3):e0213844. https://doi.org/10.1371/journal.pone.0213844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumawat KC, Sharma P, Nagpal S, Gupta RK, Sirari A, Nair RM, Bindumadhava H, Singh S (2020) Dual microbial inoculation, a Game changer?–Bacterial biostimulants with multifunctional growth promoting traits to mitigate salinity stress in Spring Mungbean. Front Microbiol 11:600576. https://doi.org/10.3389/fmicb.2020.600576

    Article  PubMed  Google Scholar 

  • Kusale SP, Attar YC, Sayyed RZ, Malek RA, Ilyas N, Suriani NL, Khan N, El Enshasy HA (2021) Production of plant beneficial and antioxidants metabolites by Klebsiella variicola under salinity stress. Molecules 26(7):1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushwaha P, Kashyap PL, Kuppusamy P (2020) Microbes for cold stress resistance in plants: mechanism, opportunities, and challenges. In: Goel R, Soni R, Suyal DC (eds) Microbiological advancements for higher altitude agro-ecosystems and sustainability. Springer, Singapore, pp 269–292

    Chapter  Google Scholar 

  • Lanza MGDBR, dos Reis AR (2021) Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiol Biochem 164:27–43. https://doi.org/10.1016/j.plaphy.2021.04.026

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Ahsan N, Lee SH, Kang KY, Bahk JD, Lee IJ, Lee BH (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7(18):3369–3383

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Sun ZL, Zhuang XF, Xu L, Chen SF, Li MZ (2003) Research progress on microbial herbicides. Crop Prot 22:247–252

    Article  Google Scholar 

  • Li J, McConkey BJ, Cheng Z, Guo S, Glick BR (2013) Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. J Proteomics 84:119–131

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Long R, Zhang T, Wang Z, Zhang F, Yang Q, Kang J, Sun Y (2017) Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.). Int J Plant Res 130(2):387–396

    Article  CAS  Google Scholar 

  • Li Y, Shi H, Zhang H, Chen S (2019) Amelioration of drought effects in wheat and cucumber by the combined application of super absorbent polymer and potential biofertilizer. Peer J 7:e6073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Sun P, Zhang Y, ** C, Guan C (2020) A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression. Environ Exp Bot 174:104023. https://doi.org/10.1016/j.envexpbot.2020.104023

    Article  CAS  Google Scholar 

  • Liu HC, Charng YY (2013) Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol 163(1):276–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, **ng S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97(20):9155–9164

    Article  CAS  PubMed  Google Scholar 

  • Liu CH, Siew W, Hung YT, Jiang YT, Huang CH (2021) 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase gene in Pseudomonas azotoformans is associated with the amelioration of salinity stress in tomato. J Agric Food Chem 69(3):913–921

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Raez JA (2016) How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243:1375–1385

    Article  CAS  PubMed  Google Scholar 

  • Lozano GL, Holt J, Ravel J, Rasko DA, Thomas MG, Handelsman J (2016) Draft genome sequence of biocontrol agent Bacillus cereus UW85. Genome Announc 4(5):5–6

    Article  Google Scholar 

  • Maciag T, Krzyzanowska DM, Jafra S, Siwinska J, Czajkowski R (2020) The Great Five-an artificial bacterial consortium with antagonistic activity towards Pectobacterium spp. and Dickeya spp.: formulation, shelf life, and the ability to prevent soft rot of potato in storage. Appl Microbiol Biotechnol 104(10):4547–4561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahadik S, Kumudini BS (2020) Enhancement of salinity stress tolerance and plant growth in finger millet using fluorescent Pseudomonads. Rhizosphere 15:100226

    Article  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting rhizobacteria and nitrateavailability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • Marin-Bruzos M, Grayston SJ, Forge T, Nelson LM (2021) Isolation and characterization of streptomycetes and pseudomonad strains with antagonistic activity against the plant parasitic nematode Pratylenchus penetrans and fungi associated with replant disease. Biol Control 158:104599

    Article  CAS  Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  CAS  PubMed  Google Scholar 

  • Maya MA, Matsubara YI (2013) Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23(5):381–390

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572

    Article  CAS  PubMed  Google Scholar 

  • McKeon TA, Fernandez-Maculet JC, Yang SF (1995) Biosynthesis and metabolism of ethylene. In: Davies PJ (ed) Plant hormones physiology, biochemistry and molecular biology. Kluwer Academic, Dordrecht, pp 118–139

    Chapter  Google Scholar 

  • McKersie BD, Lesheim Y (1994) Stress and stress co** in cultivated plants, 1st edn. Springer, Dordrecht, p 256

    Book  Google Scholar 

  • McPhail KL, Armstrong DJ, Azevedo MD, Banowetz GM, Mills DI (2010) 4-Formylaminooxyvinylglycine, an herbicidal germination-arrest factor from Pseudomonas rhizosphere bacteria. J Nat Prod 73:1853–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena M, Swapnil P, Divyanshu K, Kumar S, Tripathi YN, Zehra A, Marwal A, Upadhyay RS (2020) PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: current perspectives. J Basic Microbiol 60(10):828–861

    CAS  PubMed  Google Scholar 

  • Meenakshi, Annapurna K, Govindasamy V, Ajit V, Choudhary DK (2019) Mitigation of drought stress in wheat crop by drought tolerant endophytic bacterial isolates. Vegetos 32(4):486–493

    Article  Google Scholar 

  • Migunova VD, Sasanelli N (2021) Bacteria as biocontrol tool against phytoparasitic nematodes. Plants 10(2):389

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009) Isolation, molecular characterization and -growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalaya. Biol Res 42(3):305–313

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193(7):497–513

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Bisht SC, Bisht JK, Bhatt JC (2012) Cold-tolerant PGPRs as bioinoculants for stress management. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, Heidelberg, pp 95–118

    Chapter  Google Scholar 

  • Misra S, Chauhan PS (2020) ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech 10:119. https://doi.org/10.1007/s13205-020-2104-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Misra S, Dixit VK, Khan MH, Mishra SK, Dviwedi G, Yadav S, Lehri A, Chauhan PS (2017) Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Microbiol Res 205:25–34

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Dixit VK, Mishra SK, Chauhan PS (2019) Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration. Ann Microbiol 69(4):419–434

    Article  CAS  Google Scholar 

  • Mitra S, Mukherjee A, Wiley-Kalil A, Das S, Owen H, Reddy PM, Ané J-M, James EK, Gyaneshwar P (2016) A rhamnose-deficient lipopolysaccharide mutant of Rhizobium sp. IRBG74 is defective in root colonization and beneficial interactions with its flooding-tolerant hosts Sesbania cannabina and wetland rice. J Exp Bot 67(19):5869–5884

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant Microbe Interact 2:1001–1009

    Article  CAS  Google Scholar 

  • Momčilović I, Pantelić D, Zdravković-Korać S, Oljača J, Rudić J, Fu J (2016) Heat-induced accumulation of protein synthesis elongation factor 1A implies an important role in heat tolerance in potato. Planta 244(3):671–679

    Article  PubMed  Google Scholar 

  • Mosa KA, Ismail A, Helmy M (2017) Introduction to plant stresses. In: Mosa KA, Ismail A, Helmy M (eds) Plant stress tolerance. Springer, Cham, pp 1–19

    Chapter  Google Scholar 

  • Mukhtar T, Smith D, Sultan T, Seleiman MF, Alsadon AA, Ali S, Chaudhary HJ, Solieman TH, Ibrahim AA, Saad MA (2020) Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling. Sustainability 12(6):2159. https://doi.org/10.3390/su12062159

    Article  CAS  Google Scholar 

  • Mumtaz MZ, Ahmad M, Jamil M, Hussain T (2017) Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol Res 202:51–60

    Article  CAS  PubMed  Google Scholar 

  • Mumtaz MZ, Saqib M, Abbas G, Akhtar J, Qamar ZU (2018) Genotypic variation in rice for grain yield and quality as affected by salt-affected field conditions. J Plant Nutr 41(2):233–242

    CAS  Google Scholar 

  • Mumtaz MZ, Barry KM, Baker AL, Nichols DS, Ahmad M, Zahir ZA, Britz ML (2019) Production of lactic and acetic acids by Bacillus sp. ZM20 and Bacillus cereus following exposure to zinc oxide: a possible mechanism for Zn solubilization. Rhizosphere 12:100170. https://doi.org/10.1016/j.rhisph.2019.100170

    Article  Google Scholar 

  • Mumtaz MZ, Saqib M, Abbas G, Akhtar J, Qamar ZU (2020) Drought stress impairs grain yield and quality of rice genotypes by impaired photosynthetic attributes and K nutrition. Ric Sci 27(1):5–9

    Article  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198(4):379–387

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Imran M, Naveed N, Khan MY, Ahmad M, Zahir ZA, Crowley DE (2017) Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. J Sci Food Agric 97:5139–5145

    Article  CAS  PubMed  Google Scholar 

  • Nascimento F, Brígido C, Alho L, Glick BR, Oliveira S (2012) Enhanced chickpea growth-promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant Soil 353:221–230

    Article  CAS  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory S (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nazli F, Najm-ul-Seher, Khan MY, Jamil M, Nadeem SM, Ahmad M (2020) Soil microbes and plant health. In: Haq IU, Ijaz S (eds) Plant disease management strategies for sustainable agriculture through traditional and modern approaches. Sustainability in plant and crop protection, vol 13. Springer, Cham, pp 111–135

    Google Scholar 

  • Negi YK, Kumar J, Garg SK (2005) Cold-tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 89:2151–2156

    Google Scholar 

  • Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125

    Article  Google Scholar 

  • Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M (2012) Mechanisms for co** with submergence and waterlogging in rice. Rice 5:2. https://doi.org/10.1186/1939-8433-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu SQ, Li HR, Paré PW, Aziz M, Wang SM, Shi H, Li J, Han QQ, Guo SQ, Li J, Guo Q (2016) Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 407:217–230

    Article  CAS  Google Scholar 

  • Njeru EM, Koskey G (2021) Using beneficial microorganisms to promote sustainable crop production and resilience of smallholder agroecosystems to changing climate. In: Mallappa VKH, Shirur M (eds) Climate change and resilient food systems. Springer, Singapore, pp 287–314

    Chapter  Google Scholar 

  • Nouri MZ, Moumeni A, Komatsu S (2015) Abiotic stresses: insight into gene regulation and protein expression in photosynthetic pathways of plants. Int J Mol Sci 16:20392–20416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi Y, Nakayama N, Saneoka H, Fujita K (2006) Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biol Plant 50(1):138–141

    Article  Google Scholar 

  • Okrent RA, Halgren AB, Azevedo MD, Chang JH, Mills DI, Maselko M, Armstrong DJ, Banowetz GM, Trippe KM (2014) Negative regulation of germination-arrest factor production in Pseudomonas fluorescens WH6 by a putative extracytoplasmic function sigma factor. Microbiology 160:2432–2442

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Mosqueda MC, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res 235:126439. https://doi.org/10.1016/j.micres.2020.126439

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Ojeda P, Ogata-Gutiérrez K, Zúñiga-Dávila D (2017) Evaluation of plant growth promoting activity and heavy metal tolerance of psychrotrophic bacteria associated with maca (Lepidium meyenii Walp.) rhizosphere. AIMS Microbiol 3(2):279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahalvi HN, Rafiya L, Rashid S, Nisar B, Kamili AN (2021) Chemical fertilizers and their impact on soil health. In: Dar GH, Bhat RA, Mehmood MA, Hakeem KR (eds) Microbiota and biofertilizers, vol 2. Springer, Cham, pp 1–20

    Google Scholar 

  • Pandey A, Palni LM, Mulkalwar P, Nadeem M (2002) Effect of temperature on solubilization of tricalcium phosphate by Pseudomonas corrugata. J Sci Ind Res 61:457–460

    CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LM (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53(2):102–107

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537. https://doi.org/10.3389/fpls.2017.00537

    Article  PubMed  PubMed Central  Google Scholar 

  • Panwar M, Tewari R, Gulati A (2016) Indigenous salt-tolerant rhizobacterium Pantoea dispersa (PSB3) reduces sodium uptake and mitigates the effects of salt stress on growth and yield of chickpea. Acta Physiol Plant 38:278. https://doi.org/10.1007/s11738-016-2284-6

    Article  CAS  Google Scholar 

  • Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117

    Article  CAS  PubMed  Google Scholar 

  • Patel PK, Singh AK, Tripathi N, Yadav D, Hemantaranjan A (2014) Flooding: abiotic constraint limiting vegetable productivity. Adv Plant Agric Res 1(3):96–103

    Google Scholar 

  • Pathak R, Shrestha A, Lamichhane J, Gauchan D (2017) PGPR in biocontrol mechanisms and roles in disease suppression. Int J Agron Agric Res 11(1):69–80

    Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Paul MV, Iyer S, Amerhauser C, Lehmann M, van Dongen JT, Geigenberger P (2016) Oxygen sensing via the ethylene response transcription factor RAP2 12 affects plant metabolism and performance under both normoxia and hypoxia. Plant Physiol 172(1):141–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Péchy-Tarr M, Bruck DJ, Maurhofer M, Fischer E, Vogne C, Henkels MD, Donahue KM, Grunder J, Loper JE, Keel C (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10(9):2368–2386

    Article  CAS  PubMed  Google Scholar 

  • Perneel M, D’Hondt L, De Maeyer K, Adiobo A, Rabaey K, Höfte M (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10(3):778–788

    Article  PubMed  Google Scholar 

  • Phour M, Sindhu SS (2020) Amelioration of salinity stress and growth stimulation of mustard (Brassica juncea L.) by salt-tolerant Pseudomonas species. Appl Soil Ecol 149:103518

    Article  Google Scholar 

  • Phukan UJ, Mishra S, Shukla RK (2016) Waterlogging and submergence stress: affects and acclimation. Crit Rev In Biotech 36(5):956–966

    Article  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Pitman MG, Lauchi A (eds) Salinity: environment-plants-molecules. Springer, Dordrecht, pp 3–20

    Google Scholar 

  • Prasad PVV, Staggenborg SA, Ristic Z (2008) Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. Response of crops to limited water: understanding and modeling water stress effects on plant growth processes. In: Ahuja LR, Reddy VR, Saseendran SA, Yu Q (eds) Advances in agricultural systems modeling, vol 1, pp 301–355

    Google Scholar 

  • Prasannakumar MK, Netravathi LM, Mahesh HB, Parivallal PB, Puneeth ME, Sathish A, Pramesh D, Middha SK, Das AJ, Rohit BS (2021) Comparative metagenomic analysis of rice soil samples revealed the diverse microbial population and biocontrol organisms against plant pathogenic fungus Magnaporthe oryzae. 3 Biotech 11(5):1–1

    Article  Google Scholar 

  • Prevost D, Drouin P, Antoun H (1999) The potential use of cold-adapted rhizobia to improve symbiotic nitrogen fixation in legumes cultivated in temperate regions. In: Margesin R, Schinner F (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin, Heidelberg, pp 161–176

    Chapter  Google Scholar 

  • Prevost D, Drouin P, Laberge S, Bertrand A, Cloutier J, Lévesque G (2003) Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can J Bot 81(12):1153–1161

    Article  CAS  Google Scholar 

  • Qin S, Feng WW, Zhang YJ, Wang TT, **ong YW, **ng K (2018) Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Appl Environ Microbiol 84(19):e01533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43(3):1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahdari P, Hoseini SM (2012) Drought stress, a review. Int J Agron Plant Prod 3:443–446

    Google Scholar 

  • Raheem A, Shaposhnikov A, Belimov AA, Dodd IC, Ali B (2018) Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Arch Agron Soil Sci 64(4):574–587

    Article  CAS  Google Scholar 

  • Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37(3):255–263

    Article  Google Scholar 

  • Ramegowda V, Da Costa MV, Harihar S, Karaba NN, Sreeman SM (2020) Abiotic and biotic stress interactions in plants: a cross-tolerance perspective. In: Hossain MA, Liu F, Huang B (eds) Priming-mediated stress and cross-stress tolerance in crop plants. Academic Press, San Diego, CA 267-302

    Chapter  Google Scholar 

  • Ravanbakhsh M, Sasidharan R, Voesenek LA, Kowalchuk GA, Jousset A (2017) ACC deaminase-producing rhizosphere bacteria modulate plant responses to flooding. J Ecol 105(4):979–986

    Article  CAS  Google Scholar 

  • Řeháková K, Chroňáková A, Krištůfek V, Kuchtová B, Čapková K, Scharfen J, Čapek P, Doležal J (2015) Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert. Front Microbiol 6:304

    Article  PubMed  PubMed Central  Google Scholar 

  • Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agric 42:351–361

    Article  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37(7):613–620

    Article  Google Scholar 

  • Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1–14

    Article  Google Scholar 

  • Ritonga FN, Chen S (2020) Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants 9(5):560

    Article  CAS  PubMed Central  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Rozema J, Flowers T (2008) Ecology: crops for a salinized world. Science 322:1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Article  Google Scholar 

  • Sachin N, Tsang A, Shaanker RU, Dayanandan S (2021) Genome Sequence Resource of Bacillus velezensis EB14, a native endophytic bacterial strain with biocontrol potential against the poplar stem canker causative pathogen, Sphaerulina musiva. Phytopathology 1:PHYTO09200433A

    Google Scholar 

  • Sagar A, Sayyed RZ, Ramteke PW, Sharma S, Marraiki N, Elgorban AM, Syed A (2020) ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol Mol Biol Plants 26(9):1847–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):1–29

    Google Scholar 

  • Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8(1):1–16

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648

    Article  CAS  PubMed  Google Scholar 

  • Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M (2021) Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Rep 22:1–25

    Google Scholar 

  • Sang-Mo K, Radhakrishnan R, Khan AL, Min-Ji K, Jae-Man P, Bo-Ra K, Dong-Hyun S, In-Jung L (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  Google Scholar 

  • Sangwan V, Foulds I, Singh J, Dhindsa RS (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32

    Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2021) Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum). J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10329-y

  • Sarkar J, Chakraborty B, Chakraborty U (2018) Plant growth promoting rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury. J Plant Growth Regul 37(4):1396–1412

    Article  CAS  Google Scholar 

  • Sarkar J, Chakraborty U, Chakraborty B (2021) High-temperature resilience in Bacillus safensis primed wheat plants: A study of dynamic response associated with modulation of antioxidant machinery, differential expression of HSPs and osmolyte biosynthesis. Environ Exp Bot 182:104315

    Article  CAS  Google Scholar 

  • Sarwar M, Kremer RJ (1995) Enhanced suppression of plant growth through the production of L-tryptophan derived compounds by deleterious rhizobacteria. Plant Soil 172:261–269

    Article  CAS  Google Scholar 

  • Sasidharan R, Hartman S, Liu Z, Martopawiro S, Sajeev N, van Veen H, Yeung E, Voesenek LA (2018) Signal dynamics and interactions during flooding stress. Plant Physiol 176(2):1106–1117

    Article  CAS  PubMed  Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21(4):329–340

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Köberl M, Mostafa A, Ramadan EM, Monschein M, Jensen KB, Bauer R, Berg G (2014) Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Front Microbiol 5:64. https://doi.org/10.3389/fmicb.2014.00064

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2008) Characterization of a cold tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24(7):955–960

    Article  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra P, Bisht J, Gupta H (2009) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64(2):239–245

    Article  CAS  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer-Verlag, Berlin, Heidelberg, pp 205–224

    Chapter  Google Scholar 

  • Shakir MA, Asghari B, Arshad M (2012) Rhizosphere bacteria containing ACC deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ 31:108–112

    CAS  Google Scholar 

  • Sharma P, Khanna V, Kumar P (2013) Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. Afr J Microbiol Res 7:5749–5757

    Article  CAS  Google Scholar 

  • Sharma S, Joshi J, Kataria S, Verma SK, Chatterjee S, Jain M, Pathak K, Rastogi A, Brestic M (2020) Regulation of the Calvin cycle under abiotic stresses: an overview. In: Tripathi DK, Singh VP, Ramawat N (eds) Plant life under changing environment. Academic Press, San Diego, CA, pp 681–717

    Chapter  Google Scholar 

  • Shen YC, Korkor NL, **ao R, Pu Q, Hu M, Zhang SS, Kong DD, Zeng G, Hu XF (2020) Antagonistic activity of combined bacteria strains against southern blight pathogen of Dendrobium officinale. Biol Control 151:104291

    Article  CAS  Google Scholar 

  • Showkat S (2012) Biological control of Fusarium oxysporum and Aspergillus sp. by Pseudomonas fluorescens isolated from wheat rhizosphere soil of Kashmir. IOSR Int J Pharm Biol Sci 1(4):24–32

    Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Singh JS (2015) Biodiversity: current perspective. Clim Chang Environ Sustain 3(1):71–72

    Article  Google Scholar 

  • Singh RP, Jha PN (2015) Molecular identification and characterization of rhizospheric bacteria for plant growth promoting ability. Int J Curr Biotechnol 3:12–18

    CAS  Google Scholar 

  • Singh RP, Jha PN (2017) Analysis of fatty acid composition of PGPR Klebsiella sp. SBP-8 and its role in ameliorating salt stress in wheat. Symbiosis 73(3):213–222

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First high quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11(1):1–9

    Article  CAS  Google Scholar 

  • Sofy MR, Aboseidah AA, Heneidak SA, Ahmad HR (2021) ACC deaminase containing endophytic bacteria ameliorate salt stress in Pisum sativum through reduced oxidative damage and induction of antioxidative defense systems. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13585-3

  • Srinivasan R, Mageswari A, Subramanian P, Maurya VK, Sugnathi C, Amballa C, Sa T, Gothandam KM (2017) Exogenous expression of ACC deaminase gene in psychrotolerant bacteria alleviates chilling stress and promotes plant growth in millets under chilling conditions. Indian J Exp Biol 55(7):463–468

    CAS  Google Scholar 

  • Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Nautiyal CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56(5):453–457

    Article  CAS  PubMed  Google Scholar 

  • Steffens B, Sauter M (2009) Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21:184–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepien P, Kłbus G (2006) Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol Plant 50(4):610. https://doi.org/10.1007/s10535-006-0096-z

    Article  CAS  Google Scholar 

  • Subramanian P, Mageswari A, Kim K, Lee Y, Sa T (2015) Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum Lycopersicum Mill.) by activation of their antioxidant capacity. Mol Plant Microbe Interact 28:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Subramanian P, Kim K, Krishnamoorthy R, Mageswari A, Selvakumar G, Sa T (2016) Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (Solanum lycopersicum Mill.) under low temperatures. PLoS One 11(8):e0161592. https://doi.org/10.1371/journal.pone.0161592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Griffith M, Pasternak JJ, Glick BR (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 41(9):776–784

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Yang LM, Han M, Han ZM, Yang L, Cheng L, Yang X, Lv ZL (2019) Biological control ginseng grey mold and plant colonization by antagonistic bacteria isolated from rhizospheric soil of Panax ginseng Meyer. Biol Control 138:104048

    Article  CAS  Google Scholar 

  • Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283(14):9269–9275

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Taj Z, Challabathula D (2021) Protection of photosynthesis by halotolerant Staphylococcus Sciuri ET101 in tomato (Lycoperiscon esculentum) and rice (Oryza sativa) plants during salinity stress: Possible interplay between carboxylation and oxygenation in stress mitigation. Front Microbiol 11:547750. https://doi.org/10.3389/fmicb.2020.547750

    Article  PubMed  PubMed Central  Google Scholar 

  • Talaat NB, Shawky BT (2017) Microbe-mediated induced abiotic stress tolerance responses in plants. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 101–133

    Google Scholar 

  • Tanveer M, Ahmed HAI (2020) ROS signalling in modulating salinity stress tolerance in plants. In: Hasanuzzaman M, Tanveer M (eds) Salt and drought stress tolerance in plants, signaling networks and adaptive mechanisms. Springer, Cham, pp 299–314

    Chapter  Google Scholar 

  • Tapia-Vázquez I, Sánchez-Cruz R, Arroyo-Domínguez M, Lira-Ruan V, Sánchez-Reyes A, del Rayo S-CM, Padilla-Chacón D, Batista-García RA, Folch-Mallol JL (2020) Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano crater in Mexico. Microbiol Res 232:126394

    Article  CAS  PubMed  Google Scholar 

  • Thakare M, Sarma H, Datar S, Roy A, Pawar P, Gupta K, Pandit S, Prasad R (2021) Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Curr Res Biotechnol 3:84–98. https://doi.org/10.1016/j.crbiot.2021.02.004

    Article  Google Scholar 

  • Thakur M, Sharma P, Anand A (2019) Seed priming-induced early vigor in crops: an alternate strategy for abiotic stress tolerance. In: Hasanuzzaman M, Fotopoulos V (eds) Priming and pretreatment of seeds and seedlings: implication in plant stress tolerance and enhancing productivity in crop plants. Springer, Singapore, pp 163–180

    Chapter  Google Scholar 

  • Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clément C, Barka EA (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant Microbe Interact 25(2):241–249

    Google Scholar 

  • Timmusk S, Nevo E (2011) Plant root associated biofilms. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management, vol 3. Springer, Verlag, Berlin, pp 285–300

    Chapter  Google Scholar 

  • Tiryaki D, Ihsan A, Okkes A (2019) Psychrotolerant bacteria isolated from the leaf apoplast of coldadapted wild plants improve the cold resistance of bean (Phaseolus vulgaris L.) under low temperature. Cryobiology 86:111–119

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugate (NRRL B-30409) mutants increased phosphate solubilisation, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144

    Google Scholar 

  • Turan M, Gulluce M, Cakmak R, Sahin F (2013) Effect of plant growth-promoting rhizobacteria strain on freezing injury and antioxidant enzyme activity of wheat and barley. J Plant Nutr 36:731–748

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growthpromoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    Article  CAS  Google Scholar 

  • Vega-Celedón P, Bravo G, Velásquez A, Cid FP, Valenzuela M, Ramírez I, Vasconez IN, Álvarez I, Jorquera MA, Seeger M (2021) Microbial diversity of psychrotolerant bacteria isolated from wild flora of andes mountains and patagonia of chile towards the selection of plant growth-promoting bacterial consortia to alleviate cold stress in plants. Microorganisms 9(3):538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65(4):1885–1899

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63:551–562

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumari K, Jisha KC, Puthur JT (2016) GABA/BABA priming: a means for enhancing abiotic stress tolerance potential of plants with less energy investments on defence cache. Acta Physiol Plant 38(9):230. https://doi.org/10.1007/s11738-016-2254-z

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Voesenek LA, Benschop JJ, Bou J, Cox MC, Groeneveld HW, Millenaar FF, Vreeburg RA, Peeters AJ (2003) Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann Bot 91:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahid A, Sehar S, Perveen M, Gelani S, Basra SM, Farooq M (2008) Seed pretreatment with hydrogen peroxide improves heat tolerance in maize at germination and seedling growth stages. Seed Sci Technol 36(3):633–645

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Wang X, **ao C, Ji C, Liu Z, Song X, Liu Y, Li C, Yan D, Li H, Qin Y, Liu X (2021) Isolation and characterization of endophytic bacteria for controlling root rot disease of Chinese jujube. J Appl Microbiol 130(3):926–936

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Zhu B, Liu W, Cheng X, Lin D, He C, Shi H (2021) Heat shock protein 90 co-chaperone modules fine-tune the antagonistic interaction between salicylic acid and auxin biosynthesis in cassava. Cell Rep 34(5):108717

    Article  CAS  PubMed  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang (2002) Profiling membrane lipids in plant stress responses role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277(35):31994–32002

    Article  CAS  PubMed  Google Scholar 

  • Woo OG, Kim H, Kim JS, Keum HL, Lee KC, Sul WJ, Lee JH (2020) Bacillus subtilis strain GOT9 confers enhanced tolerance to drought and salt stresses in Arabidopsis thaliana and Brassica campestris. Plant Physiol Biochem 148:359–367

    Google Scholar 

  • Wu YS, Yang CY (2019) Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. Bot Stud 60(1):1–12

    Article  CAS  Google Scholar 

  • Wu ZM, Yang Y, Li KT (2019) Antagonistic activity of a novel antifungalmycin N2 from Streptomyces sp. N2 and its biocontrol efficacy against Rhizoctonia solani. FEMS Microbiol Lett 366(3):fnz018

    Article  CAS  PubMed  Google Scholar 

  • Wu YM, Chen X, Wang F, Hsiao CY, Yang CY, Lin ST, Wu LH, Chen YK, Liang YS, Lin YH (2021) Bacillus amyloliquefaciens strains control strawberry anthracnose through antagonistic activity and plant immune response intensification. Biol Control 157:104592

    Google Scholar 

  • **a Y, Farooq MA, Javed MT, Kamran MA, Mukhtar T, Ali J, Tabassum T, ur Rehman S, Munis MF, Sultan T, Chaudhary HJ (2020) Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. Plant Physiol Biochem 151:640–649

    Article  CAS  PubMed  Google Scholar 

  • **e HT, Wan ZY, Li S, Zhang Y (2014) Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. Plant Cell 26:2007–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Singh RN, Sachan SG, Kaushik R (2015) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Rajhi I, Nakazono M (2011) Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal Behav 6:759–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92:775–781

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Zhang R, Wu X, Xu T, Ahmad S, Zhang X, Zhao J, Liu Y (2020) An endophytic strain of the genus Bacillus isolated from the seeds of maize (Zea mays L.) has antagonistic activity against maize pathogenic strains. Microb Pathog 142:104074

    Article  CAS  PubMed  Google Scholar 

  • Yaseen R, Zafar-ul-Hye M, Hussain M (2019) Integrated application of ACC-deaminase containing plant growth promoting rhizobacteria and biogas slurry improves the growth and productivity of wheat under drought stress. Int J Agric Biol 21:869–878

    CAS  Google Scholar 

  • Yaseen R, Aziz O, Saleem MH, Riaz M, Zafar-ul-Hye M, Rehman M, Ali S, Rizwan M, Nasser Alyemeni M, El-Serehy HA, Al-Misned FA (2020) Ameliorating the drought stress for wheat growth through application of ACC-deaminase containing rhizobacteria along with biogas slurry. Sustainability 12(15):6022

    Article  Google Scholar 

  • Zafar-ul-Hye M, Nasir A, Aon M, Hussain S, Ahmad M, Naz I (2018) Seed inoculation with Pseudomonas fluorescens and Pseudomonas syringae enhanced maize growth in a compacted saline-sodic soil. Phyton 87:25–31

    Article  Google Scholar 

  • Zafar-ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM (2019) ACC Deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 9:343. https://doi.org/10.3390/agronomy9070343

    Article  CAS  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shahroona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (P. sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

  • Zakry FA, Shamsuddin ZH, Rahim KA, Zakaria ZZ, Rahim AA (2012) Inoculation of Bacillus sphaericus UPMB-10 to young oil palm and measurement of its uptake of fixed nitrogen using the N isotope dilution technique. Microbial Environ 27:257–262

    Article  Google Scholar 

  • Zang X, Geng X, Wang F, Liu Z, Zhang L, Zhao Y, Tian X, Ni Z, Yao Y, **n M, Hu Z (2017) Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biol 17(1):14. https://doi.org/10.1186/s12870-016-0958-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CX, Fu GF, Yang XQ, Yang YJ, Zhao X, Chen TT, Zhang XF, ** QY, Tao LX (2016) Heat stress effects are stronger on spikelets than on flag leaves in rice due to differences in dissipation capacity. J Agron Crop Sci 202(5):394–408

    Article  CAS  Google Scholar 

  • Zhang X, Rong X, Cai M, Meng Q (2019) Collaborative optimization of emissions and abatement costs for air pollutants and greenhouse gases from the perspective of energy structure: an empirical analysis in Tian**. Sustainability 11:3872. https://doi.org/10.3390/su11143872

    Article  CAS  Google Scholar 

  • Zhou C, Ma Z, Zhu L, **ao X, **e Y, Zhu J, Wang J (2016) Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci 17:976. https://doi.org/10.3390/ijms17060976

    Article  CAS  PubMed Central  Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10(3):290–295

    Article  CAS  PubMed  Google Scholar 

  • Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012) Arbuscular mycorrhizae improve photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ 58(4):186–191

    Article  CAS  Google Scholar 

  • Zicca S, De Bellis P, Masiello M, Saponari M, Saldarelli P, Boscia D, Sisto A (2020) Antagonistic activity of olive endophytic bacteria and of Bacillus spp. strains against Xylella fastidiosa. Microbiol Res 236:126467

    Article  CAS  PubMed  Google Scholar 

  • Zubair M, Hanif A, Farzand A, Sheikh TM, Khan AR, Suleman M, Ayaz M, Gao X (2019) Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat. Microorganisms 7(9):337

    Article  CAS  PubMed Central  Google Scholar 

  • Zvinavashe AT, Mardad I, Mhada M, Kouisni L, Marelli B (2021) Engineering the plant microenvironment to facilitate plant-growth-promoting microbe association. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.1c00138

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mumtaz, M.Z. et al. (2022). Role of Plant Growth-Promoting Rhizobacteria in Combating Abiotic and Biotic Stresses in Plants. In: Arora, N.K., Bouizgarne, B. (eds) Microbial BioTechnology for Sustainable Agriculture Volume 1. Microorganisms for Sustainability, vol 33. Springer, Singapore. https://doi.org/10.1007/978-981-16-4843-4_2

Download citation

Publish with us

Policies and ethics

Navigation