Microvasculature and Perfusion in Normal Tissues and Tumors

  • Chapter
Thermoradiotherapy and Thermochemotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 188 Accesses

Abstract

The tissue temperature during heating is dependent on the influx of energy and efflux of heat, mainly through the convective heat transfer between the tissue and circulating blood. It follows that the temperature in tissues with poor blood circulation will rise higher than that in tissues with good blood circulation. It has been demonstrated that a variance in temperature as small as 0.5°-1.0°C in the therapeutic range, i.e., 42°-45°C, can cause a significant difference in cell killing or tissue damage (Dewey et al. 1977; Fajardo 1984; Field et al. 1977). Indications are that such a small difference in temperature can easily be caused by a small change in blood flow (Jain 1980; Song et al. 1980a-c; Song 1982a,b). It is known that the anatomical characteristics of blood vessels and blood flow in different tissues or tumors are markedly different. Furthermore, the changes in blood vessels and blood flow induced by heat are profoundly different in different tissues or tumors (Dewhirst 1987; Dudar and Jain 1984; Jain and Ward-Hartley 1984;

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Acker JC, Dewhirst MW, Honore GM, Samulski TV, Tucker JA, Oleson JR (1990) Blood perfusion measurements in human tumors: evaluation of laser Doppler methods. Int J Hyperthermia 6: 287–304

    Article  PubMed  CAS  Google Scholar 

  • Allwood MJ, Burry HS (1954) The effect of local temperature on blood flow in the human foot. J Physiol 124: 345–347

    PubMed  CAS  Google Scholar 

  • Barcroft H, Edholm OG (1943) The effect of temperature on blood flow and deep temperature in the human forearm. J Physiol 102: 5–20

    PubMed  CAS  Google Scholar 

  • Dewey WC, Hopwood LE, Sapareto SA, Gerweck LF (1977) Cellular responses to combination of hyperthermia and rediation. Radiology 123: 463–474

    PubMed  CAS  Google Scholar 

  • Dewhirst MW (1987) Physiological effects of hyperthermia. In: Paliwal BR, Hetzel FW, Dewhrist MW (eds) Biological, physical and clinical aspects of hyperthermia. American Institute of Physics, New York, pp 16–56

    Google Scholar 

  • Dickson JA, Calderwood SK (1980) Temperature range and selective sensitivity of tumors to hyperthermia: a critical review. Ann NY Acad Sci 335: 180–205

    Article  PubMed  CAS  Google Scholar 

  • Dudar TE, Jain RK (1984) Differential response of normal and tumor microenvironment to hyperthermia. Cancer Res 44: 605–612

    PubMed  CAS  Google Scholar 

  • Eddy HA (1980) Alteration in tumor microvasculature during hyperthermia. Radiology 137: 515–521

    PubMed  CAS  Google Scholar 

  • Eddy HA, Chmielewski G (1982) Effect of hyperthermia, radiation and adriamycin combinations on tumor vascular function. Int J Radiat Oncol Biol Phys 8: 1167–1175

    Article  PubMed  CAS  Google Scholar 

  • Fajardo LF (1984) Pathological effects of hyperthermia in normal tissues. Cancer Res (Suppl) 44: 4826s–4835s

    CAS  Google Scholar 

  • Field SB, Hume SP, Law MP, Myers R (1977) The response of tissues to combined hyperthermia and x-rays. Br J Radiol 50: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Dahlberg WK, Greco B (1983) Effects of pH on single or fractionated heat treatment at 42°-45°C. Cancer Res 43: 1163–1167

    PubMed  CAS  Google Scholar 

  • Gullino PH (1980) Influence of blood supply on thermal properties and metabolism of mammary carcinomas. Ann NY Acad Sci 335: 1–21

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa T, Song CW (1991) Effect of hydralazine on the blood flow in tumors and normal tissues in rats. Int J Radiat Oncol Biol Phys 20: 1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Hill SA, Smith KA, Denekamp J (1989) Reduced thermal sensitivity of the vasculature in a showly growing tumor. Int J Hyperthermia 2: 379–387

    Google Scholar 

  • Hugander A, Golmsjo M, Hafstrom L, Persson B (1983) Liver blood flow studies during local hyperthermia. An experimental study in rats. J Clin Oncol 9: 303–310

    CAS  Google Scholar 

  • Jain RK (1980) Temperature distributions in normal and neoplastic tissues during normothermia and hyperthermia. Ann NY Acad Sci 335: 48–66

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Ward-Hartley K (1984) Tumor blood flow: characterization, modifications and role in hyperthermia. IEEE Trans Sonics Ultrasonics SU-31: 504–526

    Article  Google Scholar 

  • Johnson RJR (1978) Radiation and hyperthermia. In: Streffer C, van Beuningen D, Dietzel F et al. (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 89–95

    Google Scholar 

  • Kang MS, Song CW, Levitt SH (1980) Role of vascular function in response of tumors in vivo to hyperthermia. Cancer Res 40: 1130–1135

    PubMed  CAS  Google Scholar 

  • Kim GE, Lyons JC, Levitt SH, Song CW (1991) Effects of amiloride on intracellular pH and thermosensitivity. Int J Radiat Oncol Biol Phys 20: 541–549

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Ryu KH, Kang MS, Song CW (1986) Effect of hyperthermia on the lactic acid and β-hydroxybutyric acid contact in tumors. Int J Hyperthermia 2: 213–222

    Article  PubMed  CAS  Google Scholar 

  • Lilly MB, Ng TC, Evanochko WT et al. (1984) Loss of high-energy phosphate following hyperthermia demonstrated by in vivo 31P-nuclear magnetic resonance spectroscopy. Cancer Res 44: 633–638

    PubMed  CAS  Google Scholar 

  • Lin JC, Song CW (1993) Influence of vascular thermotolerance on the heat-induced changes in blood flow, pO2 and cell survival in tumors. Cancer Res 53: 2076–2080

    PubMed  CAS  Google Scholar 

  • Lokshina AM, Song CW, Rhee JG, Levitt SH (1985) Effect of fractionated heating on the blood flow in normal tissues. Int J Hyperthermia 1: 117–129

    Article  PubMed  CAS  Google Scholar 

  • Lyng H, Monge OR, Bohler PJ, Rofstad EK (1991) The relevance of tumour and surrounding normal tissue vascular density in clinical hyperthermia of locally advanced breast carcinoma. Int J Radiat Biol 50: 189–193

    Article  Google Scholar 

  • Matsuda H, Sugimachi K, Kuwano H, Mora M (1989) Hyperthermia, tissue, microcirculation, and temporarily increased thermosensitivity in VX2 carcinoma in rabbit liver. Cancer Res 49: 2777–2782

    PubMed  CAS  Google Scholar 

  • Milligan AJ (1987) Canine muscle blood flow during fractionated hyperthermia. Int J Hyperthermia 3: 353–359

    Article  PubMed  CAS  Google Scholar 

  • Nagasaka T, Hirata K, Nunomura T, Cabanac M (1987) The effect of local heating on blood flow in the finger and the forearm skin. Can J Physiol Pharmacol 65: 1329–1332

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Osborn J, Rhee JG, Song CW (1990) Effect of regional heating of upper body on the liver blood flow in rats. Int J Hyperthermia 6: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Rhee JG, Song CW, Onoyama Y (1992) Effects of a second heating on the rat liver blood flow. Int J Hyperthermia 8: 679–687

    Article  PubMed  CAS  Google Scholar 

  • Nishimura Y, Shibamoto Y, Jo S, Akuta K, Hiraoka M, Takashi M, Abe M (1988) Relationship between heatinduced vascular damage and thermosensitivity in four mouse tumors. Cancer Res 48: 7224–7230

    Google Scholar 

  • Nishimura Y, Jo S, Akuta K et al. (1989) Histological analysis of the effect of hyperthermia on normal rabbit hepatic vasculature. Cancer Res 49: 4295–4297

    PubMed  CAS  Google Scholar 

  • Olch A, Kaiser L, Silberman A, Storm F, Graham L, Morton D (1983) Blood flow in human tumors during hyperthermia therapy: demonstration of vasoregulation and an applicable physiological model. J Surg Oncol 23

    Google Scholar 

  • Peck JW, Gibbs FA (1983) Capillary blood flow in murine tumors, feet and intestines during localized hyperthermia. Radiat Res 96: 65–81

    Article  PubMed  CAS  Google Scholar 

  • Prionas SD, Taylor MK, Fajardo LF, Kelly NJ, Nelson TS, Hahn GM (1985) Thermal sensitivity to single and double heat treatments in normal canine liver. Cancer Res 45: 4791–4797

    PubMed  CAS  Google Scholar 

  • Rappaport DS, Song CW (1983) Blood flow and intravascular volume of mammary adenocarcinoma 13762A and normal tissues of rat during and following hyperthermia. Int J Radiat Oncol Biol Phys 9: 539–547

    Article  PubMed  CAS  Google Scholar 

  • Reinhold HS, Endrich B (1986) Tumor microcirculation as a target for hyperthermia. Int J Hyperthermia 2: 111–137

    Article  PubMed  CAS  Google Scholar 

  • Reinhold HS, Blachiewicz B, van den Berg-Blok AE (1978) Decrease in tumor microcirculation during hyperthermia. In: Streffer C, van Beuningen D, Dietzel F et al. (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 231–232

    Google Scholar 

  • Rhee JG, Kim TH, Levitt SH, Song CW (1985) Changes in acidity of mouse tumor by hyperthermia. Int J Radiat Oncol Biol Phys 10: 393–399

    Article  Google Scholar 

  • Ryu KH, Song CW (1982) Changes in lactic acid content in tumors by hyperthermia. Radiat Res 91: 319–320

    Google Scholar 

  • Scheid P (1961) Funktionelle Besonderheiten der MikroZirkulation im Karzinom. Bibliotheca Anatomica 1: 327–335

    Google Scholar 

  • Shrivastav S, Kaelin WG, Joines WT, Jirtle R (1983) Microwave hyperthermia and its effect on tumor blood flow in rats. Cancer Res 43: 4665–4669

    PubMed  CAS  Google Scholar 

  • Song CW (1978) Effect of hyperthermia on vascular function of normal tissues and experimental tumors: brief communication. J Natl Cancer Inst 60: 711–713

    PubMed  CAS  Google Scholar 

  • Song CW (1982a) Blood flow in tumors and normal tissues in hyperthermia. In: Storm K (ed) Hyperthermia in cancer therapy. G.K. Hall, Boston, pp 187–206

    Google Scholar 

  • Song CW (1982b) Physiological factors in hyperthermia. Natl Cancer Inst Monogr 61: 169–176

    PubMed  CAS  Google Scholar 

  • Song CW (1982c) Physiological factors in hyperthermia of tumors. In: Nussbaum GH (ed) Physical aspects of hyperthermia. American Institute of Physics, New York, pp 43–62

    Google Scholar 

  • Song CW (1984) Effect of local hyperthermia in blood flow and microenvironment: a review. Cancer Res 44: 4721s–4730s

    PubMed  CAS  Google Scholar 

  • Song CW (1991a) Role of blood flow in hyperthermia. In: Urano M, Douple EB (eds) Hyperthermia and oncology, vol 3. VSP, Utrecht, pp 275–315

    Google Scholar 

  • Song CW (1991b) Tumor blood flow response to heat. In: Vaupel P, Jain RK (eds) Tumor blood supply and metabolic microenvironment, characterization and implications for therapy. Funktionsanalyse Biologischer System 20: 123–141

    Google Scholar 

  • Song CW, Kang MS, Rhee JG, Levitt SH (1980a) Effect of hyperthermia on vascular function in normal and neoplastic tissues. Ann NY Acad Sci 335: 35–47

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Kang MS, Rhee JG, Levitt SH (1980b) Effect of hyperthermia on vascular function, pH and cell survival. Radiology 137: 795–803

    PubMed  CAS  Google Scholar 

  • Song CW, Rhee JG, Levitt SH (1980c) Blood flow in normal tissues and tumors during hyperthermia. J Natl Cancer Inst 64: 119–124

    PubMed  CAS  Google Scholar 

  • Song CW Patten MS, Rhee JG, Levitt SH (1987a) Effect of multiple heating on the blood flow in RIF-1 tumors, skin and muscle of C3H mice. Int J Hyperthermia 3: 535–545

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Rhee JG, Haumschild DJ (1987b) Continuous and noninvasive quantitation of heat-induced changes in blood flow in the skin and RIF-1 tumor of mice by laser Doppler flowmetry. Int J Hyperthermia 3: 71–77

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Chelstrom LM, Levitt SH, Haumschild DJ (1989a) Effects of temperature on blood circulation measured with the laser Doppler method. Int J Radiat Oncol Biol Phys 17: 1041–1047

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Lin JC, Chelstrom LM, Levitt SH (1989b) The kinetics of vascular thermotolerance in SCK tumors of A/J mice. Int J Radiat Oncol Biol Phys 17: 799–802

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Chelstrom LM, Haumschild DJ (1990a) Changes in human skin blood flow by hyperthermia. Int J Radiat Oncol Biol Phys 18: 903–907

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Chelstrom LM, Sung JH (1990b) Effect of second heating on the tumor blood flow. Radiat Res 122: 66–71

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Lin JC, Lyons JC (1993) Antitumor effect of Interleukin-la in combination with hyperthermia. Cancer Res 53: 324–328

    PubMed  CAS  Google Scholar 

  • Stewart F, Begg A (1983) Blood flow changes in transplanted mouse tumours and skin after mild hyperthermia. Br J Radiol 56: 477–482

    Article  PubMed  CAS  Google Scholar 

  • Streffer C (1984) Mechanism of heat injury. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 2. Taylor &. Francis, London, pp 213–222

    Google Scholar 

  • Sugaar S, Leveen HH (1979) A histopathologic study on the effects of radiofrequency thermotherapy on malignant tumors of the lung. Cancer 43: 767–783

    Article  PubMed  CAS  Google Scholar 

  • Sutton CH (1976) Necrosis and altered blood flow produced by microwave-induced tumor hyperthermia in murine glioma. In: Weinhouse S (ed) Proc. 12th Annual Meeting of the American Society for Clinical Oncology Williams & Wilkins Co., Baltimore, MD, 17: 63

    Google Scholar 

  • Uda M, Osborn JL, Lee CKK, Nakhleh RE, Song CW (1990) Pathophysiological changes after local heating of rat liver. Int J Radiat Oncol Biol Phys 18: 903–907

    Article  Google Scholar 

  • van den Berg-Blok AE, Reinhold HS (1987) Experimental hyperthermic treatment of human colon carcinoma xenografts. The thermal sensitivity of the tumor microcirculation. Eur J Cancer Clin Oncol 23: 1177–1180

    Article  PubMed  Google Scholar 

  • Vaupel P (1990) Pathophysiological mechanisms of hyperthermia in cancer therapy. In: Gautherie M (ed) Biological basis of oncologic thermotherapy. Springer, Berlin Heidelberg New York, pp 73–134

    Chapter  Google Scholar 

  • Vaupel P (1992) Effect of physiological parameters on tissue response to hyperthermia: new experimental facts and their relevance to clinical problems. In: Gerner EW, Cetas TC (eds) Proceedings of the 6th International Congress on Hyperthermic Oncology, Tucson Avizona, April. Arizona Bourd of Rejents 2: 17–24

    Google Scholar 

  • Vaupel P, Ostheimer K, Mueller-Klieser W (1980) Circulatory and metabolic response of malignant tumors during localized hyperthermia. J Cancer Res Clin Oncol 98: 15–29

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Kallinowski F, Kluge M, Egelhof E, Fortmeyer HP (1988a) Microcirculatory and pH alterations in isotransplanted rat and xenotransplanted human tumors associated with hyperthermia. Recent Results Cancer Res 109: 173–182

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Kluge M, Ambroz MD (1988b) Laser doppler flowmetry in subepidermal tumors and in normal skin of rats during localized ultrasound hyperthermia. Int J Hyperthermia 4: 307–321

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Okunieff P, Kluge M (1989) Response of tumor red blood cell flux to hyperthermia and/or hyperglycemia. Int J Hyperthermia 5: 199–210

    Article  PubMed  CAS  Google Scholar 

  • Waterman FM, Nerlinger RE, Moylan DJ III, Leeper DB (1986) Response of human tumor blood flow to local hyperthermia. Int J Radiat Oncol Biol Phys 13: 75–82

    Article  Google Scholar 

  • Wike-Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumor pH to the treatment of malignant disease. Radiother Oncol 2: 343–366

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, C.W., Choi, I.B., Nah, B.S., Sahu, S.K., Osborn, J.L. (1995). Microvasculature and Perfusion in Normal Tissues and Tumors. In: Seegenschmiedt, M.H., Fessenden, P., Vernon, C.C. (eds) Thermoradiotherapy and Thermochemotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57858-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57858-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63382-9

  • Online ISBN: 978-3-642-57858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation